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Abstract: This work examines the impact of process design decisions on the ability of a process
to participate in Demand Response (DR) activities. Focusing on load shifting capabilities, the
DR particibility potential of a given process design is evaluated using the notion of levelized
cost of the load-shifting capacity, which is taken as a measure of an overall cost of the design
decisions over the lifetime of the process. Initially, the concept of levelized cost of energy (LCOE),
or levelized cost of electricity, is introduced and adapted to capture the levelized cost of load-
shifting (LCOL). Then, a bottom-up approach to calculate the load-shifting capacity for a given
process design, and the associated levelized cost, is developed based on an MILP scheduling
model. The implementation of the proposed approach is demonstrated using a conceptual case
study involving a reactor-storage process with a discretized scheduling model. The case study
investigates the differences in load-shifting capacities when considering DR participation in a
day-ahead electricity market versus participation in a five-minute market.
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1. INTRODUCTION

Demand Response (DR) has become an increasingly im-
portant tool for balancing power supply and demand under
an ambitious renewable portfolio standard, keeping the
electric grid stable and efficient; deferring upgrades to
generation, transmission and distribution systems; and
providing tangible economic benefits to customers. The
economic potential of DR operation in energy-intensive
industrial processes has been studied extensively (see,
e.g., Wang et al. (2017); Brée et al. (2019)). Early works
formulated the problem using mixed-integer linear pro-
gramming (MILP) models, where the optimal process
scheduling sequence that minimizes the total operating
cost under time-varying electricity prices is determined
(see, e.g., Mitra et al. (2012)). Subsequent efforts focused
on the integration of the scheduling problem with process
dynamics (see, e.g., Pattison et al. (2016); Tong et al.
(2017)) and on the optimal design of processes under
demand-side management (see, e.g., Pattison and Baldea
(2014); Cao et al. (2015)). A framework for the design and
operation of process networks that meet DR objectives
through both operational and configurational changes was
also developed in Wang et al. (2015) and Liu et al. (2020).

While the above works have investigated the participation
of processes in the time-varying electricity markets, the
potential for demand flexibility of a process from the
design perspective remains an open question. Specifically,
the impact of process design (and the associated costs)
on the ability of the process to participate in certain DR
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services (DR particibility) needs to be assessed. One metric
that can be used to assess the DR particibility potential
of a process is its load-shifting capacity. Load shifting
refers to a DR approach that involves moving electrical
loads from one time to another to better match either the
availability of low-cost power or to “valley fill” grid-level
load requirements (i.e., peak-clipping), while providing
equivalent energy service to the end user. Naturally, a
process can serve as a shift resource by adjusting its
consumption pattern. A key motivating question here is
whether different designs can be compared in terms of how
much load shifting they could enable. If one could quantify
the load-shifting potential, would it be worthwhile to
perform the process design from this perspective?

In a previous study (Liu et al. (2021)), a model-based
framework was proposed to assess the potential of a pro-
cess to participate in load-shifting services based on the
capital cost of various design alternatives through the
use of supply curves. However, the full life-time costs of
a process, including the investment, the operation and
maintenance, and the profit of the process over the in-
vestment period, were not considered in the evaluation of
the design alternatives. Furthermore, the assessment was
limited to participation in the day-ahead electricity mar-
ket. The operation of processes that participate directly
in the short-term electricity market (which requires a fast
response from the process to the price signals) has received
increasing attention in recent years (see, e.g., Dowling
and Zavala (2018); Schäfer et al. (2018); Teichgraeber and
Brandt (2020)).



The objective of this work is to develop a systematic, and
more comprehensive, approach for analyzing the impact of
process design decisions on the DR particibility potential.
The notion of levelized cost of the load-shifting capacity
of a process, which takes account of both the capital
and operating costs of the design decisions, is used to
assess the cost-effectiveness of process design alternatives
when considering participation in different time-varying
DR markets. A bottom-up approach is developed, whereby
a first-principles dynamic model is used first to construct
a high-fidelity process operating range. The scheduling
model is then implemented to quantify and analyze the
load-shifting capacity, together with the associated lev-
elized cost, under a specific electricity price profile. The
results are illustrated using a simulated process example.

