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Abstract: Multimode characteristics commonly exist in modern industrial processes. Previous
multi-model approaches treat steady states and transitions separately. However, identifying
each mode is often tedious, generally achieved through clustering, requiring operators to
tune hyperparameters extensively. As practitioners prefer a concise and easily implemented
approach for multimode dynamic process monitoring, we initially propose a hierarchical
scheme to simplify the modeling process while enhancing monitoring performance. Our method
iteratively constructs dynamic models in a hierarchical, monitoring-oriented manner without
mode partition. It offers three advantages. Firstly, modeling is directly conducted following
a hierarchical structure driven by monitoring indexes, which is more concise and ensures
monitoring performance. Secondly, by eliminating mode partition, only three hyperparameters,
such as model order and the termination condition, need to be decided by humans. This
significantly reduces human labour and facilitates the applicability of the proposed method
across various processes. Lastly, by focusing on dynamic characteristics rather than steady-
state and transitional modes, our method reduces the number of required models for a given
process, resulting in a simpler multi-model structure that still ensures monitoring performance.

Keywords: Multimode dynamic process monitoring, fault detection, dynamic modeling,
hierarchical scheme, autoregressive models.

1. INTRODUCTION

In modern industrial applications, processes often exhibit
multimode properties due to changes in operating condi-
tions, production requirements, or equipment configura-
tions. A multimode dynamic process operates by switch-
ing between distinct steady states, each representing a
specific operational mode. The switching process is called
transition. These multimode characteristics introduce sig-
nificant complexity into process monitoring and control.
Accurately monitoring and detecting faults across multiple
modes are essential for ensuring safety, maintaining prod-
uct quality, and improving overall efficiency in industrial
systems.

Various methods have been developed to address the
challenges of multimode process monitoring, broadly
categorized into single-model and multi-model schemes
(Quiñones-Grueiro et al., 2019). In the single-model
scheme, adaptive modeling approaches using neural net-
works are widely applied (Wu and Zhao, 2020; Song
et al., 2024). For example, Huang et al. (2023) utilized
a jointly mode-matching and similarity-preserving dictio-
nary learning to learn the data of new modes, while trying
to guarantee the representation ability of the proposed
method for historical data. Although adaptive approaches
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using neural networks can provide flexibility in adapting to
changing conditions, they have three drawbacks. The first
one is that neural networks lack interpretability. It is hard
to understand the decisions. Secondly, adaptive methods
based on neural networks are memory-intensive and strug-
gle to catch process changes quickly. They inevitably have
a lag in fault detection. Finally, for different industrial
systems, neural networks often require retraining or fine-
tuning, which can be a highly labour-intensive and time-
consuming process. Therefore, practitioners prefer simple,
structurally transparent models in practical applications.

To overcome the aforementioned limitations, the multiple-
model scheme is a good choice and more popular among
researchers. It separately treats steady states and transi-
tions, which is clearer and more understandable than the
single-model scheme. Typically, this scheme first partitions
the multimode process into distinct modes and then devel-
ops a model, such as principal component analysis (PCA),
independent component analysis (ICA) and canonical cor-
relation analysis (CCA) model, for each mode (Lyu et al.,
2024; Xu et al., 2023). Mode partition is essential to cap-
ture the unique characteristics of each operational mode.
In cases where expert knowledge is unavailable, clustering
and classification techniques are commonly employed to
identify different modes (Wang et al., 2020; Chen et al.,
2021). However, in these multi-model methods, both mode
partition and modeling tend to overlook, to some extent,
the dynamic behaviour inherent in process data, which
can limit their effectiveness in distinguishing modes with



different dynamic characteristics. Additionally, mode par-
tition itself can be computationally demanding, requiring
careful tuning and validation to achieve robust results.

In our previous work, dynamic characteristics of the mul-
timode process have been emphasized (Wang et al., 2023).
Local dynamic models are constructed for each data to rep-
resent corresponding dynamic patterns. Instead of treat-
ing steady-state and transitional modes respectively, we
identify multiple dynamic models to represent different
dynamic patterns involved in the multimode process. Al-
though this approach significantly takes dynamic charac-
teristics into account and reduces model numbers, i.e.,
simplifies the multi-model structure, it still needs to use
clustering with many hyperparameters to differentiate dy-
namics, which is also complicated.

