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Abstract: Effective fault detection and diagnosis (FDD) in chemical process systems is critical
for maintaining safe and reliable operations. While deep learning methods have improved fault
classification performance, they often require long sequences of data after a fault occurs, delaying
timely interventions. In this work, we propose an early fault diagnosis method that enables rapid
fault diagnosis using multistep multivariable prediction. Our approach employs a transformer-
based prediction model to predict future values of key process variables, enriching the current
data with these predictions. An LSTM-based model then classifies the enriched data into specific
fault categories, leveraging both current and predicted information for improved precision.
We evaluate the performance of the proposed approach on the Tennessee Eastman Process
benchmark, demonstrating its effectiveness in early fault diagnosis.
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1. INTRODUCTION

Abnormal situation management is crucial in the pro-
cess industry to ensure safety and continuity, as faults
can lead to risks, environmental impacts, and high costs
(Chiang, 2000b). While distributed control systems have
enabled large-scale data collection for data-driven mon-
itoring (Md Nor et al., 2020), increased interactions in
industrial systems have made processes more complex and
raised the risk of faults (Bi et al., 2022). Although Ad-
vanced Process Control (APC) solutions have improved
performance during normal operations (Lee et al., 2018),
robust abnormal situation management and intelligent
monitoring methods remain essential for managing this
complexity (Qin and Chiang, 2019).
Proactive management of abnormal situations requires
tools that enable timely fault detection. Developing an
early fault diagnosis algorithm is essential for industrial
efficiency and safety. Rapid and precise fault diagnosis
from real-time data helps operators take proactive ac-
tion, reducing unplanned downtime, minimizing produc-
tion losses, and enhancing safety.
Traditionally, process control systems use a monitoring
loop consisting of fault detection, fault isolation, fault
identification, and process correction (Chiang, 2000a). Re-
cently, researchers have combined the first three steps into
fault classification, treating fault diagnosis as a multi-
class classification problem. Common algorithms include
k-nearest neighbors (KNN) (Peterson, 2009), Fisher dis-
criminant analysis (FDA) (Russell et al., 2000), and sup-
port vector machines (SVM) (Meyer and Wien, 2001).
However, these methods often struggle with the complex,
non-linear nature of industrial processes. Deep neural net-
works, especially recurrent neural networks (RNNs), have

become prominent due to their ability to process temporal
sequences and learn long-term dependencies (Zhao et al.,
2018).
RNN-based methods focus on sequential data, integrating
the output of each step as part of the input for the next
(Zhang et al., 2019). These techniques are relevant for
dynamic chemical processes that constantly vary. Methods
like Long Short-Term Memory (LSTM), Gated Recurrent
Units (GRU), and their bidirectional versions (BiLSTM
and BiGRU) have been used to capture these dynamic
characteristics (Zhao et al., 2018).
In (Zhao et al., 2018), an LSTM-based fault diagnosis
method applied to the Tennessee Eastman Process bench-
mark shows better performance than traditional methods.
In (Han et al., 2020), an optimized LSTM network outper-
forms classical neural networks and multilayer perceptrons
in diagnosis precision.
Although these architectures show satisfactory classifica-
tion precision, they are tested on data spanning hours,
allowing faults to fully develop and become easier to
classify (Wei et al., 2022). This can be impractical, as
classifying a fault hours after its appearance is not helpful
for productivity and safety. Accurate fault classification
in the initial moments after a fault’s appearance is more
relevant. However, current algorithms show poor precision
during these critical moments (Wei et al., 2022).
Therefore, we propose an early fault diagnosis method that
enables timely and accurate identification of faults using
real-time process data. This method first applies a multi-
step prediction model to predict upcoming values for each
process variable, enriching the initial data with these pre-
dicted values. The enriched data is then classified into one
of several fault categories. Bai and Zhao (2023) suggests



an approach involving multi-step predictions for different
process variables values, monitoring which one exceeds a
set limit to detect a fault. However, this method overlooks
the potential of combining variables that, even without
reaching a limit, could indicate a fault earlier. In contrast,
our classification-based approach simultaneously considers
all process variables enriched with their predicted val-
ues. Furthermore, our goal goes beyond fault detection to
achieve precise fault diagnosis through classification based
on process data enriched by predictions.
The contributions of this paper are as follows:
• A workflow to determine the extent to which faults

can be diagnosed as early as possible, taking fault
dynamics into account to help the operator respond
quickly to mitigate the effect of the process fault.

