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Abstract: Model predictive control (MPC) is an advanced control strategy that can deal with
general nonlinear systems and constraints but relies on accurate predictions given by a dynamic
model. To satisfy constraints and improve performance despite imperfect models, robust
MPC methods can be formulated. Multi-stage MPC is a robust MPC method based on the
formulation of scenario trees. The resulting optimization problems can be large, as the number
of scenarios considered in the tree results from the combinations of all possible uncertainties.
For systems with many uncertainties, as it is the case in bioprocesses, the optimization problems
become rapidly intractable. To solve this issue, heuristics are typically used to select the most
relevant uncertain parameters and their range of uncertainty. In this paper, we propose a two-
step approach to obtain a systematic design of multi-stage MPC controllers: First, the key
uncertain parameters are extracted based on the parametric sensitivities. Second, Bayesian
optimization is employed for tuning of the range of uncertainties. The approach is applied
to a bioreactor simulation study. The proposed approach can avoid constraint violations that
are otherwise obtained by standard MPC while being less conservative than a manually-tuned
robust controller.

Keywords: Model predictive and optimization-based control, Bayesian methods, Robust
control, Constrained control, estimation and control in biological systems.

1. INTRODUCTION

Bioprocesses are preferred over chemical production in
some situations because of their high selectivity and
sustainability. Due to their complexity, bioprocess mod-
els consist of numerous model parameters. Optimization-
based algorithms like model predictive control (MPC) en-
hance bioprocess performance but can lead to significant
constraint violations when the model is imperfect. Bio-
process models exhibit a high degree of uncertainty due
to the simplifications necessary for model development of
such complex processes. In addition, the experimental data
available for parameter estimation is very limited due to
the cost and run time of experiments.
Robust control approaches such as tube-based MPC (Rawl-
ings et al., 2017) and multi-stage MPC (Lucia et al., 2013)
are able to account for the uncertainties of a system model.
While tube-based MPC is difficult to design for nonlinear
systems, multi-stage MPC uses scenario trees to handle
nonlinear systems effectively. However, the size of the
optimization problem in multi-stage MPC increases expo-
nentially with the number of uncertainties. Consequently,
these approaches are inappropriate for bioprocesses with
numerous uncertainties.
⋆ The research leading to these results has received funding from the
Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion) under grant agreement number 423857295.

Alternatives like sensitivity-assisted multi-stage MPC re-
duce computational complexity by focusing on worst-case
parameter realizations most likely to cause constraint vi-
olations (Thombre et al., 2021). Similar approaches by
Yu and Biegler (2020) and Puschke and Mitsos (2018)
consider only critical scenarios based on parametric sen-
sitivities but investigate just two uncertainties in case
studies.
In this paper we focus on systems with numerous un-
certainties. We propose a sensitivity-based method with
soft constraints that identifies key uncertain parameters
affecting both constraints and performance objectives, un-
like prior work focusing solely on constraint sensitivities.
Our approach reduces model complexity by considering
only the uncertain key parameters so that multi-stage
MPC becomes tractable. Our main contribution includes
automatically tuning the uncertainty ranges of these key
parameters via Bayesian optimization (Paulson and Mes-
bah, 2021), enabling compensation for neglected uncertain
parameters while optimizing closed-loop performance.
This paper is structured as follows. In Section 2 the math-
ematical preliminaries are introduced. Then, the details of
the proposed approach are presented in Section 3. In the
following, the results for the developed approach applied
to a bioreactor model are presented in Section 4 and the
paper is concluded in Section 5.



2. PRELIMINARIES

2.1 Nominal model predictive control

We investigate a nonlinear, discrete-time dynamic system
given by

xk+1 = fsys(xk,uk,Θ), (1)

with the states x ∈ Rnx and inputs u ∈ Rnu at discrete
time step k and the time-invariant model parameters
Θ ∈ RnΘ . The optimization problem that is solved in order
to control the system (1) via MPC is introduced as:

min
uk

JMPC =

N−1∑
k=0

ℓ(xk,uk) + Vf (xN ), (2a)

s.t. x0 = xinit, (2b)

xk+1 = f̂sys(xk,uk, Θ̃), k = 0, . . . , N − 1, (2c)

gk(xk,uk) ≤ 0, k = 0, . . . , N − 1, (2d)

gN (xN ) ≤ 0, (2e)

where N denotes the horizon and the objective function
JMPC consists of a stage cost ℓ(xk,uk) and a terminal
cost Vf (xN ). Constraints include the initial state xinit,

system dynamics modeled by f̂sys with the controller

model parameters Θ̃. Furthermore, additional arbitrary
stage gk and terminal gN inequality constraints are set.
Soft constraints allow penalized violations within the cost
function when necessary. This involves introducing a slack
variable ϵk that is added to the cost function with a
penalty term Kϵ, described as:

gk(xk,uk)− ϵk ≤ 0, k = 0, . . . , N − 1, (3a)

