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Abstract: We introduce a novel two-level method to address systematic yield variability in 

biopharmaceutical batch processes. At the first level (inter-step), we utilize process-wide connectivity data 

to identify the specific process step where performance variability occurs. A sequential and orthogonalized 

partial least squares (SO-PLS) model is then developed to trace the origin of these variabilities, linking data 

blocks across the flowsheet and filtering correlated information. Once a critical step is identified, the second 

level (intra-step) employs unit-specific PLS models to capture the internal dynamics of that step, using 

entire batch trajectories for modeling. In collaboration with process experts, this level isolates variable 

trajectories that drive the systematic variability. Applied to a commercial batch process producing an active 

pharmaceutical ingredient (API), this method reveals that downstream yield is impacted by variability 

during cell culture production. Furthermore, a detailed analysis of bioreactor data identifies key 

manipulated variable trajectories, specifically the dosage of glucose and NH3, impacting cell culture 

production. Validation of process improvement hypotheses is conducted in collaboration with process 

experts, enhancing transparency and yielding valuable insights. 

Keywords: biopharmaceutical processes, batch process modeling and control, process optimization, data 

mining tools, artificial intelligence and machine learning, process and performance monitoring

1. INTRODUCTION 

Batch processes are widely used in the pharmaceutical 

industry for their flexibility in producing various products with 

a single equipment stream, their faster time to market for new 

products, and their ease of adaptation to regulatory standards 

(Korovessi & Linninger, 2005).  Ideally, each batch would be 

processed under optimal conditions to ensure consistent and 

stable product yield. However, the time-varying and non-

linear nature of batch processes often leads to yield 

fluctuations, causing productivity losses. 

Variability in raw materials, initial conditions, and upstream 

influence on downstream process steps can cause deviations 

from baseline yield (Barton et al., 2021). While statistical 

process control (SPC) is used to monitor process performance 

and detect special cause variation (Bisgaard & Kulahci, 2007), 

this work focuses on utilizing historical data from the entire 

manufacturing process to identify drivers of common cause 

variation. By tracking and adjusting low-performing batches 

from an intended yield target, we aim to enhance process 

understanding and identify opportunities for optimization. 

One approach is to model the correlation between product 

yield and various process and quality variables across multiple 

process steps. Examples of such a model include integrated 

process models that represent processes with multiple steps or 

unit operations. These models transform the output of one unit 

into the input of the next, simulating material flow and 

capturing interactions between upstream and downstream 

equipment. Applications include control strategy design, risk 

analysis, experimental design, and process optimization 

(Marschall et al., 2022; Zahel et al., 2017; Diab et al., 2022), 

and they range from first-principles-based to fully data-driven. 

Due to the absence of detailed physical models for each unit 

operation and the high-dimensional, non-causal, non-full rank, 

and low signal-to-noise nature of data from industrial 

pharmaceutical processes, multivariate statistical techniques, 

and in particular multiblock partial least squares (MB-PLS) 

models, have proven effective for integrated process modeling 

(Brás et al., 2004). Such approaches organize information from 

various process steps into distinct blocks (𝑿(1), 𝑿(2), …, 𝑿(𝑆)) 

to model process-wide effects. For example, input variables 

measured at the end of each batch can be divided into 

meaningful blocks that are then related to a response block 𝒀, 

such as product purity at a downstream step.  

Recently, sequential-orthogonalized partial least-squares (SO-

PLS) regression has been employed to capture the connectivity 

of process flow diagrams and translate it into data-driven 

models, serving as soft sensors in multi-unit processes (Zhu et 

al., 2024). The block order is similar to the MB-PLS setup, but 

orthogonalization between blocks is used to eliminate 

overlapping data, ensuring each block retains only unique 

information. This capability allows SO-PLS to quantify the 

incremental contributions of different blocks to the output of 

interest, similar to variance decomposition. Cattaldo et al. 

(2024) have demonstrated some dynamic extensions and 

applications, and Lauzon-Gauthier et al. (2018) compared SO-

PLS to similar methods, like sequential MB-PLS (SMB-PLS), 

concluding similar performance while emphasizing the extra 

layer of interpretation offered by orthogonalization. 

In industrial pharmaceutical processes, batch reports link a 

specific batch number to multiple process steps, enabling yield 

prediction using process variables from different unit 

operations. However, challenges arise when streams mix and 



split across units, complicating the tracking of batches and 

process conditions. In these cases, it is often best to investigate 

each unit separately, such as with individual PLS models 

(Kourti, 2006). This allows for the detection of specific events 

and identification of optimal variable trajectories to enhance 

overall productivity. 