2. OVERVIEW OF METHODOLOGICAL
FRAMEWORK

To assess the potential of a certain process design to enable
participation in the DR market, we present in this work
a bottom-up approach that starts with a first-principles
dynamic process model which is used to construct a
high-fidelity process operating range. A discrete MILP
scheduling model is then developed and implemented to
determine the load-shifting capacity and evaluate the cost-
effectiveness of the process design.

The first step in this framework is to generate the feasible
region for the operation-related decision variables. To this
end, a first-principles dynamic process model is used to
provide the scheduling model with a feasible operating
range as well as the mode transition profile information.
The feasible region also provides information on whether
specific operational adjustments will violate system con-
straints such as safety constraints and production require-
ments.

The second step is to develop a scheduling-oriented oper-
ating model to evaluate the load shifting potential under
a specific process design or capacity. We define the base
load of the process and then calculate the load-shifting
capacity for each design (e.g., with different inventory sizes
or different capacity).

The last step is to construct the supply curve to demon-
strate the ”cost-effectiveness” of the various design al-
ternatives. The scheduling model under different design
parameters, such as process or inventory capacity, is im-
plemented repeatedly, and the results are used to construct
the supply curve. The supply curve, which is widely used
in the field of economics, is a graphical representation of
the correlation between the cost of a good or service and
the quantity supplied for a given period.

In the following sections, we elaborate on the various com-
ponents of the proposed framework. In the next section,
we beginn by defining the load-shifting capacity metric
which is used to quantify the DR capability of a process.
The load-shifting capacity metric is then calculated using a
scheduling-based model integrated with process dynamics.

3. QUANTIFYING DR PARTICIPATION POTENTIAL

3.1 Load-shifting capacity

A metric that can be used to quantify the DR capability
of a process and assess its potential to participate in the

time-varying electricity market (DR particibility) is the
load-shifting capacity which can be defined as follows:
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t |
2
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where Eshift is the shifted load at time t; Eb
t is the

base load at time t; and Es
t is the real scheduled load

at time t. In this study this metric is used to evaluate the
load-shifting capacity only under the real-time electricity
market (RTM), such as the day-ahead market (DAM)
and the five-minute market (FMM). Theoretically, over a
certain period of time, if the production requirement does
not change and the operation remains unchanged, the total
energy consumption over this period should be unchanged.
However, the load-shifting capacity can be different if a
different control strategy is used.

3.2 Levelized cost of load-shifting

The levelized cost of electricity (LCOE) is a measure
of the average net present cost of electricity generation
for a generating plant over its lifetime. This measure is
used for investment planning and to compare different
methods of electricity generation on a consistent basis, and
is calculated as the ratio of all the discounted costs over the
lifetime of an electricity generating plant to a discounted
sum of the actual energy amounts delivered. By definition,
LCOE is generally applied to the electricity generation
unit, such as different renewable generation resources, and
is computed as follows:

LCOE =

∑n
t=1

(
It+Mt+Ft

(1+r)t

)
∑n

t=1

(
Gt

(1+r)t

) , (2)

where n is the lifespan of the system in years, r is the dis-
count rate, Gt is the electricity generated in year t; It, Mt

and Ft stand for investment expenditure, operation and
maintenance, and fuel expenditures in year t, respectively.

While the LCOE concept has been widely used in energy
system design, to the best of the authors’ knowledge its
application to chemical process design has not been re-
ported previously. Note that LCOE, by definition, requires
knowledge of the anticipated energy generation over a pe-
riod of time. However, the majority of chemical processes
- particularly energy intensive processes such as the chlor-
alkali and air separation processes - are energy consuming.
Therefore, the term Gt in Eq.2 cannot be specified if the
LCOE metric were to be used directly to evaluate the
cost-effectiveness of a certain process design. To address
this problem, we adapt the LCOE concept to processes
that have the potential to participate in DR services by
defining a new metric, which is referred to as the levelized
cost of load-shifting (LCOL).