ℓϵ(ϵk) = ϵk ·Kϵ. (3b)

2.2 Robust multi-stage model predictive control

Multi-stage MPC uses a scenario-tree to account for un-
certainties in a system. A scenario tree branches over a
robust horizon Nr, with nb uncertainty realizations per
parameter representing possible state evolutions. For a
prediction horizon beyond Nr, constant uncertainties are
assumed. The constraints for all the scenarios are explicitly
included in the optimization problem, ensuring constraint
satisfaction while consideration of future feedback in the
tree structure mitigates overly conservative behavior (Lu-
cia et al., 2013).
Commonly, three possible realizations of the uncertainty
are considered (nb=3). Based on the nominal values Θ̃nom

and the uncertainty range ∆Θ̃, the model parameters of

the controller are Θ̃ =
{
Θ̃nom −∆Θ̃, Θ̃nom, Θ̃nom +∆Θ̃

}
.

As a result of the tree structure that considers the com-
binations of all the uncertain parameters, the number of
scenarios nS grows rapidly with the number of realizations
of the uncertainty nb and exponentially with Nr and with
the number of uncertain considered parameters nΘ̃:

nS = n
Nr·nΘ̃

b . (4)

This results in large optimization problems for a long
robust horizon or a large number of uncertainties. To
mitigate these issues, in practice Nr is commonly set to
1, which still very often results in a good performance
due to the iterative nature of the MPC approach (Lucia
et al., 2013). To further reduce the number of scenarios,

we propose to consider only the uncertainty of a subset
of the model parameters Θ̃d ∈ RnΘ̃,d and to assume for
the other model parameters Θ̃c ∈ RnΘ̃,c nominal values
(Θ̃ = Θ̃c ∪ Θ̃d).
In the event that only a limited number of parameters
are considered uncertain, it is not evident which of these
should be selected, nor is it clear how an appropriate value
for ∆Θ̃ should be determined. The primary objective of
this paper is to solve these issues.

2.3 Bayesian optimization

Bayesian optimization is a global optimization method
for expensive black-box functions, where the target func-
tion fBO lacks a closed-form expression and is costly
to evaluate (Greenhill et al., 2020). It approximates the
target function fBO by a probabilistic surrogate model

f̂BO, built from n observations Dn = {ϑ1:n, fBO(ϑ1:n)}
of ϑ1:n = {ϑ1, . . . , ϑn} samples. The posterior P (ϑ | Dn)
is computed via Bayes’ rule from the prior P (ϑ), the
likelihood P (Dn | ϑ) and the marginal likelihood P (Dn):

P (ϑ | Dn) =
P (Dn | ϑ)P (ϑ)

P (Dn)
. (5)

The obtained posterior captures the updated beliefs about
the unknown target function (Brochu et al., 2010). An
acquisition function α is used to determine the next
sampling point ϑn+1. The target function is then evaluated
at ϑn+1, the new observation is added to the dataset
Dn+1 = Dn ∪ {ϑn+1, fBO(ϑn+1)} and the surrogate model
is updated. After an initialization phase, this process is
repeated for niter iterations, refining the surrogate model.
A common surrogate model is a Gaussian process GP,
which is completely specified by its mean function µ(ϑ)

and covariance function k(ϑ, ϑ
′
):

f̂BO ∼ GP
(
µ(ϑ), k(ϑ, ϑ

′
)
)
. (6)

The radial basis function kRBF with the length-scale pa-
rameter l is commonly employed as the covariance function

kRBF(ϑ, ϑ
′
) = exp

(
− (ϑ− ϑ

′
)
T
(ϑ− ϑ

′
)

2l2

)
. (7)

An acquisition function α balances exploration and ex-
ploitation to compute the next sampling point. A common
choice is the upper confidence bound αUCB, which repre-
sents an upper bound of a confidence interval based on
mean µ, standard deviation σ, and a z-score z:

αUCB(ϑ) = µ(ϑ) + z · σ(ϑ). (8)

The z-score adjusts exploration-exploitation trade-offs.