1.2 Contribution  

To align with this recommendation from Kourti (2006), we 

propose a two-level approach that integrates process-wide 

connectivity data (inter-step level) with internal dynamics at a 

process step (intra-step level). At the inter-step level, we 

assume that systematic yield variability has been observed at a 

specific step, termed the step of manifestation, and fit an SO-

PLS model on the entire process up to this step. The SO-PLS 

model’s role is to isolate the step of origin, where variability 

likely begins. Once identified, we investigate the intra-step 

level to uncover internal dynamics and variable interactions 

that could cause yield variability. We apply this approach to 

identify yield variability drivers in a pharmaceutical batch 

process producing an API (Figure 1). Findings are validated 

and discussed between process experts and data scientists.  

This study aims to answer the following questions: Which 

process steps most affect downstream product yield? Can their 

impacts be separated? Can process-wide data be linked to 

manipulated variable trajectories at a unit? How can expert 

input be integrated into the workflow? Using the two-level 

approach, we aim to identify key trajectories impacting yield 

and inform performance improvement decisions.  

2. METHOD 

Multiblock approaches, especially the SO-PLS model, allow 

integration of data from all process steps into a single model. 

This model considers the interactions between steps and their 

relative importance to the final product yield (inter-step 

model). Key process steps are then analyzed in detail to 

determine necessary changes in manipulated variable 

trajectories (intra-step model). The method involves three 

main stages (Figure 2):  

1. Scoping of the problem 

2. Analysis of the integrated process model (inter-step level) 

3. Analysis of unit operation model(s) (intra-step level) 

The methodology includes feedback loops when variance 

cannot be isolated within a single block, as detailed in the 

following subsections. 

2.1 Scoping of the problem   

Stage 1.a: The first stage involves detecting systematic yield 

variability in a process step, possibly using a control chart. 

This variability, influenced by known or unknown inputs, 

biases the yield in a specific direction, such as a seasonal effect 

or grouping. These differences can be tested using a t-test. 

Stage 1.b: Next, we identify all relevant process steps and 

connecting streams leading to the observed step, guided by 

process flowsheets diagrams. The process is then divided into 

blocks representing individual steps.  

Stage 1.c:  Afterwards, we gather all necessary data for each 

step from plant and laboratory information systems. This 

includes process variables, raw material properties, and 

intermediate product properties. For yield modeling, key 

variables include the product concentration from each step. 

2.2 Analysis of integrated process model (inter-step level)    

In this stage, we identify process steps that most influence 

yield variability. This analysis considers how downstream 

units, intermediate products, and final products are affected by 

upstream raw material properties and process settings. 

Stage 2.a: First, variables from each step are organized into 

matrices and preprocessed. In industrial batch processes, 

variables form a tensor with variable names, batches, and batch 

completion times as dimensions. Conversely, product property 

samples form a matrix, since they are often taken at the end of 

each operation (though occasionally they are available during 

processing). To align these variables, methods like unfolding 

can be used, treating each time instance as a new variable 

(Westerhuis et al., 1999). However, challenges such as uneven 

batch times and varying sample frequencies can complicate 

data alignment (Sartori et al., 2023). Since this stage is a 

Figure 1. Process sequence involving fermentation and initial purification of an API manufacturing line. 
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Figure 2. A methodology to identify drivers of downstream systematic variability in biopharmaceutical batch processes.  
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preliminary screening, a simpler approach is used, each 

process variable is aggregated into scalar values, using the 

average, minimum, and maximum across different processing 

phases. Higher-order moments of the variables may also be 

considered (Rendall et al., 2017). The data is then autoscaled. 

After preprocessing, relevant variables are selected using a 

backwards procedure. A PLS model is fitted for each block 

against the yield output, and variables are sorted by a variable 

importance in projection (VIP) index. Using a threshold 

(typically set at one), the least informative variables are 

eliminated, and the PLS model is refitted. This process is 

repeated until maximum model performance is achieved. 

Stage 2.b: We then construct the integrated process model 

using the SO-PLS method to incorporate connectivity 

information across the manufacturing process, as proposed by 

Zhu et al. (2024). We start with an overview of PLS, the 

foundation of the SO-PLS algorithm. 

