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Abstract: This paper presents a novel workflow for the design of an adaptive model-based
controller to optimize the time and energy consumption for plant cultivation combined with on-
line analysis and estimation of model parameters based on scarce data. A non-linear model of
lettuce growth is subject to sensitivity analysis of selected parameters to determine the effective
sequence and time horizon of infrequent data sampling of plant physiological properties. In the
designed measurement campaign, the parameter estimation is performed to update the model
parameter space, improving the accuracy of plant growth predictions and control efficiency.
The implementation of run-time-updated model in a predictive control framework leads to
minimization of the energy-related cost and the full-growth time of the plant. Simulations show
promising results in minimizing the time required to the desired plant yield.
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1. INTRODUCTION

The Earth’s population is growing ever faster and it is
estimated that up to two thirds of the population will live
in cities by 2050 (United Nations, 2014). This puts large
pressure on the efficient production of high-quality food in
order to maintain sustainable health conditions among the
community (Brears, 2023). Concurrently, the cultivation of
plants is closely intertwined with the influence of external
conditions, global climate changes, which is also reflected
in the non-linearities and negative trend of their growth.
To minimize these limitations, data analysis and optimal
tuning of crop growth control in greenhouses creates
opportunities for increasing crops production efficiency
while reducing resource consumption (Shimizu et al., 2008;
Graamans et al., 2018; Eaton et al., 2023).

Among the different plants, lettuce cultivation has emerged
as a suitable plant type for growth in greenhouses because
of its ability to fast growing and the minimum area require-
ments for space occupation. Several models of lettuce have
been proposed, while a frequently used model is by Van
Henten (1994). The dynamic model of lettuce growth is
based on the evolution of the dry weight of the plant,
which is affected by (I) the growth of the physical parts of
the plant such as leaves, roots, stem and its structure and
(II) the reserves of substances and nutrients that the plant
needs to carry out physiological processes. The analysis of
the effect of external resources on the growth of lettuce
plants is discussed by Mahmood et al. (2024), where the
electricity, water, light, and CO2 requirements are con-
sidered in estimating the yield of the cultivated plant.
Stochastic modelling approaches were addressed by Chang
et al. (2021) using fuzzy-logic and neural networks to effi-

ciently predict the growth properties of lettuce, including
transpiration and photosynthetic processes of the plant.

Models predicting the lettuce growth are typically char-
acterised by a large number of parameters whose values
are difficult to obtain, i.e., have been measured under
specific conditions (Van Holsteijn, 1981; Sweeney et al.,
1981) and the global climate change has had a significant
impact on altering their values. This causes significant
problems in the manipulation (control) of lettuce growth
when suboptimal yield occurs. For this reason, the es-
timation of selected parameters of the lettuce model is
investigated by Ioslovich et al. (2006) who achieved good
results when applying the Dominant Parameter Selection
method. Ojo et al. (2024) reported results of an R2 index
above 90% when predicting lettuce phenotypic parameters
using a deep learning regression model, while Gang et al.
(2022) obtained similar results for the estimation of several
growth indices using a convolutional neural network.

The estimation of lettuce model parameters is often pre-
ceded by an analysis of parameter estimability to increase
the relevance of the information provided by the available
data. The sensitivity of model parameters is widely cal-
culated using relative parameter sensitivity indices (Van
Henten and Van Straten, 1994; Lopez-Cruz et al., 2004),
where the effect of a parameter change on the measured
state is normalized parameter- and state-wise. Another
method involves the normalized deviation ratio (Tan et al.,
2022), based on root-mean squared deviation of the model
dynamics before and after parameter perturbation. How-
ever, neither of the approaches clearly explains how the
parameter perturbation affects the model dynamics across
the whole time horizon. Simultaneously, the literature pro-



vides a limited representation of the application of such
information in adaptive optimal control of lettuce growth,
where the authors exclusively focus on implementing the
predictive control (van Straten et al., 2000; Padmanabha
et al., 2020) or distributed control (Rohde and Forni, 2023)
without considering the time-evaluation of the model pa-
rameters and the overall production time for the desired
product yield of the plant. Moreover, a non-negligible
challenge in the effectiveness of model-based design of
experiments is the efficient acquisition of the required
information from collected data, burdened with measures
of uncertainties and inaccuracies (Kusumo et al., 2022).
Our work is concerned with the sensitivity analysis of the
lettuce growth model that guides the in-cultivation data
collection schedule with a subsequent on-line parameter
update to adapt the model for the energy-aware optimiza-
tion. A workflow dealing with these challenges is proposed.