The key idea is to use the load-shifting capacity of a
process, as defined in Eq.1, to replace the term Gt in
the LOCE metric in Eq.2. The modified metric (i.e., the
LCOL) can then be used to quantify the cost associated
with the load shifting capacity, and to compare different
process designs in terms of their DR particibility poten-
tials, or more specifically, their load-shift capacities. The
LCOL is defined as follows:
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where I is the investment capital, OMt is the total
operating cost, Prot is the profit generated by selling

the product, and Eshift
t is the load-shifting capacity. The

above expression incorporates all the elements required to
determine the full life-time cost of a chemical process:
investment, operation and maintenance (OM) as well
as the profit of the process divided by electricity load
shifted during the investment period. It assumes that all
investment costs are incurred in the first year, and sums
ongoing costs in each year up to the system lifetime. By
utilizing this metric, we can better compare the design
and operation of different processes while having a better
understanding of how much DR potential a chemical
process could provide to the grid as a ”grid-level” battery.

The LCOE could be interpreted as the cost for the gener-
ation system to provide 1 MWh of electricity. Therefore,
if the electricity price is higher than the LCOE, the gen-
eration system would be considered profitable. A similar
interpretation can be made for the LCOL as how much
it costs for a chemical process to provide 1 MWh of load-
shifting capacity to the grid. While currently the grid does
not directly provide payment for such service, one could
still compare this metric to the levelized cost of a battery.
For a battery, the levelized cost can be defined as how
much it costs to store 1 MWh of electricity. A chemical
process can therefore be compared with a battery in terms
of the load-shifting capacity.

4. PROBLEM STATEMENT

We consider a conceptual production system where the
process has the potential to participate in load-shifting
DR services by scheduling production levels in response
to variations in the electricity prices. The process has to
satisfy an hourly product demand; and a storage unit
is installed to provide the operational flexibility needed.
DR decisions are assumed not to influence the electricity
prices. We consider the capacity of the plant to be deter-
mined by two factors: the process capacity (e.g., reactor
volume, column size) and the inventory (storage) capacity.
The capacity of the process is typically the dominant
factor; however, the inventory can still have a substantial
impact on the choice of the operational level. Assuming
the process will participate in the wholesale electricity
market, with a certain required hourly demand, we would
like to determine the required capacity of the process as
well as the inventory size. To assess the LCOL of the
plant under different market conditions, we first define
two different discrete time sets: t ∈ T and st ∈ ST .
The set T := {1, 2, ..., N} denotes the day-ahead market
layer, where the time interval ∆t is 1 hour, whereas the
set ST := {1, 2, ..., NST } specifies the 5-minute market
layer, where ∆st is an interval of 5 minutes. The overall
time set T ∗ can then be defined as T ∗ := T × ST =
{(1, 1), (2, 1), ..., (NST , N)}.

5. FORMULATION OF SCHEDULING MODEL

We consider a discrete scheduling model in which a set
of discrete operating modes are pre-defined. Once the

process dynamic model is solved, the transition times and
transition profiles among the different operating modes
are determined. Such an approach, which utilizes fixed
transition times that are computed a priori (off-line)
is common for capturing process dynamics in process
scheduling. The discrete model used here extends the one
introduced in Tong et al. (2015), where a convexification
of the bilinear term is performed to convert the model into
a mixed-integer linear program (MILP) model.

5.1 Transition and mode constraints

We consider a set of discrete operating modes, each de-
noted by m ∈ M , and a set of different equipment, each
denoted by e ∈ E. Defining t ∈ T as the discrete time, we
have: ∑

m∈M

ye,tm = 1, (4)

where, ye,tm is a mode-assignment binary variable that
specifies whether equipment e is operating in mode m at
time t. This constraint ensures that, at any time t, only
one mode could be selected. Additionally, we have:

∑
m1∈M

ze,tm1,m2
= ye,tm2

,m2 ∈ M, e ∈ E, t ∈ T, (5)∑
m2∈M

ze,tm1,m2
= ye,0m1

,m1 ∈ M, e ∈ E, t = 1, (6)∑
m2∈M

ze,tm1,m2
= ye,t−1

m1
,m1 ∈ M, e ∈ E, t > 0, (7)

where ze,tm1,m2
denotes a transition binary variable that

indicates whether a transition is occurring from operating
mode m1 to operating mode m2 at time t. Eqs.5-7 are a
group of transition constraints that specify whether there
is a transition occurring between two modes for equipment
e at time t, where ze,tm1,m2

= 1 is true if and only if a
transition from mode m1 to mode m2 occurs from time
step t− 1 to time step t.