The approach that practitioners prefer to use for multi-
mode process monitoring is the one with a concise model
structure and easily implemented for different processes
without prior knowledge. To satisfy this demand and over-
come the shortcomings of complex training processes and
numerous hyperparameters, we initially propose a hierar-
chical scheme for multimode dynamic process monitoring.
The contributions of this work are threefold:

(1) The hierarchical algorithm directly constructs dy-
namic models for multimode process monitoring with-
out data clustering and classification. Such a model-
ing process is monitoring-oriented and more concise
than the existing multi-model approaches mentioned
above.

(2) Only three hyperparameters including model order
and the termination condition need human adjust-
ment, which means the proposed method is conve-
nient to employ in different processes.

(3) The proposed method treats different dynamic char-
acteristics rather than steady states and transitions.
It reduces the redundancy in the number of models
while describing the process accurately. For the same
process, our method performs better in fault detec-
tion with a simpler multi-model structure.

2. PRELIMINARIES AND PROBLEM STATEMENTS

To spell out exactly the improvement of the hierarchical
scheme compared with existing multi-model approaches,
we first review the modeling process of existing methods,
and then describe our scheme along with problem state-
ments.

2.1 Preliminaries

Let X = {x1, . . . , xN} represent N data points consisting
of the training data set, where each xt ∈ Rd is a d-
dimensional vector. In the aforementioned multi-model
algorithms, the first step is to classify X into S sets
X1, . . . , XS according to extracted features Φ, and identify
models F1, . . . , FS for different modes M1, . . . ,MS . Hence,
the overall model can be denoted as

yt =


F1(xt) if xt ∈ M1,

...
...

FS(xt) if xt ∈ MS ,

(1)

where yi indicates the output of the overall model, and
xt ∈ Mi means that data xt belongs to mode i. We plot
this modeling process in Fig. 1 to show it more clearly.
This multi-model scheme in (1) includes two steps for
modeling: One is the mode partition, usually achieved by
clustering. Another is model identification. For cluster-
ing, extracting data features and distinguishing different
features are tedious and varied across different processes,
which obstructs the promotion of a method. Hence, we
devise a new hierarchical scheme to simplify modeling
process.
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Fig. 1. Modeling process based on mode partition.
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Fig. 2. Modeling process of the proposed hierarchical
scheme.

The hierarchical scheme is a general framework described
as follows. It is assumed that S iterations are conducted
and the training dataset is initilalized as X1. For each
iteration j, a dynamic model Fj is identified based on the
corresponding data set Xj . Then, a threshold condition is
used to determine if another iteration is needed, which is
defined as

I(t) =

{
1 if ϕt > ϕth,
0 otherwise,

(2)

where ϕt is the monitoring index calculated for xt and
ϕth is the threshold. If there are nc consecutive indices ex-
ceeding the threshold ϕth, then another iteration should be
conducted. We define the consecutive exceedance counter
as

C(t) =

{
C(t− 1) + 1 if I(t) = 1,

0 if I(t) = 0.
(3)

Thus, an additional iteration is performed when C(t) > nc

holds. Accordingly, the transition condition to the next
level is defined as

G(t) =

{
1 if C(t) > nc,
0 otherwise.

(4)



Finally, the overall model obtained offline by the proposed
hierarchical scheme can be denoted as

yt =


F1(xt) if xt ∈ X1 −X2,

...
...

FS(xt) if xt ∈ XS .

(5)

Note that (5) is used to describe the relationship between
each model Fj and the corresponding training dataset Xj .
We will introduce how to use these models for online
monitoring in Section 3.3. The hierarchical scheme is
depicted in Fig. 2 to clearly show how to obtain datasets
Xj and how to conduct each iteration. For a given training
data set X1, a model F1 is first constructed, and the
monitoring index ϕ for all data is calculated accordingly.
If there exist continuous nc monitoring indices exceeding
the threshold, i.e., G(t) = 1, then data with I(t) = 1 are
picked out for the next iteration. When all G(t) = 0, the
iteration is terminated.

2.2 Problem statements

According to (2)-(5), the calculation of monitoring indices
is important, significantly impacting the modeling process
and monitoring performance of our method. Certainly,
model accuracy is also vital to compute a precise monitor-
ing index. Hence, there are two key points in the hierarchi-
cal scheme: One is to determine the model F . Another is to
define the monitoring index ϕ with corresponding thresh-
old ϕth. Furthermore, there are some hyperparameters like
nc and those related to modeling. We describe exactly how
to adjust them in Section 3.