This paper is further divided into the following sections: In
Section 2, the model of the lettuce growth model is defined.
Optimal plant growth control, together with the model
sensitivity analysis and parameter estimation, is described
in Section 3. The workflow for lettuce growth is specified
in Section 4, with simulated control results in Section 5.

2. PLANT GROWTH MODEL

We present the plant growth model of lettuce formulated
by Van Henten (1994). The proposed first-principles model
is based on the plant’s physiology, with the main state
variable being the dry weight of the plant. The dry weight
x(t) = (x1(t), x2(t))

⊺
(in g · m−2) consists of two main

components – a structural dry weight x1(t) (SDW, i.e.,
a physical structure and support of the plant) and a
nonstructural dry weight x2(t) (NSDW, i.e., a reserve of
energy, nutrients, and other resources). The model consists
of a set of nonlinear ordinary differential equations:

dx1(t)

dt
= rg(t)x1(t), (1)

dx2(t)

dt
= cCψp(t)− rg(t)x1(t)− ψr(t)

− 1− cy
cy

rg(t)x1(t), (2)

where rg(t), ψp(t), ψr(t), and cC denote the rates of growth
(specific), gross canopy photosynthesis, maintenance res-
piration, carbon dioxide CO2 to carbohydrate CH2O con-
version, respectively. cy is the yield factor and t represents
a time instant.

The output vector coincides with the state vector, while
the destruction of a significant part of the plant is neces-
sary to measure the dry weight. The control input vector
u(t) = (u1(t), u2(t), u3(t))

⊺
consists of canopy tempera-

ture u1(t) (in ◦C), greenhouse CO2 concentration u2(t)
(in g ·m−3), and incident photosynthesis active radiation
u3(t) (in W · m−2). The value of cC is the ratio of the
molecular weight of CH2O and CO2.

The SDW x1(t) is related to the specific growth rate rg(t),
representing the transformation of NSDW to SDW with

rg(t) = cg,max
x2(t)

cgx1(t) + x2(t)
c

u1(t)

10 −2

Q10,g , (3)

where cg,max, cg, cQ10,g are, respectively, the saturation
growth rate at 20 ◦C, growth rate coefficient, and growth
rate sensitivity Q10 factor w.r.t. the canopy temperature.

The photosynthesis rate ψp(t) specifies the growth rate of
the nonstructural dry weight. It is formulated as

ψp(t) =
(
1− e−ceca(1−cr)x1(t)

)
ψp,max(t), (4)

where ψp,max(t), ce, ca, and cr represent the gross CO2

assimilation rate for a canopy with 1m−2 of effective
surface area at the full soil covering, the light extinction
coefficient, the structural leaf area ratio, and the ratio of
the root dry mass to the dry mass of the whole plant.

The value of the gross CO2 assimilation rate for a canopy
ψp,max(t) in (4) is further calculated as

ψp,max(t) =
ϵ(t)u2(t)G(t) (u3(t)− Γ(t))

ϵ(t)u2(t) +G(t) (u3(t)− Γ(t))
, (5)

where ϵ(t), Γ(t), and G(t) denote the light use efficiency,
the CO2 compensation point, and the canopy conductance
related to the diffusion of the CO2, respectively.

The light use efficiency ϵ(t) is related to the CO2 compen-
sation point Γ(t) as follows

ϵ(t) = cϵ
u3(t)− Γ(t)

u3(t) + 2Γ(t)
, (6)

where cϵ is the light use efficiency at high CO2 concentra-
tion. The compensation point Γ(t) is obtained as

Γ(t) = cΓc
u1(t)

10 −2

Q10,Γ , (7)

where cΓ is the CO2 compensation point at 20 ◦C and
cQ10,Γ is the temperature-dependent Q10 factor of Γ(t).

The overall ability to diffuse the CO2 from the air to
the chloroplast in the plant is described by the canopy
conductance G(t), which is calculated as

1

G
=

1

Gb
+

1

Gs
+

1

Gc(t)
, (8)

where Gb, Gs, and Gc(t) are the boundary layer, stomatal,
and carboxylation conductances, respectively.

The Gc(t) is a polynomial function in the temperature
range 5 ◦C to 40 ◦C with

Gc(t) = acu
2
1(t) + bcu1(t) + cc, (9)

where ac, bc, and cc represent the tabulated parameters.

The NSDW relates to the maintenance respiration rate as

ψr(t) = (cs (1− cr) + cmcr)x1(t)c
u1(t)

10 − 5
2

Q10,r , (10)

where cs and cm are the shoot and the root maintenance
respiration coefficient at 25 ◦C, cQ10,r represent the Q10

factor of the maintenance respiration. The parameter
values are displayed in Table 1.