The original PLS model (Wold et al., 2001) is a linear multi-

variate regression model that relates a matrix 𝑿 ∈ ℝ𝑁×𝑀 of 𝑀 

regressors (e.g., process variables) to a matrix 𝒀 ∈ ℝ𝑁×𝐾 of 𝐾 

responses (e.g., product yields) for the same 𝑁 observations 

(e.g., batches). PLS decomposes 𝑿 and 𝒀 into a reduced space 

of 𝑉 orthogonal latent variables (LVs) as follows 

𝑿 = 𝑻𝑷⊺ + 𝑬, 
𝒀 = 𝑼𝑸⊺ + 𝑭. 

Here, 𝑷⊺ ∈ ℝ𝑉×𝑀 and 𝑸⊺ ∈ ℝ𝑉×𝐾 are the transpose of the 

loading matrices of 𝑿 and 𝒀, respectively, 𝑻 ∈ ℝ𝑁×𝑉 and 𝑼 ∈
ℝ𝑁×𝑉 are the score matrices, and 𝑬 ∈ ℝ𝑁×𝑀 and 𝑭 ∈ ℝ𝑁×𝐾 

are the residual matrices, minimized in a least squares sense. 

The loadings summarize the correlations among process 

variables, while the scores show the relationships among 

batches based on the covariance between 𝑿 and 𝒀. 

Based on this, the SO-PLS model can be defined. Given blocks 

(𝑿(1), 𝑿(2), …, 𝑿(𝑆)), following a pre-defined block sequence 

which aligns with the flowsheet design of the process, the 

algorithm starts with the first block 𝑿(1) where separate PLS 

model is fitted with 𝒀 as the response. The subsequent block 

𝑿(2) is then orthogonalized with respect to the scores of the 

PLS model from the previous block, and so is the response 𝒀. 

The algorithm repeats this process for all blocks in the system. 

This ensures that only new information not modeled by 

previous blocks remains in subsequent blocks. The pseudo 

code is shown in Table 1 (Smilde et al., 2022).  

Table 1. Pseudo-code for (two-block) SO-PLS model 

First block 

1. PLS(𝑿(1), 𝒀)     ⟹      𝑻(1), 𝑷(1)                               

PLS regression for 𝑿(1) and 𝒀 

2. 𝑿(2),ort = (𝑰 − 𝑻(1) ((𝑻(1))
⊺
𝑻(1) )

−1

(𝑻(1))
⊺
)𝑿(2) 

Orthogonalization of 𝑿(2) with respect to 𝑻(1) 

3. 𝒀ort = (𝑰 − 𝑻(1) ((𝑻(1))
⊺
𝑻(1) )

−1

(𝑻(1))
⊺
) 𝒀 

Orthogonalization of 𝒀 with respect to 𝑻(1) 

Second block 

4. PLS(𝑿(2),ort, 𝒀ort)     ⟹     𝑻(2), 𝑷(2) 

PLS regression for 𝑿(2),ort and 𝒀ort 

5. 𝒀 = 𝑻(1)𝑸(1) + 𝑻(2)𝑸(2) + 𝑭 

Estimation in the least squares sense                            

 

SO-PLS offers several advantages. Unlike other multi-block 

techniques, it allows a different number of components for 

each block (Westerhuis et al., 1998). The orthogonalization 

step eliminates redundant information, ensuring additional 

explained variance from a new block represents new 

information not captured by previous blocks (Figure 3). 

However, the sequence of blocks can influence model 

performance in SO-PLS. Evidence suggests that the block 

order should align with the process flow diagram's topology 

(Næs et al., 2021). For parallel unit operations, if they are 

identical, data blocks are concatenated. If not, data blocks are 

serialized, and the order is chosen freely (Zhu et al., 2024). The 

model assumes no recycle streams in the process, but the 

impact of loops can be evaluated by summarizing the feedback 

as a variable (e.g., the amount of recycled material) and 

measuring its effect (van Kollenburg et al., 2021).  

Stage 2.c: Finally, critical source steps are identified. SO-PLS 

is useful for this due to its ability to divide the total sum-of-

squares into contributions for each block, similar to ANOVA 

(Smilde et al., 2022). Future work aims to leverage this 

property to identify the block that contributes most to the 

output variance. However, calculating degrees of freedom for 

PLS models is a challenge (van der Voet, 1999). As an 

alternative, CV-ANOVA (Indahl & Næs, 1998) can be used. 