3. HIERARCHICAL SCHEME FOR MULTIMODE
PROCESS MONITORING
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Fig. 3. Framework of the proposed hierarchical monitoring
scheme.

We first plot Fig. 3 to show the proposed hierarchical
scheme for multimode dynamic process monitoring. It
mainly includes two parts: Offline modeling and online
monitoring. For offline modeling, according to Fig. 2 and
problem statements, model identification and monitoring
index design are two crucial steps. In this paper, we use
the well-known autoregressive (AR) model and introduce
our monitoring method as follows.

3.1 Model identification

The AR model is a type of linear time series model that
represents the current value of a variable as a linear

combination of its past values. For a training dataset, an
AR model of order p can be expressed as:

xt = θ1xt−1 + θ2xt−2 + · · ·+ θpxt−p + et, (6)

where θ1, θ2, . . . , θp are model parameters to be estimated,
and et is a white noise error term with mean zero and
constant variance.

Identifying an ARmodel involves two main steps: Selecting
the appropriate model order p and estimating the model
parameters θ1, θ2, . . . , θp. We use Akaike Information Cri-
terion (AIC) for order selection in this paper and apply the
ordinary least squares (OLS) for parameter estimation.

It should be noted that in our hierarchical scheme, the
model is not limited to the AR model, we choose AR
model owing to its simplicity and computational efficiency.
Other models such as state-space models and exponential
smoothing models can also be used depending on specific
scenarios.

3.2 Monitoring index design

Based on (6), we use ϕt, a combined index defined by
applying PCA on et, as the monitoring index:

ϕt = T 2
t + g−1Qt, (7)

where T 2
t , Qt are Hotelling’s T 2 and squared prediction

error (SPE) for et respectively. The g is a specific ra-
tio related to the variance of residual components. The
threshold calculation of ϕt has been described in Dong
and Qin (2020). In this monitoring index calculation, only
the number of principal components l should be deter-
mined, and this determination follows a certain criterion
called cumulative percent variance (CPV). One can select
the number of principal components such that the CPV
reaches 95%.

Finally, for monitoring, the normal and abnormal data are
determined by the following rules{

ϕt ≤ ϕth ⇒ normal

ϕt > ϕth ⇒ abnormal
, t = 1, . . . , N. (8)

3.3 Online monitoring

According to our hierarchical scheme, S AR models are
utilized for online monitoring where each online data is
input to each AR model sequentially and its prediction
error et is used for monitoring index calculation. If there
exists a monitoring index of AR model j that is not larger
than the threshold, i.e., Ij(t) = 0, then the data point is
normal. Otherwise, the data is abnormal. If nc consecutive
data are considered abnormal, i.e., G(t) = 1, then a fault is
detected. The proposed hierarchical scheme for both offline
training and online monitoring is summarized in Table 1.

Note that besides the model order p, the number of consec-
utive threshold exceedances nc should also be determined
by users. On the one hand, a large nc is conservative, lead-
ing to a large delay in fault detection. On the other hand,
a small nc may result in a high false alarm rate (FAR). It
requires all models to be sensitive to all variations, even for
the noise. Balancing sensitivity (quickly detecting faults)
and accuracy (avoiding false alarms) is important in this
part. Besides the expertise, a feasible way to determine
nc is to set nc = 1 first, and then count maximum



Table 1. Procedures of the proposed hierarchi-
cal scheme.

Offline training:
Initialization: Training dataset X1, model number S = 1.

Step 1: Construct an AR model FS based on
dataset XS .

Step 2: Calculate the monitoring index ϕt for each
data xt ∈ XS and corresponding threshold
ϕS,th.

Step 3: According to (4), if there exists G(t) = 1,
data with I(t) = 1 are selected to compose
XS after S = S+1, and then go to step 1.
If for all data G(t) = 0, the offline training
ends.

Outputs: AR models F1, . . . , FS and thresholds
ϕ1,th, . . . , ϕS,th.

Online monitoring:
Initialization: AR models F1, . . . , FS , thresholds

ϕ1,th, . . . , ϕS,th, model counter c = 1 and
threshold exceedance counter C(t) = 0.