3. ADAPTIVE MODEL PREDICTIVE CONTROL

We introduce the essential theoretical concepts that sup-
port the proposed advanced control solution.

3.1 Sensitivity Analysis

The relative sensitivities of the model states in (1) and (2)
w.r.t. the selected parameters are given by:



Table 1. Growth model parameters.

Parameter Value Unit Source

cC 6.82× 10−1 1 —
cy 0.80 1 1

cg 1.20 1 1

cϵ 1.70× 10−5 g · J−1 2

cΓ 4.00× 101 g ·m−3 2

ce 6.75× 10−2 1 2

cr 0.15 1 3

ca 1.00 g−1 ·m−2 3

cg,max 5.00× 10−6 s−1 4

cQ10,Γ 2.00 1 2

cQ10,g 1.60 1 1

cQ10,r 2.00 1 5

cs 3.47× 10−7 s−1 6

cm 1.16× 10−7 s−1 6

Gb 7.20× 10−4 m · s−1 7

Gs 5.00× 10−3 m · s−1 7

ac −1.32× 10−5 m · s−1 · ◦C−2 5

bc 5.94× 10−4 m · s−1 · ◦C−1 5

cc −2.64× 10−3 m · s−1 5

1 – Sweeney et al. (1981), 2 – Goudriaan et al. (1985), 3 – Lorenz

and Wiebe (1980), 4 – Van Holsteijn (1981), 5 – Van Henten (1994),
6 – Van Keulen et al. (1982), 7 – Stanghellini (1987)

Sxi,pj
(t) =

∂xi(t)

∂pj

pj

xi(t)
,

{
i ∈ {1, 2} ,
j ∈ {1, . . . , Np} ,

(11)

where p denotes a vector of analysed parameters of size
Np, indices i and j represent the state and parameter
number in x(t) and p vectors. The sensitivity calculation
can be simplified by replacing the term ∂xi(t)/∂pj with
∆xi(t)/∆pj in (11), where ∆xi(t) = xi,∆pj

(t) − xi(t)
represents the difference of i-th state value before and
after the model perturbation of j-th parameter ∆pj . The
simplified relative sensitivity is selected, as it classifies
the influence of the parameter change to model evalua-
tion (France and Thornley, 1984).

3.2 Parameter Estimation

The parameter estimation is done using the measurements
of SDW and NSDW of the plant. The least-squares ap-
proach between the model predictions and measurements
is used to find the real values of the parameters of the
plant model. The optimization problem is formulated as:

min
p

1

2

M∑
j=1

∥x(tj)− xm
j ∥22 (12a)

s.t. ẋ (t) = f (x(t),u(t),p) , ∀t ∈ [0, tM] , (12b)

x(0) = xinit, (12c)

where {t1, . . . , tM} are the measurement time instants of
M measurements, x is the estimated state of the plant
at the time of measurement, p are the parameters of the
model, f(·) is the model of the plant in (1)–(10), xm are
the measurements of the plant, xinit is the initial state of
the plant, u is the vector of control inputs, tM is the time
of the last measurement, respectively.

3.3 Plant Growth Control

The optimal control problem is formulated as:

J⋆(p,x0) = min
u(t),tf

tf +

∫ tf

0

u(t)⊺Quu(t) dt (13a)

s.t. ẋ (t) = f (x(t),u(t),p) , (13b)

umin ≤ u(t) ≤ umax, (13c)

1000 ≤ x1(tf) + x2(tf), (13d)

x(0) = x0, (13e)

where tf is the final time for harvesting, x0 is the current
measured state of the plant, Qu is the weight matrix for
the control input, umin and umax are the lower and upper
constraints of the control input, respectively. The optimal
control of the lettuce growth is based on the minimization
of the time and energy needed for the plant to grow at
least to a minimal dry weight, which is 1000 grams. The
energy minimization is expressed through weighted 2-norm
of inputs.

4. WORKFLOW

The presented workflow is designed to be used for the
optimal control of the batch (or even continuous) systems
under parametric uncertainty with scarce measurements.
We consider the processes under parametric uncertainties
in every batch, due to the composition of input, in our
case, different plants, variety of plants or the different
quality of seeds. By scarce measurements, we mean that
the measurements are expensive and time-consuming to
conduct. When estimating the parameters using scarce
measurements, it is essential to schedule them effectively.
We use sensitivity analysis to plan when to make the mea-
surements. In the presented experiment, we assume to have
access only to 3 measurements during a 50 days period.
The proposed workflow is summarized in Algorithm 1.