5.2 Production constraint

The production rate for the plant at time t is computed
as follows:

Qt=
∑
e∈E

∑
m1∈M

(ye,tm1

V e

θem1

)

1− ∑
m2,m1∈M

(ze,tm2,m1
· ttem2,m1

)


(8)

where Qt is the total production rate at time t, ye,tm1

V e

θe
m1

defines the production rate of equipment e operating in
mode m1, V e is the capacity of equipment e, and θem1

is a time constant. The terms in the bracket define the
total production time which excludes the times during
which mode transitions take place. The term ttem2,m1

denotes the transition time from mode m2 to mode m1

in units of hours. It is noted that, when expanding Eq.8,
a bilinear term that involves the mode assignment binary
variable, ye,tm1

, and the transition binary variable, ze,tm2,m1
,

will appear. To eliminate the bilinear term, we perform a
convexification as follows:



yze,tm1,m2
≤ ym2

; m1,m2 ∈ M, e ∈ E, t ∈ T, (9)

yze,tm1,m2
≤ ze,tm1; m2

,m1,m2 ∈ M, e ∈ E, t ∈ T, (10)

yze,tm1,m2
≥ ye,tm2

+ ze,tm1,m2
− 1; m1,m2 ∈ M, e ∈ E, t ∈ T,

(11)

where yze,tm1,m2
is the convexified term that will replace the

bilinear term ye,tm1
· ze,tm2,m1

. With this convexification, Eq.8
can be replaced by the following convex linear constraint:

Qt =
∑
e∈E

[F e,t−
∑

m2∈M

(
∑

m1∈M

yze,tm1,m2
·ttem1,m2

· V
e

θem2

)], (12)

where the term F e,t is defined as

F e,t =
∑
m∈M

ye,tm · V e

θem
. (13)

5.3 Inventory constraint

The inventory constraint relates the storage capacity St,
the production rate Qt and the hourly demand Dt, and is
given by

St = St−1 +Qt −Dt, t > 0, (14)

The storage capacity will be limited by the design size:

St ≤ Smax (15)

5.4 Objective function

The objective function for the scheduling problem is given
as follows:

Jschedule = min(Φ1 +Φ2 +Φ3), (16)

where

Φ1 =
∑
e∈E

∑
t∈T

∑
st∈ST

πt
st · P

e,t
st , (17)

Φ2 =
∑
e∈E

∑
t∈T

δrawF e,t, (18)

Φ3 =

T∑
δsSt. (19)

The term Φ1 represents the power consumption cost,
where P e,t

st is the power consumption for equipment e
during the time interval (t, st), and πt

st is the electricity
price for the interval (t, st). In the case of the DAM, the
price should be the same within the interval t ∈ T ; thus,
we could have πt∗

st = πt∗ , where st ∈ ST . However, this is
not true for the case of the FMM. The terms Φ2 and Φ3

represent the raw materials cost, and the inventory cost,
respectively. δraw and δs denote the cost coefficients for
that material and inventory costs, respectively.

5.5 Definition of the capital cost

The capital cost is calculated as follows:

log10 C = K1 +K2 log10(A) +K3[log10(A)]2 (20)

where C is the capital investment, A is the capacity or
size parameter for the equipment, and K1, K2, and K3

are the cost coefficients. The equation and the values of
the parameters are taken from Turton et al. (2018).

6. CASE STUDY

For an illustrative case study, we consider a jacketed
non-isothermal CSTR connected to a storage (inventory)
system (see Tong et al. (2015)). The cost parameters of
the CSTR system are taken from Turton et al. (2018).