• A combination of two models: a first model for pre-
dicting process variables values, and a second model
for fault diagnosis based on the classification of pro-
cess variables values enriched with their predictions.

• Results obtained from the Tennessee Eastman Pro-
cess benchmark that demonstrate how the proposed
approach can allow a similar level of classification
precision to be reached earlier, thereby providing
operators more time to intervene.

The remainder of the paper is organized as follows: Section
2 presents the proposed prediction and classification-based
early fault diagnostic method. Section 3 evaluates the
effectiveness of the proposed model on the Tennessee East-
man Process benchmark, comparing performance with and
without the use of process variables values prediction.
Section 4 concludes the study and discusses future work.

2. METHODOLOGY

Our approach for early fault diagnosis combines multistep
prediction of process variables values with an LSTM-based
classification model. We denote by T the total number
of timesteps in the time series, and by n the number
of process variables considered. The method (Figure 1)
proceeds as follows:
• A transformer-based prediction model learns to pre-

dict future values of n process variables over a horizon
H, using a lookback window of size w.

• The predicted variables are concatenated with the
current measurements, forming an enriched feature
set capturing short-term anticipated dynamics.

• An LSTM classifier then classifies each enriched se-
quence into one of the possible faults or nominal
operation.

We detail below each component of the approach.

2.1 Multi-step prediction of time series of process variables
values

Multi-step prediction of process variables values in this
work uses a transformer model (Vaswani, 2017), which is
well-suited for capturing temporal dependencies through
its self-attention mechanism (Bai and Zhao, 2023). Specif-
ically, given a multivariate time series

X = {x1, x2, . . . , xT }, xi ∈ Rn,

The goal is to predict each variable over a horizon H, given
a lookback window of size w. For each position i from 1 to
T − w −H + 1, we take

Xi = {xi, . . . , xi+w−1}
as input and learn to predict

Ŷi = P (Xi), Ŷi ∈ RH×n,

where P denotes the trained transformer model. The
corresponding target (ground truth) is

Yi = {xi+w, . . . , xi+w+H−1}.
Algorithm 1 describes the training procedure.

Algorithm 1: Multistep Prediction using Trans-
former Inputs:

• X = {x1, x2, . . . , xT } (time series data with n vari-
ables)
• w (lookback window), H (prediction horizon)

Outputs:

• Predicted sequences Ŷi for i ∈ [1, T − w −H + 1]

1: Initialize transformer model parameters
2: for each epoch do
3: for i = 1 to T − w −H + 1 do
4: Xi = {xi, . . . , xi+w−1}
5: Yi = {xi+w, . . . , xi+w+H−1}
6: Ŷi = P (Xi)

7: Update parameters by minimizing loss between Ŷi

and Yi

8: end for
9: end for

2.2 Fault classification based on time series of process
variables values

We use a Long Short-Term Memory (LSTM) network for
fault classification from time series data. LSTMs, a type
of recurrent neural network (RNN), are well-suited for
learning long-term dependencies due to their architecture
with memory cells and gating mechanisms (Zhao et al.,
2018).
Our approach uses time series data X = {x1, x2, . . . , xT }
and fault labels F = {F0, F1, . . . , Fm−1}, where F0 rep-
resents the nominal (fault-free) state and m − 1 distinct
fault types. We segment the time series into sequences
with a lookback window of size w. For each position
i from 1 to T − w + 1, we extract a sequence Xi =
{xi, xi+1, . . . , xi+w−1} as an input sample. Algorithm 2
details the training steps of the LSTM model C, which
learns to map these input sequences to their fault labels
in F .
During training, the LSTM processes each sequence, cap-
turing temporal patterns and dependencies. The model’s
weights are adjusted through backpropagation and gra-
dient descent to minimize classification error, associat-
ing each input sequence Xi with the correct fault type
C(Xi) = Fj .
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Fig. 1. Steps in the proposed early fault classification based on time series prediction of process variables values. The
transformer prediction model architecture shown on the left in Figure 1 is adapted from (Sitapure and Kwon, 2023).