3. PROPOSED APPROACH

3.1 Choosing the most important uncertain parameters

System models often involve numerous uncertainties that
must be addressed for robust control. However, multi-stage
MPC becomes intractable when handling multiple uncer-
tainties due to the exponential growth of the optimization
problem. Limiting the considered uncertainties to a subset
raises the question of how to select which ones should be
explicitly included in the scenario tree.
This section introduces a systematic method to identify



influential model parameters. For simplicity, all parame-
ters Θ are assumed uncertain. To simulate the system,
the model parameters Θ are considered by a simulator,
while in the controller the parameters Θ̃ are assumed. Not
all uncertainties significantly affect the system dynamics
or control behavior. Parameter uncertainties with minimal
impact on constraints or control behavior might be disre-
garded, reducing problem complexity. By employing soft
constraints, special emphasis is placed on the consideration
of constraints in the cost function JMPC.
To identify the most important key parameters, the para-
metric sensitivity of JMPC with respect to Θ̃ is evaluated:

s =
∂JMPC

∂Θ̃
· Θ̃, (9)

where s represents the scaled sensitivity, focusing on
relative rather than absolute parameter impacts. Sorting
the absolute values of s reveals which uncertain parameters
have the larges impact on the control behavior (constraint
satisfaction and process performance). Uncertainties of
parameters with low sensitivity may be ignored. Since it
is challenging to compute the parametric sensitivities of a
multi-stage MPC controller with many scenarios, all model
parameters are assumed to be nominal (Θ̃ = Θ̃c) for the
computation of the sensitivities.

This approach systematically partitions the model pa-
rameters of the controller into two sets: key uncertain
parameters explicitly considered Θ̃d and nominally as-
sumed parameters Θ̃c. Considering only nΘ̃,d instead of
all nΘ parameters uncertain, drastically reduces problem
size while retaining critical uncertainty representation. For
each removed parameter, the number of optimization vari-
ables and constraints are roughly divided by nb.

3.2 Bayesian optimization for tuning of multi-stage MPC

The sensitivity-based selection of uncertain parameters
enables the solution of problems with many original uncer-
tainties, but tuning the uncertainty range∆Θ̃ in the multi-
stage MPC controller remains challenging. Even if the
true uncertainty range is known, adjustments are required
because less influential uncertainties are ignored in the sce-
nario tree. Underestimating ∆Θ̃ may lead to constraint vi-
olations even though multi-stage MPC is employed, while
overestimating it results in overly conservative control.
Thus, proper tuning of the uncertainty range is essential,
and this tuning will additionally help in counteracting the
fact that only the most relevant uncertainties are explicitly
considered in the tree.
Tuning the uncertainty range requires the selection of nΘ̃,d

variables, and its evaluation involves an MPC controller in
closed-loop. As a result, manual tuning is challenging. We
propose using Bayesian optimization for systematic tuning
of the uncertainty range ∆Θ̃. The target function fBO for
optimization comprises three components:

fBO(∆Θ̃) = fCV(∆Θ̃) + fperf(∆Θ̃) + f∆Θ̃
(∆Θ̃), (10)

where constraint violations (fCV) are severely penalized,
while conservative performance (fperf) and large uncer-
tainty ranges (f∆Θ̃

) are penalized less. A Gaussian Process
with covariance function kRBF (7) serves as the surrogate
model. After a grid-based initialization phase using ninit

points between ∆Θ̃,min and ∆Θ̃,max, the subsequent sam-
pling points are selected by maximizing the acquisition
function αUCB (8). For each iteration, the target function
is evaluated at the new sample point, the dataset D up-
dated and the posterior distribution recomputed.

4. USE CASE HYDROXY-L-LYSINE PRODUCTION
VIA PSEUDOMONAS TAIWANENSIS VLB120

4.1 Bioreactor model

The introduced approach is applied to a fed-batch bioreac-
tor model in a simulation study. The model describes the
biotransformation of hydroxy-l-lysine via Pseudomonas
taiwanensis VLB120 for which more details can be seen
in Nerke et al. (2024).