6.1 Dynamic model and power consumption

The dynamic model of the CSTR is obtained from stan-
dard mass and energy balances, and consists of the follow-
ing equations (Flores-Tlacuahuac et al. (2008)):

dc

dt
=

1− c(t)

θ
− k0 exp

(
− n

T

)
c(t), (21)

dT

dt
=

yf − T (t)

θ
− k0 exp

(
− n

T

)
c(t) + αu(t)(yc − T (t)),

(22)

where c is a dimensionless reactant concentration, T is a
dimensionless reactor temperature, and u is the coolant
flow rate which is used as the manipulated variable.
The process parameters include the time constant θ,
the reaction rate constant k0, a dimensionless activation
energy n, and a dimensionless coolant temperature yc. The
values of the process parameters are taken from Flores-
Tlacuahuac et al. (2008). Furthermore, the dimensionless
reactor temperature is subject to the following constraint:

0 ≤ T (t) ≤ 1, ∀t. (23)

We consider the main source of power consumption to be
the reactor cooling duty which is given by:

Qc = α∆HV u(T − yc). (24)

where ∆H is the heat of reaction and V is the reactor
volume. Based on this model, the cooling load scales with
the CSTR volume, and the power consumption can then
be calculated as follows:

P e,t
st = γ(V )

∑
m2∈M

∑
m1∈M

yze,tm1,m2
·ue

m1,m2,st·(T
e
m1,m2,st−Tc),

(25)

where P e,t
st is the power consumption at st; yze,tm1,m2

is the
relaxed binary variable and ue

m1,m2,st specifies the power-
related manipulated variable, and γ(V ) is the scaling
factor where γ(V ) = α∆HV .

To calculate the baseline power consumption of the pro-
cess, we first specify a base value for θ under a specific
product demand for a CSTR size V . For example, for a
CSTR size of 500 L, to satisfy an hourly demand of 50
L/hr, θ is 10 hr. This θ value is then used to calculate the
required cooling power, which is used as the base power
consumption for a 500 L-CSTR.

Transitions between different operating modes are en-
forced by means of a dynamic optimization-based con-
troller. The objective function for the optimal control
problem is given by:

obj = Σt[β(c(t)− cs)
2 + γ(u(t)− u(t− 1))2], (26)

where β and γ are the penalty weights, cs is the target con-
centration of the desirable product. The objective function
penalizes changes in the control action, as well as concen-
tration set-point errors. The above dynamic optimization
problem is solved using Pyomo Hart et al. (2017) and using
the differential-algebraic equation package Nicholson et al.
(2018). The parameter β is set at 1 × 106, whereas γ is
chosen to be 1 in this case study.

6.2 Feasible mode transitions

To generate data points for the transition time profiles,
the transition between two steady states corresponding to



different θ values, ranging from 8 to 80 hr, is simulated
via dynamic optimization. The selection of the operating
modes can be arbitrary; however, since the scheduling
model is an MILP, depending on the number of operating
modes considered, a large number of modes can increase
the complexity of the model. Additionally, given that the
goal of this study is to compare the load-shifting capacities
for different CSTR sizes, it is important to use the same
transition profile for all CSTR sizes. As a result, we choose
to fix the range of θ values since the transition profiles
are determined by θ. With the range of θ values fixed
for the different modes, the operating flow rate, or the
production rate F t, will be different for different CSTR
sizes, leading to different feasible operating ranges under
different designs. One could also consider varying the
operating flow rate (instead of θ) for the different modes;
however, in such a scenario the dynamic transition profiles
will be different as the volume V is varied and θ changes
for different designs, increasing the number of dynamic
optimization results. In this study, we choose to fix θ for
the different CSTR sizes considered. The selection of θ
values for the different modes are based on a reactor size
of 400 L. For a range of θ values between 8 and 80 hr, the
flow rate is in the range from 400

80 to 400
8 . The flow rates in

this range are equally sampled and then converted back to
θ values. Therefore, varying θ can be realized under this
framework.

6.3 Seasonal representation

The LCOL calculation intrinsically considers a long-term
design and operation up to years, yet the variations in
electricity prices occur are at much shorter time scales (on
the order of 1 hour and 5-minute intervals in the DAM and
FMM, respectively). To account for the multi-scale nature
of the problem, we leverage the seasonality of the electric-
ity price profiles (see, e.g., Zhang et al. (2018)). Electricity
prices for both the DAM and FMM are separated into
four different seasons and then averaged over the period
of that season. The seasonal electricity price profiles in the
year 2018 of a node in the California Independent System
Operator (CAISO) market were used in this study. Based
on these seasonal profiles, the scheduling and operation
problem is solved for each market under each season, and
the operating cost and the shifted load are calculated
accordingly.