Algorithm 2: Fault classification based on time
series of process variables values Inputs:

• X = {x1, . . . , xT } (time series data)
• w (lookback window)
• Fault labels F = {F0, . . . , Fm−1}

Output: Fault type for new data

1: Initialize LSTM parameters
2: for i = 1 to T − w + 1 do
3: Xi = {xi, . . . , xi+w−1}
4: Label Li ∈ {F0, . . . , Fm−1}
5: end for
6: Train LSTM classifier C on (Xi, Li) pairs
7: Given new sequence Xnew, output C(Xnew)

Once trained, the LSTM classifier can predict the fault
type for any new data sequence Xnew of length w by
evaluating C(Xnew), effectively identifying the presence
and type of fault based on learned temporal patterns.

2.3 Fault classification based on process variables values
prediction

The fault classification method using process variable pre-
diction is outlined in Algorithm 3. This method enhances
fault diagnosis by incorporating predicted time series data
to improve classification precision. It employs a trans-
former prediction model P (architecture shown on the left
in Figure 1) and an LSTM classification model C (archi-
tecture shown on the right in Figure 1). For a new time
series sequence Xnew, the transformer model first predicts
a sequence Ŷnew = P (Xnew). This predicted sequence is
combined with the original observed sequence to form an
enriched feature vector

Vnew = [Xnew, Ŷnew],

providing the LSTM classifier with both current and
predicted data, as illustrated in Figure 1.

Algorithm 3: Fault classification based on process
variables values prediction Inputs:

• Transformer model P
• LSTM classifier C
• New sequence Xnew of length w

Output: Fault type

1: Ŷnew ← P (Xnew)

2: Vnew ← [Xnew, Ŷnew]
3: return C(Vnew)

3. CASE STUDY: TENNESSEE EASTMAN PROCESS
(TEP)

We evaluate our method using the Tennessee Eastman
Process (TEP) benchmark (Downs and Vogel, 1993),
which is widely used for fault detection and diagnosis
testing. This section describes the TEP, the performance
metrics employed, data preprocessing, training procedures,
and the classification results with and without prediction.

3.1 Process description and dataset

The TEP generates two products, G and H, from four
reactants (A, C, D, and E), along with an inert component
(B) and a byproduct (F). The process consists of five
key units: reactor, condenser, separator, stripper, and
compressor. A total of 52 variables can be monitored from
this process, including 22 process sensors, 18 composition
measurements, and 12 manipulated variables.



The original dataset comprises 500 simulations, each last-
ing 25 hours and generated with unique random seeds,
covering 20 fault conditions and a normal state. Process
variables values are sampled every three minutes. In this
study, only the first 100 samples of each run were used for
training and evaluation, focusing the model on learning the
initial dynamics of faults. This approach reflects real-world
scenarios, where faults are typically addressed promptly
to prevent prolonged process disruption. The evaluation
specifically targeted selected faults with the longest detec-
tion delays (Lomov et al., 2021), as shown in Table 1, and
the 12 most affected variables, shown in Table 2, identified
using a Random Forest classifier (Lovatti et al., 2019).

Table 1. Selected faults
Fault ID Description Type

0 Nominal operation -
8 A, B, C feed composition (Stream 4) Random variation
10 C feed temperature (Stream 4) Random variation
13 Reaction kinetics Slow drift

17,18,20 Unknown Unknown

Table 2. Selected variables
No. Variable Name Units

1 Reactor cooling water outlet temperature ◦C
2 Stripper temperature ◦C
3 Compressor Recycle Valve %
4 Separator cooling water outlet temperature ◦C
5 Stripper pressure kPa
6 Reactor pressure kPa
7 Stripper steam flow kg h−1

8 Product separator pressure kPa
9 Compressor Work kW
10 Purge %A mol%
11 Product separator temperature ◦C
12 Reactor cooling water flow m3h−1

3.2 Performance metrics

The evaluation of the performance of the proposed method
was conducted using precision for classification and mean
absolute error (MAE) for prediction.