In Algorithm 1, T is the vector of times of the absolute
maximum of the sensitivity w.r.t. the j-th parameter.
The t⋆ is then the earliest time instant in T , i.e., the
closest measurement point. Variables τ and t⋆f denote
elapsed and remaining growth time, respectively. Vector
Spj

(t) represents the state sensitivities w.r.t. the j-th
parameter. Initial parameter guess is set based on values
in Table 1. During each while-loop body execution, only
the parameters p differ, which are estimated from the
measurements xm. The parametric sensitivities alter as
the parameters are adapted. To prevent taking measure-
ments most sensitive to some parameter repeatedly, we
exclude the parameter from the sensitivity analysis once
the corresponding measurement is planned.

The regularization term Qu is chosen to balance the
contributions of time and control inputs to the objective
function in (13). Further the optimization problem is
discretized with piecewise constant control profile with the
number of elements N . The specific parameters are:

R = 2× 10−4, (14a)

Qu = diag

[
1

20
,

1

100
,

1

400

]
R, (14b)

N = 100, (14c)

umin = (10, 0, 400)
⊺
, (14d)

umax = (40, 200, 800)
⊺
, (14e)

and the problem is solved with the Python version 3.11.9
using CasADi (Andersson et al., 2019) library version



Algorithm 1 Adaptive Lettuce Growth Optimization
Workflow

1: Initialize: Guess p. J := {1, . . . , Np}. τ := 0.
2: Get x0 ← measure initial state xinit

3: Get u⋆, t⋆f ← solve problem (13) for x0,p
4: Get S(t)← solve Eq. (11) ∀t ∈ [0, t⋆f ] for x0,p,u

⋆

5: for j ∈ J do
6: T j := argmaxt ∥Spj

(t)∥∞
7: end for
8: Get t⋆ := minj T j .
9: while t⋆f ≥ ts do

10: if τ = t⋆ then
11: x0 ← measure current state
12: Push x0 to xm(t⋆).
13: p← solve problem (12) with xm(t⋆)
14: Get u⋆, t⋆f ← solve problem (13) for x0,p

15: Get S(t)← solve Eq. (11)

{
∀t ∈ [0, τ + t⋆f ]

for xinit,p,u
⋆

16: for j ∈ J do
17: T j := argmaxt ∥Spj

(t)∥∞
18: end for
19: Get j⋆ := argminj T j .
20: Assign t⋆ := T j⋆ . J := J \{j⋆}.
21: end if
22: Apply u⋆(t) to the plant ∀t ∈ [0, ts].
23: τ := τ + ts
24: t⋆f := t⋆f − ts
25: end while
26: Terminate: Harvest

3.6.5 using Opti stack — a collection of CasADi helper
classes and is applied to the simulation every ts = 1h,
representing the sampling time.

Reflecting the analysis in Van Henten (1994) and Van
Henten and Van Straten (1994), the vector of adapted
parameters p is defined as

p = (cg,max, ceca, cϵ, cy)
⊺
, (15)

where the product of the light extinction coefficient and
the structural leaf area ratio ceca is considered as a
single parameter since, based on the formulation in (4),
their individual values are not estimable. The parameter
estimation problem (12) is solved with SciPy (Virtanen
and SciPy 1.0 Contributors, 2020) library version 1.11.2
using the function optimize.least_squares.

5. RESULTS

For the purpose of comparison, we denote the variables ob-
tained during the simulation using the proposed workflow
with a double prime (′′) and the results obtained from the
simulation without any modifications to the model (non-
adaptive approach) during control with a single prime (′).

In the example simulations, the trajectories of the states
and control inputs are depicted in Figure 1 for the pro-
posed workflow and for the non-adaptive approach. The
starting nominal initial states are x(0) = (0.72, 2.70) and
the parameters p from Table 1 are lowered by 15%. After
obtaining the u⋆ and performing a sensitivity analysis,
the first measurement is scheduled at t = 6.125 d. At this
point, the earliest maximum sensitivity is reached for the
parameter ceca . From this measurement, 2 parameters
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Fig. 1. Trajectories of controlled and manipulated vari-
ables for a representative scenario of initial parame-
ters and model perturbations in simulation.



Table 2. The statistics of the simulation results: variables with a double prime (′′) represent the
values obtained by applying proposed workflow, while variables with a single prime (′) represent

the values reached with non-adaptive control.