7. RESULTS AND DISCUSSION

The scheduling model described above is solved using the
Gurobi solver (Gurobi Optimization, LLC (2021)), and the
results are used in this section to assess the impact of
different design capacities on the ability of the process to
participate in load-shifting DR services in different time-
varying electricity markets. The material and inventory
costs, as well as the profit of selling the potential product,
are ignored for simplicity. Also, a period of 2 years and a
discount rate of 5% are assumed in the calculation of the
LCOL. These simplifications allow treating the process like
a battery, so that the LCOL calculation involves only the
electricity consumption cost and the load-shifting capacity.

Figures 1 and 2 present a comparison between the perfor-
mance of a process with a 500 L CSTR and 250 L storage
and a process with 700 L CSTR and 250 L storage, under
the FMM.

Fig. 1. Production level (top) and power consumption profiles
(bottom) for a 500-L CSTR with 250-L storage unit, for
different seasons, under the FMM.

Fig. 2. Production level (top) and power consumption profiles
(bottom) for a 700-L CSTR a 250-L storage unit, for different
seasons, under the FMM.

In both figures, the top panel shows the production levels
in different seasons, while the bottom panel shows the
power consumption. The red dotted lines specify the
baseline power consumption for the corresponding CSTR
size. It can be seen that the load-shifting activity is more
frequent for the 700-L CSTR than it is for the 500-L
CSTR. The loads shifted for both cases are given in Table
1. It is worth noting that, for both cases, the power
consumption tends to fluctuate between the minimum
and maximum, and as a result the load-shift capacity, by
definition, is maximized.

Table 1. Weekly power shifted for a 500-L CSTR and
a 700-L CSTR, for different seasons.

Weekly power shifted (MW) VCSTR = 500 L VCSTR = 700 L

Spring 79.5974 166.1959
Summer 80.3108 172.0224

Fall 78.0487 175.3420
Winter 79.1334 175.3995

Figure 3 compares the LCOL associated with a given
CSTR capacity under two different electricity markets,
namely the DAM and FMM. In this figure, the LCOLs
for different CSTR capacities are plotted against the
discounted shifted energy over the year. The dotted lines
correspond to the case of the FMM, while the solid lines
represent the DAM case. As can be seen, the dotted lines
are consistently below the solid lines, suggesting that when
scheduling under the FMM the LCOL for a given CSTR
capacity is lower than under the DAM. Using the FMM
for scheduling can lower the LCOL.

Another important trend that can be seen in Figure 3
is that as the shifted load increases, the LCOL, under
a given market and for a given CSTR capacity, initially
decreases and then increases. This increase is also very



Fig. 3. LCOL for different CSTR sizes under the DAM (solid lines)
and under the FMM (dashed lines).

steep. An implication of this behavior is that there exists
a limitation on the load-shifting capacity associated with
a CSTR of a given capacity in both markets (even when
different storage sizes are used). The limitation of the load-
shifting capacity is determined by the reactor capacity.
Another implication of the trends displayed is that one
could lower the LCOL while simultaneously maximizing
the load-shifting capacity per year. For example, when the
CSTR size is increased from 500 to 600 L, a significant drop
in the LCOL is observed, and this drop is accompanied by
a rightward shift in the load-shifting capacity. However,
this trend starts to diminish with increasing CSTR sizes.

8. CONCLUSION

In this work, a model-based optimization framework was
developed to evaluate and compare process design alter-
natives in terms of their potential to facilitate participa-
tion in load-shifting DR activities. The DR particibility
potential of a given process design was assessed using the
levelized cost of load-shifting capacity (LCOL). Utilizing
this metric, a chemical process could be viewed as a grid-
level battery and compared with other energy generation
units or batteries to assess the economic benefits that load-
shifting could provide over the lifetime of the process. A
conceptual case study involving a reactor-storage system
was used to illustrate the proposed framework.
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