Precision =
TP

TP + FP
, (1)

where TP represents the true positives and FP represents
the false positives.
For prediction, the mean absolute error (MAE) is used
to measure the average magnitude of errors between the
predicted and actual values. It is calculated as follows:

MAE =
1

nH

n∑
i=1

H∑
j=1

∣∣yij − ŷij
∣∣, (2)

where n is the number of variables, H is the prediction
horizon, yij is the actual value of the i-th variable at the
j-th timestep, and ŷij is the predicted value of the i-th
variable at the j-th timestep.

3.3 Data Pre-processing and Training

We used the first 100 timesteps (300 minutes) of each
simulation for both fault classification and variable pre-
diction. Table 3 summarizes the data distribution and
preprocessing steps. All process variables values (nominal

and faulty runs) were z-score normalized based on the
sample mean and standard deviation of the normal state
(fault-free) training data, using

x′
i =

∣∣∣∣xi − x̄i

si

∣∣∣∣ , (3)

where x̄i and si denote the mean and standard deviation
(respectively) of the nominal training data for variable i.
The normalized data were reshaped into sliding windows
with stride 1 for classification (window size w) and predic-
tion (w plus horizon H).

Table 3. Data distribution and preprocessing
details

Item Description
Number of variables 12 selected key variables
Number of faults 6 fault types + 1 nominal
Samples per simulation 100 timesteps (300 minutes)

Training / Validation / Testing For classification (LSTM)
50 / 20 / 30 runs per fault

Training / Validation / Testing For prediction (Transformer)
250 / 20 / 30 runs total

Normalization Z-score using Eq. (3)
Lookback window (w) Varies in {5, 10, …, 85}
Prediction horizon (H) Varies in {0, 5, 10, …, 85}

3.4 Hyperparameter Tuning

We use three LSTM layers with decreasing hidden units
(128, 100, and 50), each followed by a 20% dropout
layer to prevent overfitting, and a final dense layer with
seven output units (one nominal plus six faults) and
softmax activation. The transformer for prediction has
four encoder and four decoder blocks, each with eight
attention heads, a model dimension dmodel = 128, and
feed-forward dimension dimFFN = 256. Early stopping
with a patience of 20 epochs is adopted for both models
(maximum 100 epochs), and the Adam optimizer is used
with categorical cross-entropy (LSTM) or mean squared
error (transformer) losses.
To determine the smallest lookback window w and the
largest prediction horizon H that yield the highest classi-
fication performance for a sequence of length w + H, we
begin by measuring classification precision without making
any predictions, while varying the sequence length. As
shown in the figure 2, when the sequence length is 90, the
classification precision reaches 100%. We therefore select
90 as the maximum value for w + H. Next, to find the
best compromise between a minimal lookback window, a
maximal horizon, and acceptable classification precision,
we train 17 × 17 models corresponding to all (w,H) pairs
such that w and H vary in steps of 5 from 5 to 85, under
the constraint w + H ≤ 90. This approach enables us to
compare every possible (w,H) configuration within the
specified range and identify the option that offers the best
trade-off between the size of the historical window, the pre-
diction horizon, and the resulting classification precision.

3.5 Classification results

Figure 2 presents the classification precision obtained for
faults 8, 10, 13, 17, 18, and 20 over time intervals ranging
from 5 to 90 timesteps. The time intervals are indicated
in timesteps, where one timestep equals 3 minutes. This



sequence length represents the ideal scenario for fault
diagnosis without using prediction. However, our objective
is to test different combinations of w and H such that
w + H equals the sequence length, in order to find the
optimal combination.

Fig. 2. Classification precision (%) across fault scenarios
for different Lookback Windows.

In the first five timesteps after fault introduction, the
LSTM-based classification model categorizes all faults and
the nominal state as fault-free, since the faults’ effects
are not yet observable on the process variables values.
From timesteps 6 to 15, classification precision improves
from 0%, achieving high value for various faults while
perfectly classifying the normal operating state. Faults 8
and 10 reach 100% precision during the [0–40] and [0–55]
intervals, respectively. During this period, precision for the
fault-free state fluctuates due to emerging fault signatures
causing occasional misclassifications with normal opera-
tions. Beyond the 60th timestep, precision for the fault-free
state and faults 8 and 10 reaches 100%, with other faults
progressively achieving 100% by the 90th timestep as
sufficient data become available for distinct classification,
though some faults may still be misclassified as normal
due to subtler signatures. The last row in Figure 2 shows
a steady increase in average classification precision across
faulty and non-faulty scenarios, rising from approximately
14% at timesteps [0–5] to 100% at [0–90].