For a two-block SO-PLS model, this method compares 

predicted residuals of a one-block model with those of a two-

block model, using a paired t-test to judge significance. This 

can be easily extended to more blocks. With this method, 

multiple significant process steps may be identified, requiring 

further intra-step analyses, as shown in Figure 2. 

2.3 Analysis of unit operation model(s) (intra-step level)  

After identifying process steps that significantly impact down-

stream yield, we proceed to the intra-step analysis. This level 

focuses on examining how manipulated variable trajectories 

influence the output of the critical process steps. We analyze 

the entire evolution of batches uncover internal dynamics and 

variable interactions causing variability downstream.  

Stage 3.a: Inter-step analysis identifies process steps needing 

further examination. Intra-step analysis is unit-specific, 

requiring separate models for each unit. Therefore, a priori-

tized list of hypotheses must be created with process experts, 

based on existing knowledge. For example, if the inter-step 

analysis shows that the fermentation concentration profile 

impacts downstream yield, a hypothesis might be to explore 

which variable trajectories affect the concentration profile, 

making it the output of interest for the intra-step model. When 

there are competing critical process steps, one can prioritize 

based on the number of available hypotheses or choose the step 

closest to where variability is observed. 

Figure 3. Information overlap handled by SO-PLS, adapted from 

Zhu et al. (2024). 
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Stage 3.b: Next, the intra-step data is preprocessed. This data 

is often in tensor format, challenging to align due to varying 

sampling frequencies and batch lengths. Multi-way PLS 

methods can handle such data (Westerhuis et al., 1999) but 

usually require equal batch lengths. Solutions like truncating 

data or synchronizing around an indicator variable (Sartori et 

al., 2023) are unsuitable because they remove crucial end-of-

batch data or distort the sampling frequency of the quality 

measurements, introducing unnecessary complexities. Instead, 

we use the pseudo-batch technique (López-Montero et al., 

2015), as shown in Figure 4. This method unfolds input data 

from each batch into a vector, treating each time instance as a 

new variable (Westerhuis et al., 1999). The entire trajectory up 

to each sampling point is saved as a pseudo-batch. Data is then 

synchronized by removing excess information from the 

beginning of trajectories to fit a specific modeling window. 

Stage 3.c: With the data transformed, autoscaled, and using the 

same variable selection procedure as in Stage 2.a, a standard 

PLS model can be fitted to identify the effects between input 

and output trajectories of the process step. While PLS models 

are excellent for process exploration, other models, including 

mechanistic ones, can also be applied if available. Variable 

trajectories that significantly impact the output are listed based 

on the VIP index and discussed with process experts. If no 

immediate decisions can be made after the intra-step analysis, 

the procedure returns to the inter-step level to investigate 

another step. This explains the second decision point in Figure 

2. If no further steps explain the variance, it may be necessary 

to exit the workflow and conclude that additional data sources, 

such as raw materials data, are needed. 

3. RESULTS AND DISCUSSION 

3.1 Process description  

This study focuses on a section of a commercial batch process 

producing an API for diabetes treatment. The proposed two-

level method extends multivariate statistical analysis to 

include both the production stages of the API (fermentation 

(1)) and the purification steps, which include: 

• Clarification (2): Removing yeast (and residues) from 

the broth. Primary equipment: Tanks and centrifuges. 

• Concentration (3): Concentrating the product and 

reducing host cell proteins. Primary equipment: Tanks 

and chromatography. 

• Reaction (4): Chemical transformation from precursor to 

the desired chemical form. Primary equipment: Tanks.  

• Precipitation (5): Concentrating the product and 

preparing it for storage. Primary equipment: Tanks, 

centrifuges, and containers. 

The objective is to model the product yield variability at the 

end of the multi-step process and evaluate each step’s 

contribution to the yield. For confidentiality, the API, some 

variable names, absolute data values, and details about unit 

operations and their connectivity are not disclosed. Each step 

includes multiple unit operations arranged in parallel or series. 

3.2 Drivers of downstream yield variability (inter-step) 

The two-level approach is applied to identify drivers of yield 

variability at the precipitation step. The plant is equipped with 

online sensors recording process variables every second via 

the AVEVA PI system. Hourly measurements are extracted for 

analysis. Data from 693 precipitation batches, originating from 

43 fermentation batches, are collected, including temperatures, 

pressures, flow rates, and controller setpoints. Three fermenta-

tion batches used in engineering runs are excluded as outliers. 