The system consists of one input u, nine states x and
fourteen model parameters Θ. The two-phase bioreactor
model is described by a set of ordinary differential equa-
tions (ODEs) for the state variables which are the liquid
volume VL, biomassX, substrates D-xylose S1 and l-lysine
S2, the intermediates D-xylonolactone A1 and D-xylonate
A2, the product hydroxy-l-lysine P and the concentration
of oxygen in the liquid phase O2,L as well as in the gas
phase of the reactor O2,G. The ODE-system is expressed
as

dVL

dt
= Fin, (11a)

dX

dt
= −D X +Xµ+ rP kPX , (11b)

dS1

dt
= D (S1,in − S1)−X

µ

YS
− r1 − rP , (11c)

dA1

dt
= −D A1 + r1 − r2 + r3, (11d)

dA2

dt
= −D A2 + r2 − r3, (11e)

dS2

dt
= −D S2 − rP , (11f)

dP

dt
= −D P + rP , (11g)

dO2,L

dt
= D(O∗

2,L −O2,L)− 5X
µ

YS
− rP +OTR, (11h)

dO2,G

dt
=

V̇air(O2,G,in −O2,G)−OTR VL

VR − VL
, (11i)

where the input Fin is the feeding flow rate adding D-
xylose and oxygen to the system with the respective
concentrations of S1,in and O∗

2,L. The dilution rate D is
defined as the ratio of the feeding flow rate and the liquid
volume

D =
Fin

VL
. (12)

The growth rate of the biomass µ is modeled based on
Monod-kinetics

µ = µmax
S1

KS + S1
, (13)

with the maximum growth rate µmax and affinity constant
KS . The reaction rates ri are based on Michalis-Menten-
kinetics and calculated based on the following expressions:

r1 = Xvmax,1
S1

KM,1 + S1
, (14a)



r2 = vmax,2

(
A1 −

A1

K2

)
, (14b)

r3 = Xvmax,3

A1 − A2

K2

KM,2 +A1 − A2

K2

, (14c)

rP = Xvmax,P
S1S2

KM,3S1 +KM,4S2 + S1S2
, (14d)

where KM,i are the respective Michaelis-Menten constants
and vmax,i are the respective maximum reaction velocities.
Since r2 and r3 are reversible, the equilibrium constant
K2 is introduced. While r2 takes place independent of the
biomass, for rP a multi-substrate Michaelis-Menten kinetic
is employed.
The oxygen concentration in the liquid phase O2,L is com-
puted based on the equilibrium concentration of oxygen in
the gas-liquid-boundary interface O∗

2,L, the stoichiometric
coefficient YS and the oxygen transfer rate OTR. The oxy-
gen transfer rate is based on the volumetric mass transfer
coefficient kla, O∗

2,L and O2,L:

OTR = kla(O∗
2,L −O2,L), (15)

where the concentration at the interface is calculated
according to Henry’s law based on the pressure p, the
molar fraction of oxygen in the gas phase xO2,G and the
Henry constant HO2

O∗
2,L =

p · xO2,G

HO2

. (16)

The computation of O2,G relies on the flow rate of the

inflowing air V̇air with an oxygen concentration of O2,G,in

and the volume of the reactor vessel VR.
In addition to the ODE-system, two auxiliary expressions
are introduced: the conversion of l-lysine X and the
dissolved oxygen DO, which are computed as follows

X = 1− S2 · VL

S2,0 · VL,0
, (17a)

DO =
O2,L

O∗
2,L

. (17b)

The system is physically constrained by reactor capacity,
pump limits and non-negative concentrations and volumes.
In addition to these physical constraints which are imple-
mented as hard constraints, further soft constraints are
considered: A minimum level of dissolved oxygen (DO >
30 %) for the strictly aerobic microorganism, and an upper
limit on substrate concentration to avoid inhibition (Nerke
et al., 2024).

The control objective is the maximization of the product
titer P while minimizing the production time tbatch. For
realization of the product maximization, the following
stage cost ℓ and terminal cost Vf are employed

ℓ(xk,uk,uk−1, ϵk) = −100Pk + Fin,k+

(Fin,k − Fin,k−1)
2 + 108(ϵDO,k + ϵS1,k), (18a)

Vf (xN ) = −100PN , (18b)

penalizing any input and input changes while prioritizing
product maximization. Each batch is run until 99 % con-
version of lysine is obtained (X=0.99).
In accordance with (10), in the target function of the
Bayesian optimization the respective production time (lin-
early interpolated between the discretization points) as
well as the magnitude of constraint violations vCV and
uncertainty ranges ∆Θ̃,i are taken into account

fBO = −

(
1000vCV + tbatch +

nΘ̃,d∑
i

∆Θ̃,i

)
. (19)