Step 1: Collect an online data xt.
Step 2: Input the data xt to the AR model Fc, and

compute the monitoring index ϕt.
Step 3: If I(t) = 0, t = t + 1 and go to step 1

with C(t) = 0. If I(t) = 1 and c < S,
then c = c+1 and go to step 2. Otherwise,
C(t) = C(t− 1) + 1 and go to step 4.

Step 4: If G(t) = 1, the fault alarm is given.
Otherwise, t = t+ 1 and go to step 1.

Outputs: Monitoring indices ϕ of each online data
with corresponding thresholds ϕth.

conservative threshold exceedances after identifying each
AR model. Finally, determine nc based on the sensitive
tolerance of users. We recommend practitioners try nc = 5
according to our experiments.

4. APPLICATION TO TENNESSEE EASTMAN
PROCESS

The proposed method is applied to TEP for verification.
To demonstrate the superiority of the proposed hierar-
chical structure, we employ two multi-model monitoring
approaches using mode partition: One is to use varia-
tional Bayesian Gaussian mixture model (VBGMM) for
grouping data and canonical correlation analysis (CCA)
for modeling and monitoring, which is called VBGMM-
CCA proposed by Jiang and Yan (2019). Another is a
variant of VBGMM-CCA which is VBGMM-AR. As the
name implies, in VBGMM-AR, we apply AR model with
PCA for modeling and monitoring.

4.1 Process description

The TEP is widely recognized as a benchmark for research
in industrial process monitoring. This process involves
producing two liquid products G and H, from four gaseous
reactants: A, C, D and E, along with an inert component
B, and an undesired byproduct F. Originally introduced
by Downs and Vogel (1993), the TEP has since become a
standard for studies on process monitoring. The process
operates across six modes, each associated with specific
target mass ratios and production rates. Ricker (1995) pro-
vided an overview of the optimal steady-state conditions
for these six modes. In this study, we refer to Ricker’s
work and select four operating modes for our simulations,

using the updated TEP model from Bathelt et al. (2015).
Setpoints for each mode are detailed in Table 2.

We created three types of datasets: training data, normal
test data, and test data with simulated faults. For training,
we collected 10000, 13000, 5000 and 7000 samples for each
mode respectively. The four modes alternate in order:
mode 3 → mode 1 → mode 2 → mode 4 → mode 1
→ mode 2. In total, we utilized 49 variables, including 8
manipulated and 41 process variables as outlined in Downs
and Vogel (1993), for modeling. Note that there are 12
manipulated variables in TEP. Since four of them, which
are recycle flow, reactor level, reactor temperature, and
product separator level, do not vary across modes, they
were excluded. For test data collection, each test data
set includes 25000 datapoints where the mode transition
follows mode 3 → mode 1 → mode 2 → mode 4. The fault
test data is summarized in Table 3.

Table 2. Setpoints of four modes.

Setpoint label Mode 1 Mode 2 Mode 3 Mode 4

Production 22.89 22.73 18.04 36.04
Stripper level 50 50 50 50
Separator level 50 50 50 50
Reactor level 65 65 65 65

Reactor pressure 2800 2800 2800 2800
Mol % G 53.8 11.66 90.09 53.35

yA 63.137 64.196 62.11 61.94
yAC 51 54.24 47.43 58.76

Reactor temperature 122.9 124.2 121.9 128.2
Recycle valve position 1 1 77.62 1
Steam valve position 1 1 1 1

Agitator setting 100 100 100 100

4.2 Method application

In our method, there are three hyperparameters to be
determined. Firstly, as described in Section 3, we use AIC
to set model order as p = 5. Then, PCA is applied to the
prediction error et. The number of principal components is
set to 20 with a CPV reaching 95%. The last hyperparam-
eter is the tolerated number of consecutive exceedances,
denoted as nc. Initially, we set nc = 1 and then observe
the maximum consecutive threshold exceedances, which
are 26 for AR model 1 and 5 for AR model 2. Since 5
is within a tolerable range, we determine nc = 5 and
obtain two AR models. Note that we construct dynamic
models to extract dynamic patterns of the process rather
than operating modes. Therefore, although there are four
operating modes, two dynamic models are sufficient to
represent dynamic patterns revealed by the four modes.