For this study, 62 process variables, selected based on expert 

input, undergo phase-wise aggregation resulting in 336 

variables. A VIP-based selection procedure narrows this to 152 

variables. Product samples taken at each production stage are 

analyzed in laboratories to determine product concentration 

and yield. Yield data are concatenated with online plant data 

for each stage. For fermentation, the concentration of the 

harvested product is used instead of yield. The yield at the 

precipitation step is used as the output vector 𝒚 ∈ ℝ693×1.  To 

match the row numbers of the fermentation data with the 

purification data, each fermentation batch is repeated for each 

subsequent purification batch, resulting in the following set of 

matrices: 𝑿(1) ∈ ℝ693×32, 𝑿(2) ∈ ℝ693×36, 𝑿(3) ∈ ℝ693×35, 

𝑿(4) ∈ ℝ693×24, and 𝑿(5) ∈ ℝ693×25. Note, this highlights the 

presence of dependent batches, which will be discussed later. 

The end-process yield, 𝒚, is estimated using SO-PLS based on 

the matrices 𝑿(1), 𝑿(2), 𝑿(3), 𝑿(4) and 𝑿(5) which include yield 

and process data from prior steps. Model performance is 

measured by determination coefficients in calibration (𝑅𝑌
2) and 

cross-validation (𝑄2). Cross-validation involves splitting the 

dataset into segments and holding out one segment for 

validation. The latent variable combination maximizing 𝑄2 is 

visualized using a Måge plot (Smilde et al., 2022).  

The SO-PLS model explains 78.7% of the variance in the 

API's yield at precipitation during calibration (𝑅𝑌
2) and 70.8% 

during validation (𝑄2). The optimal latent variable combi-

nation {4,0,0,0,3} is shown in Figure 5(a). 

Table 2. Total explained variance of inter-step SO-PLS is 78.7%. 

The number of LVs is {4,0,0,0,3}, selected by cross-validation. 

 LV 1 LV 2 LV 3 LV 4 Total 

𝑿(1) 38.8 21.5 6.40 1.90 68.6 

𝑿(5) 3.84 4.95 1.30  10.1 

Table 2 reveals that the most impactful block is 𝑿(1), 

explaining 68.6% of the variance. Specifically, the latent 

variable {1,0,0,0,0} explains 38.8% of the variance. This 

variable is mainly driven by an indicator variable that is set to 

1 when the concentration profile of an undisclosed metabolite 

crosses a threshold. Batches where this indicator equals 1 are 

called disturbance batches, and their yield at precipitation is 

shown in Figure 5(b). A significant difference is confirmed by 

a Welch's two-sample t-test, with a t-value of −1 .15 and 63.9 

degrees of freedom, leading to p-value <   . ⋅ 10−16. Note 

that in this case study, intermediate steps (𝑿(2), 𝑿(3), 𝑿(4)) do 

Figure 4. Pseudo-batch method for batch data alignment, adapted 

from López-Montero et al. (2015). 
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not significantly contribute to model performance, as indicated 

by the absence of latent variables. 

Thus, lower-performing precipitation batches seem to origi-

nate from process disturbances in fermentation. Process ex-

perts note that the disturbances are characterized by the pro-

duction of certain metabolites, which can decrease producti-

vity and biomass formation.  We initiate an in-depth intra-step 

analysis of the fermentation step to investigate these issues. 

3.3 Linking metabolite profile to process inputs (intra-step) 

To understand the relationship between input dynamics of the 

fermentors and the process disturbance, we study the correla-

tion between online process variables (𝑿̃) and metabolite con-

centration profile (𝒚̃). For the intra-step analysis, hourly on-

line process variables are extracted, including pH, tempera-

ture, flow rate controllers (glucose, biomass, NH3), and mea-

surements of oxygen, ethanol, and CO2. Data from 43 fermen-

tation batches are collected – three removed as outliers. Unlike 

the inter-step analysis, no aggregation is performed, and the 

entire trajectory is kept. In total, we have 40 features, including 

transformations of existing inputs (e.g., dosage ratios). 

In the fermentors, cells are grown in fed-batch mode until the 

desired tank weight and biomass concentration are reached. 

Then, the fermentors continue in continuous cultivation mode, 

delivering material to harvest tanks. Process variables are split 

into these two phases and autoscaled with respect to the mean 

and variance of each phase. Product samples are taken during 

the batch evolution, though less frequently than the online 

measurements. Metabolite concentration is determined from 

the chromatograms of product samples and autoscaled accor-

ding to the mean and variance of the sample trajectories. 