Constraint violations are severely penalized and at a lower
extent long production times and large uncertainty ranges.
Combining different metrics in JMPC and fBO enables the
consideration of more complex control goals.
The computations are performed by using do-mpc (Fiedler
et al., 2023), CasADi (Andersson et al., 2019) and
IPOPT (Wächter and Biegler, 2006). All code to reproduce
the results is openly available with details on initial states,
constraints and model parameters. 1

4.2 Modeling the system’s uncertainty

Some model parameters are physical constants that are
precisely known, but this does not apply to the kinetic
parameters. Due to the complexity of coupled reactions in
bioreactors, kinetic parameters exhibit uncertainty. A total
of nΘ=14 model parameters are treated as uncertain. In-
stead of deterministic values (Θ=Θnom), these parameters
are modeled to be stochastic in the simulation of virtual
experiments. In this study, the uncertain model parame-
ters are assumed to be uniformly distributed around their
respective nominal value based on the offset ∆U according
to

Θ = ΘU ∼ U(Θnom(1−∆U ),Θnom(1 + ∆U )). (20)

Due to the probabilistic nature of the parameters, several
experimental runs have to be performed for evaluation.
A number of nruns randomly generated sets of model
parameters Θ are considered and the parameters remain
time-invariant during each run but differ across batches
according to (20). In the Bayesian optimization, the target
function (19) is evaluated for each run individually (fBO,i),

and the mean fBO is used for updating the GP

fBO =
1

nruns

nruns∑
i=1

fBO,i. (21)

4.3 Nominal model predictive control under uncertainty

For optimization of the input trajectory, nominal MPC is
employed with a horizon of N=12 h, a step size of 1 h and
the cost function introduced in (18). The ODE-system is
discretized using orthogonal collocation of finite elements.
Under nominal conditions (Θ=Θnom), the MPC con-
troller successfully maximizes the product titer, achieving
88.74 mmol l−1 after a production time of 41.70 h without
constraint violations. As illustrated in Fig. 1 the system is
operated directly at the constraint of DO, indicating that
this constraint is limiting the performance of the system.

In the presence of stochastic model parameters ΘU , nom-
inal MPC fails to ensure constraint satisfaction in 87 %
of the runs. Since severe constraint violations are present,
the control behavior is not acceptable. Thus, consideration
of the underlying uncertainties is essential and multi-stage
MPC is applied.

1 https://github.com/MulleBro/2024-BO-msMPC
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Fig. 1. Nominal MPC under nominal and uniformly dis-
tributed model parameters. Trajectories for DO indi-
cated by blue solid line, constraint indicated by dotted
red line. ∆U=5 %, nruns=100.

4.4 Extracting uncertain key parameters

To robustify the control performance against the parame-
ter uncertainties, multi-stage MPC with a robust horizon
ofNr=1 is employed. Considering all parameters uncertain
(nΘ̃,d=nΘ) leads to 314 scenarios according to (4), which is
computationally intractable. Therefore, the methodology
introduced in Section 3.1 is utilized for the identification
of the key uncertainties. The obtained parametric sensi-
tivities for a nominal open-loop MPC prediction over the
full production time (42 h) are shown in Fig. 2.
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Fig. 2. Key parameters for the uncertainty of the system:
Parametric sensitivity of the cost of nominal MPC
to the nominal model parameters, open-loop MPC
performed for a complete production run (N=42 h).

Most parameters have a minor impact on the system,
with µmax, vmax,P and KS being the most influential.
Given that those three parameters account for the largest
impact on the control behavior, the system’s uncertainty is
approximated by considering only those three parameters
uncertain in the controller (Θ̃d). Additionally neglecting
combinations of nominal parameters and only considering
one nominal scenario, the numbers of scenarios is reduced
from 314 to 23+1=9. This reduction makes multi-stage
MPC computationally tractable for the present control
problem.

4.5 Tuning of multi-stage MPC

The introduced multi-stage MPC allows for consideration
of the present uncertainties but requires careful tuning
of the uncertainty range, as only a few key parameters
are selected to represent the system’s overall uncertainty.
Manual tuning is performed via a one-dimensional grid
search, assuming the same uncertainty range for all un-
certain considered parameters. Table 1 shows the results
for manual tuning in terms of percentage of runs with
constraint violations rCV, mean magnitude of violations
per run vCV and mean batch time tbatch.

Table 1. Manual tuning of the uncer-
tainty range of multi-stage MPC. ∆U=5 %,

nruns=100.