Fig. 3. Classification precisions across varying lookback
lengths and prediction horizons.

Figure 3 shows how the classification precision changes
for different combinations of lookback w and prediction
horizon H, focusing on a 90-timestep total length (w+H =
90). We see that the highest classification precisions appear
at relatively large w and short H. By comparing the clas-
sification precisions across different lookback lengths (w)
and prediction horizons (H) in Figure 3 with the precision
patterns shown over time in Figure 2, we derive the results
presented in Figure 4. These results suggest that w = 50

and H = 10 deliver the best compromise between average
classification precision and early diagnosis.

Fig. 4. Precision improvement for different sequence
lengths w with prediction. The selected horizon H
corresponds to the prediction horizon that yields the
best precision for the corresponding w.

Figure 5 compares the obtained confusion matrices with-
out (a) and with (b) prediction enrichment for a lookback
of 50 timesteps. With a lookback of 50 timesteps and a
prediction horizon of 10 timesteps, the proposed approach
achieves an overall improvement in classification precision
of approximately 10%.

(a) (b)

Fig. 5. Confusion matrix with w = 50. (a): without
prediction (H = 0), (b): with prediction (H = 10).

This improvement is observed across the seven tested fault
scenarios, particularly for nominal operation and Fault 17,
where the classification precision is significantly enhanced.

(a) (b)

Fig. 6. Example of predicted (blue) vs. actual (green)
stripper pressure for Fault 17. The vertical dotted
line indicates the transition from observed data to
predictions. (a): w = 30, H = 30; (b): w = 50,
H = 10.



Figure 6 shows predicted (blue) vs. actual (green) stripper
pressure for Fault 17, comparing two different lookback
windows. The vertical dotted line marks where the his-
torical (observed) data ends and the model’s predictions
begin.
In Figure 6(a), with a 30-time-step lookback and a 30-
time-step prediction horizon, the model captures the over-
all downward trend but gradually deviates from the actual
measurements, indicating difficulties with short-term fluc-
tuations. In contrast, Figure 6(b), which uses a 50-time-
step lookback and a 10-time-step prediction horizon, pro-
duces predictions that closely match the measured values,
suggesting that a longer lookback window improves the
model’s ability to track underlying patterns accurately.

3.6 Discussions

Our results show that combining a short-horizon predic-
tion with a sufficiently long lookback window can improve
early fault classification in the Tennessee Eastman Process.
In particular, setting w = 50 timesteps (150 minutes) and
H = 10 timesteps (30 minutes) allows an approximately
85% macro-average F1 score at the 60th timestep, com-
pared to about 75% when using all 60 timesteps purely for
historical data. Thus, the proposed approach can diagnose
faults about 30 minutes earlier at a similar precision level.
For faults that evolve slowly (e.g., Fault 13), we observed
a smaller improvement because their progressive nature
requires more historical data to distinguish them from nor-
mal conditions, making short-horizon predictions less ef-
fective. Nonetheless, the combined approach still achieves
a better balance between early diagnosis and classification
performance compared to using classification alone. We
also considered evaluating other baseline methods from the
TEP fault diagnosis literature. While a direct comparison
is beyond the scope of this paper, our approach focuses
on improving the timing of fault diagnosis by leveraging
short-term predictions rather than solely maximizing final
precision.

4. CONCLUSION

In this work, we proposed an early fault diagnosis
method for chemical processes by combining multistep
transformer-based prediction of process variables values
with LSTM-based classification. Tests on the benchmark
Tennessee Eastman Process demonstrated that our ap-
proach improves classification precision by 10% using data
from the first 150 minutes after the introduction of faults
8, 10, 13, 17, 18, and 20. This provides the operator with
an additional 30 minutes to intervene, compared to the
time normally required to achieve this level of precision
with a conventional LSTM-based classification model.
Future work will focus on refining the prediction models by
optimizing parameters, such as the number of decoder and
encoder layers, and exploring the method’s applicability to
a wider range of fault types and industrial processes.
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