We use the pseudo-batch method and build a PLS model to 

estimate 𝒚̃ from 𝑿̃. The input data is unfolded, and the pseudo-

batch transformation is applied, synchronizing the pseudo-

batches to the average 12-hour time window between product 

samples. Testing minimum (9 hours) and maximum (16 hours) 

time windows showed no significant model differences. After 

the pseudo-batch transformation, we obtain a single column of 

metabolite concentration 𝒚̃ ∈ ℝ211×1. Due to non-linearities, 

the metabolite concentration is log-transformed. Following the 

VIP-based variable selection procedure, we obtain an input 

matrix of size 𝑿̃ ∈ ℝ211×109. 

Table 3 shows the performance of the PLS model. Latent 

variables are chosen using segment-based cross-validation, 

where entire batches – rather than individual pseudo-batches – 

are excluded for validation to preserve the inherent dependen-

cies among pseudo-batches. The optimal PLS model employs 

6 latent variables and explains 8 .5% in calibration and 

71.4%  in validation. The low difference between 𝑅𝑌
2 and 

𝑄2 indicates no overfitting. 

Table 3. Cumulative explained variance for PLS with 6 LVs, 

selected by cross-validation. 
 𝑅𝑋

2  [%] 𝑅𝑌
2 [%] 𝑄2 [%] 

LV 1 35.5 24.6 17.1 

LV 2 47.9 41.1 26.5 

LV 3 61.0 50.2 35.2 

LV 4 73.5 70.8 52.8 

LV 5 77.0 76.5 67.1 

LV 6 83.7 82.5 71.4 

The PLS model provides insights into the relationship between 

process variables and metabolite concentration. Figure 6 

highlights variable importance using the VIP index, with a 

threshold of 1 to determine significance. Variables are as 

follows: 1) fermentor weight, 2) tank agitator power, 3) NH3 

flow controller, 4) transfer flow controller, 5) fermentor pH, 

6) dilution rate, 7) glucose flow rate, 8) measured CO2 

concentration, 9) glucose dosage stop duration, and 10) 

dosage ratio between NH3 and glucose. Significant variables 

include dilution rate, measured CO2 concentration, and dosage 

ratio between NH3 and glucose. Given the direct link between 

dilution rate and glucose feed, and the fact that CO2 concen-

tration is a response variable, we focus on the dosage ratio. 

As seen in Figure 7, a low dosage ratio between NH3 and 

glucose correlates with high metabolite concentration (which 

is also reflected by high CO2 levels). To mitigate disturbances 

affecting productivity and yield, it has been discussed with 

process experts to maintain the dosage ratio above 0.19 

(standardized value).   

4. CONCLUSION 

This paper introduces a novel methodology to identify drivers 

of yield variability in pharmaceutical batch processes. Using 

multivariate statistical methods, it suggests adjusting mani-

pulated variable trajectories to mitigate systematic variability.  

The industrial case study demonstrates that the SO-PLS model 

highlights the fermentation step as crucial for the API's 

downstream yield in a five-step process. While other steps 

contribute, their impact is less significant. Identifying the most 

influential step allows for ideal variable trajectories to resolve 

yield variability, recommending maintaining the dosage ratio 

of NH3 and glucose above a lower limit. This knowledge can 

enhance process performance and enables experts to focus on 

specific steps and variables. The methodology's two-level na-

ture allows expansion with development scale data for deeper 

Figure 6. VIP indices of the intra-step variables 
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Figure 5. (a) Maximum obtained 𝑄2 is 70.8%. (b) Yields 

from the last harvested batch from each fermentation 

(red) compared to prior batches (blue). 
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insights into each step's dynamics. Though currently applied 

to yield variability, it can also address quality-related issues. 

Future work should include a comparison between multiblock 

methods like MB-PLS, SO-PLS, SMB-PLS, and process-PLS 

(Lauzon-Gauthier et al., 2018; van Kollenburg et al., 2021). 

Additionally, the optimal block order of the SO-PLS model 

requires further investigations (Næs et al., 2021).  

Lastly, given that multiple downstream batches can share the 

same upstream batch, observations are inherently dependent. 

While PLS does not require data independence, the current 

approach overlooks the group structure of batches, mixing 

between- and within-group variances. A potential solution is 

to use a multi-group PLS approach (Eslami et al., 2014). 
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Figure 7. Scatter plot of (autoscaled) dosage ratio and measured 

CO2. Red indicates high (log) metabolite concentrations. 