Variables Units Mean St.Dev.

x′′
1 + x′′

2 g ·m−2 1.000× 103 0.344
x′
1 + x′

2 g ·m−2 0.996× 103 67.275
t′′end d 5.196× 101 2.801
t′end d 5.146× 101 0.319∑(

u′′
1 − u1min

)
◦C 8.836× 103 519.7∑(

u′
1 − u1min

)
◦C 8.795× 103 260.2∑(

u′′
2 − u2min

)
W ·m−2 2.013× 105 17.695× 103∑(

u′
2 − u2min

)
W ·m−2 1.991× 105 1.222× 103∑(

u′′
3 − u3min

)
ppm 3.357× 105 37.969× 103∑(

u′
3 − u3min

)
ppm 3.323× 105 1.945× 103

are estimated: ceca and cg,max, as they have the highest
absolute sensitivity at the time. Further, the plant states
are measured and the selected parameters are estimated.
Then, the control input u⋆ is recomputed based on the
measurement and the updated parameters. After this, the
sensitivity analysis is performed again with the updated
model. The time of the next measurement is planned at t =
9.292 d. The recomputation of sensitivity analysis is impor-
tant because the same measurement, without recomputing
the analysis for the updated model, would be planned on
the t = 6.625 d. Upon gathering the second measurement,
the remaining two parameters are estimable. A precise
values of parameters are obtained as no process noise is
present. At this point, the u⋆ is computed for the updated
model and latest measurement. It is being applied for
system control to the desired minimal weight of the dry
weight.

The trajectories of the control input are changed at
the time of measuring the plant states and predicting
the parameters. The non-adaptive approach only changes
based on the measurement undergone at the same time
as the measurements based on sensitivity analysis without
changing the parameters of a model. The measurement
approach for the non-adaptive approach is performed such
that both approaches provide the same information. The
measurement times, based on sensitivity analysis, are t =
6.125 d and t = 9.292 d. After these two experiments, the
four parameters are exactly estimated, and the plant grows
to the required dry weight. It is important to mention
that this is achieved due to no model-plant mismatch
and no consideration of the measurement noise during the
experiments. The non-adaptive approach is not able to
reach the desired dry weight and the plant is harvested too
early, after 52.625 d. The dry weight reached with the non-
adaptive approach is more than 14% less than the desired
value; in this case, the product would not be marketable.
The workflow approach is able to reach the desired dry
weight and is harvested after 59.458 d.

For better assessment of the proposed workflow, we carried
out a 1, 000 example simulations. Each simulation started
with randomly generated states and parameters. The
random initial states and parameters are within ±15% of
the nominal initial states x(0) = (0.72, 2.70) and the initial
selected parameters p are taken from Table 1. The results
of the simulations are summarized in Table 2.

The proposed workflow in Section 4 is applied and
x′′, u′′ and t′′ are obtained. For the non-adaptive ap-
proach, the simulation is computed based on x(0) and
following measurements, without any further changes to
the model or parameter estimation and x′, u′ and t′ are
obtained. The results are provided in Table 2. The most
important improvement is the final value of the sum of
structural and nonstructural dry weight, x1 + x2. It is
the most important indicator since it represents the final
dry weight of the plant and the criteria of the product
quality. The non-adaptive approach is often unable to
reach the minimal desired value of 1 kg ·m−2 of dry weight
or highly overshoots this value, while the energy is wasted
for the plant growth more than necessary. By applying the
proposed workflow, it is possible to consistently reach the
minimal desired value of the final dry weight and to lower
its standard deviation more than 200 times. However,
this crucial improvement comes with little cost in terms
of time and use of control inputs. The inputs fluctuated
significantly during the simulations, yet the mean values
over 1, 000 simulations are essential. The time to grow the
plants to desired weight increased by 0.97%. The usage of
control input u1 increased by 0.47%, the usage of control
input u2 increased by 1.10%, and the usage of control input
u3 increased by 1.02%. These values are essential for the
economic aspects of the plant cultivation as well as the
final dry weight. The reported increase is not significant.

6. CONCLUSION

In this paper, a workflow for the optimal control of let-
tuce growth, addressing the challenges posed by param-
eter uncertainty and limited measurement availability, is
proposed. The sensitivity analysis allowed for guiding the
timing of measurements and improving the parameter es-
timation process. By integrating these approaches into an
optimal control framework, we achieved consistent growth
of lettuce to a target dry weight while optimizing energy
use. The workflow demonstrated significant improvements
in terms of growth accuracy and negligible increase in nec-
essary time and control inputs over 1, 000 simulations. The
presented approach can be further tested in a controlled
environment in Smart Eco Greenhouse VESNA (Oravec
et al., 2023). We also see the potential of the proposed
workflow to be used in other processes with scarce mea-
surement and not be limited to the plant grow control.
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