∆Θ̃,µmax

[%]

∆Θ̃,vmax,P

[%]

∆Θ̃,KS

[%]

rCV

[%]
vCV

[%]
tbatch
[h]

0 0 0 87 10.019 41.61
3 3 3 31 1.377 41.93
6 6 6 2 0.064 42.26
7 7 7 1 0.003 42.37
8 8 8 0 0 42.49

With an increasing uncertainty range, the number of runs
with constraint violations and mean violations per run
are reduced. While at an uncertainty range of 7 % minor
violations are present, at a level of 8 % no constraint viola-
tions occur. Thus, all constraint violations are successfully
mitigated and the multi-stage MPC with ∆Θ̃,i=8 % is

referred to as manually tuned (∆Θ̃,man). However, the
mean production time is increased by 0.88 h compared
to not considering uncertainties. Since manual tuning is
challenging, the introduced control behavior is likely overly
conservative. A higher performance might be achieved
by considering individual ∆Θ̃,i for each uncertainty. A
multidimensional grid search would be inefficient due to
its inability to incorporate newly obtained knowledge into
sampling decisions.
For a systematic and efficient tuning, we apply the ap-
proach based on Bayesian optimization described in Sec-
tion 3.2 to tune the uncertainty range of the parameters
that are considered uncertain in the multi-stage MPC.
During initialization, three points per parameter are sam-
pled within∆Θ̃,min = 0% and∆Θ̃,max = 10%. The z-score

of the acquisition function αUCB (8) is set to 1.96 (95 %
confidence interval), and Bayesian optimization is per-
formed for 200 iterations using the Python package bayes-
opt(Nogueira, 2014). The uncertainty ranges obtained by
Bayesian optimization and the resulting controller perfor-
mance are listed in Table 2.

Table 2. Bayesian optimization of the uncer-
tainty range of multi-stage MPC. ∆U=5 %,

nruns=100.

∆Θ̃,µmax

[%]

∆Θ̃,vmax,P

[%]

∆Θ̃,KS

[%]

rCV

[%]
vCV

[%]
tbatch
[h]

8.61 0.03 6.01 0 0 42.37

As expected, the resulting upper bounds are smaller than
the initial 10 % at which Bayesian optimization is ini-



tialized. Interestingly ∆Θ̃,vmax,P
is very small. This may

indicate a lower influence of vmax,P regarding constraint
violations or a compensation of its influence by the uncer-
tainty in the other key parameters. With these uncertainty
ranges, all constraints are respected, leading as expected
to an increase in mean production time (42.37 h) when
compared to the one obtained by nominal MPC (41.61 h)
where 87 % of the runs resulted in constraint violations (cf.
Table 1). Manual tuning without any constraint violations
resulted in an higher mean production time, illustrating
that the performance obtained by our proposed approach
could not be easily obtained with manual tuning.
A comparison of the trajectories of the manually and
via Bayesian optimization tuned multi-stage MPC is pre-
sented in Fig. 3.
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Fig. 3. Trajectories of manually and via Bayesian opti-
mization tuned multi-stage MPC. Trajectories forDO
indicated by blue solid line, constraint indicated by
dotted red line. ∆U=5 %, nruns=100.

While by manual tuning, constraint violations are miti-
gated, the control behavior is conservative since the system
does not operate at the constraints. In contrast to that,
the via Bayesian optimization tuned multi-stage MPC
operates very close to the constraints without violating
them, allowing for minimal production times.
All computations were performed on a AMD Ryzen
Threadripper 3990X processor with 256 GB of RAM.
Employing the MA27-solver from the Harwell Subroutine
Library (http://www.hsl.rl.ac.uk) resulted in a mean com-
putation time of 0.146 s for solving a nominal MPC step
and 1.191 s for the via Bayesian optimization tuned multi-
stage MPC. The computation of the Bayesian optimiza-
tion, which is performed offline, ran for 11.0 h.

5. CONCLUSION

We proposed an approach to design multi-stage MPC con-
trollers for systems with many uncertainties. In this two-
step approach, the uncertain key parameter regarding con-
straints and performance are determined which is followed
by automatic tuning of the uncertainty range via Bayesian
optimization. By considering only the uncertainties of the
essential key parameters that are determined based on
parametric sensitivity, multi-stage MPC became tractable.
Manual tuning confirmed the approach’s ability to mit-
igate constraint violations but resulted in conservative
control behavior. By employing Bayesian optimization, the

challenges of manual tuning were overcome and the uncer-
tainty range was tuned for optimal control performance.
Future work will explore grouping uncertain parameters
with similar effects based on the monotonicity of model
equations with respect to the model parameters.
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