For VBGMM-AR, the model order is the same as that of
our method. VBGMM can automatically determine how
many groups the data should be divided into according
to data distributions rather than operating modes. Thus,
the process is partitioned into three parts and three AR
models are established. Similarly, in VBGMM-CCA, three
CCA models are constructed by using 8 inputs and 41
outputs.

To compare the performance of different approaches, FAR
and delay time (DT) are computed as



Table 3. Information about test data with different faults.

Fault label Descriptions Start point of the fault Mode Type

1 Cooling water inlet temperature of reactor 13000 2 Random variation
2 Cooling water inlet temperature of separator 13000 2 Random variation
3 Variation coefficient of heat transfer in reactor 13000 2 Random variation
4 Variation coefficient of heat transfer in condenser 7000 4 Random variation
5 Unknown 7000 4 Unknown
6 Unknown 7000 4 Unknown
7 A and C feed flow (stream 4) 7000 4 Random variation

FAR =
N(xnormal|I = 1)

N(xnormal)
, (9)

tdelay = td − tf , (10)
where td is detection time and tf is fault occurrence time.
For all methods, we record the fault detection time after
5 consecutive indices exceeding thresholds. Note that the
numerator of (9) is the number of false alarms counted
when indices exceed thresholds. It is different from the
way we record fault detection.

4.3 Results and analysis

FAR and DT of all methods are presented in Tables 4
and 5 separately. We mark the DT with ∗ in the case
that before tf , a fault detection has already occurred, but
for comparison, we only provide DTs recorded after the
true fault occurs. In Table 4, the normal test dataset is
labeled as 0. As shown, our hierarchical method achieves
the best performance, exhibiting shorter DTs and lower
FARs across nearly all fault cases. In contrast, methods
using mode partition, VBGMM-AR and VBGMM-CCA,
have relatively high FARs. This indicates that the hier-
archical structure introduced in this paper is superior in
capturing multimode dynamics compared to mode parti-
tion approaches. Additionally, regarding detection speed,
the hierarchical scheme detects faults more quickly than
the VBGMM-based methods.

To further illustrate differences in fault detection accuracy,
we take fault 1 as an example and present the monitoring
results of all methods in Fig. 4, where the red line in-
dicates the onset of the fault. As shown, VBGMM-CCA
inaccurately signals faults even before the fault actually
occurs. This premature fault detection is due to the inap-
propriate use of the static CCA model to monitor dynamic
processes. Fig. 4(a) clearly demonstrates numerous indices
exceeding thresholds despite no fault occurrence, high-
lighting the unreliability of VBGMM-CCA. VBGMM-AR
performs better than VBGMM-CCA owing to the dynamic
AR modeling, but still results in multiple threshold viola-
tions before fault occurrence. By contrast, our hierarchical
method effectively avoids this problem, achieving timely
fault detection without generating misleading alarms.

Beyond improved FAR and faster, more accurate detec-
tion, the proposed hierarchical approach also requires
fewer models and hyperparameters. Consequently, our
method not only provides superior performance but is also
easier to implement, which significantly reduces user effort.

5. CONCLUSION

In this study, we proposed a hierarchical approach for
multimode dynamic process monitoring, addressing and

Table 4. FARs of all methods on test data.

Label H-AR VBGMM-AR VBGMM-CCA

0 0.0028 0.1257 0.1442
1 0.0034 0.0639 0.1442
2 0.0034 0.1215 0.1551
3 0.0034 0.0638 0.1551
4 0.0046 0.1187 0.1091
5 0.0046 0.1204 0.1091
6 0.0046 0.1187 0.1091
7 0.0046 0.1194 0.1091

Table 5. DTs (samples) of all approaches on
fault test data.

Fault label H-AR VBGMM-AR VBGMM-CCA

1 29 3455 29∗

2 5894 2002 123∗

3 181 236 95∗

4 89 8022 6∗

5 137 847 6∗

6 342 367 6∗

7 85 336 6∗

improving the limitations of conventional multiple-model
schemes. By constructing dynamic models iteratively in
a hierarchical structure without explicit mode partition,
our approach offers a concise framework for capturing and
monitoring multimode dynamics. This approach reduces
the need for hyperparameter tuning, which facilitates its
promotion in different processes. The simulation on TEP
demonstrates that the proposed method is more concise
while achieving satisfying monitoring performance. Our
future work will focus on the nonlinearity extension of the
hierarchical scheme.
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