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Abstract: We address the problem of estimating the instantaneous reaction rates of the mass
conversion taking place in an isothermal and isobaric continuous stirred tank reactor, CSTR,
subject to a constant dilution rate. In addition to the estimation of the reaction rates, we also
obtain an estimate of the influxes to the reactor. Our methodology requires the knowledge of
the stoichiometric matrix and all the concentrations online, as well as the dilution rate. The
observer is based on a generalised version of the Super-Twisting Algorithm, STA, which allows
us to estimate in finite-time the unmeasured variables. The applicability of the observer is shown
by a numerical simulation.
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1. INTRODUCTION

Population dynamics show how the number of a particular
species change over time due to their birth and death
of individuals along with their interaction with another
species. When the number of individuals is large, one may
consider an ordinary differential equation to represent its
mathematical model. Such a mathematical model is in gen-
eral nonlinear and comprise the stoichiometric coefficients,
kinetic parameters, reaction networks, and influxes and
effluxes of a control volume.

When considering a (bio)chemical process, a common
reactor is a batch reactor in which the reactant species
are initially added in order to allow them for the products
to be formed. Once finished, the content of the reactor is
extracted to obtain the products of the reaction. When a
continuous process is preferred, both an influx and efflux
to the reactor may be considered. The influx has fresh
media with substrates to be converted into products and
the content of the reactor is constantly extracted to obtain
the products. When the volumetric rate of the influx and
efflux is the same, they can be characterised by the dilution
rate. In the following we consider such continuous reactor
and denote it as continuous stirred-tank reactor, CSTR.

In general, it is difficult to model a biochemical process
since the reaction rates that compose its mathematical
model are unknown given that key processes in the net-
work are abstracted in a single reaction and thus it is not a
simple interaction of two species. However several reaction
rates have been used to model particular interaction in
bioprocesses as Monod, Haldane, Contois, Hill kinetics,
among others. We refer the interested reader to (Bastin

and Dochain, 2013), for a study of modelling, control, and
estimation in reaction networks.

The reaction rates, however, are needed to monitor and
control the process or for the design of the reactor itself.
Hence it is important to know the instantaneous value of
the reaction rate, especially if the functional form of the
reaction rate is not known. In (Farza et al. (1998); Mhamdi
and Marquardt (2004); Nuñez et al. (2013); Vargas et al.
(2014); Reza López et al. (2023)) the authors design an
observer of reaction rates for a class of nonlinear systems.
In turn, works like (Dochain et al. (1992); López-Caamal
and Moreno (2016); Czyżniewski and  Langowski (2024))
design observers for both the unmeasured states and
reaction rates.

The Super-Twisting Algorithm, STA, is a second order
sliding mode that steers its state and its derivative to
zero exponentially (Levant, 1993). In works like (Moreno
and Osorio, 2012) the finite-time stability was shown via
a Lyapunov stability analysis and in (Moreno, 2012) the
Lyapunov stability of more general second order algo-
rithms are analysed. In turn, multivariable versions of the
STA may be found in (Nagesh and Edwards (2014); López-
Caamal and Moreno (2019)), among others.

This paper presents an observer of unknown concentra-
tions in the influx along with the reaction rates of the
network. We require that the number of species in the
influx plus the number of the reaction rates equal that of
the species in the network. Furthermore, we consider an
online measurement of all the species in the network. Our
observer has a correction term that endows the observa-
tion error with the dynamics of the Multivariable Unitary



Super-Twisting Algorithm. MUSTA, described in (López-
Caamal and Moreno, 2015; López-Caamal and Moreno,
2019). Thus, the observation error dynamics is finite-time
stable and all the estimates converge at the same time. In
addition, such observer is robust to a matched, constant
perturbation. In the scope of the current paper, such a
perturbation is the derivative of the reaction rates and
influxes, as discussed in §2.

Along the document, we use λ(◦) (resp. λ(◦)) to denote
the largest (smallest, resp.) eigenvalue of the argument. In
turn ⊗ denotes the matrix Kronecker product.

2. MODEL DESCRIPTION

The mathematical model of a CSTR is given by

d

dt
c(t) = Nv(c(t)) − q (c(t)) + d (Bf(t) − c(t)), (1)

where

c : R → Rn is the concentration vector; (2a)

v : Rn → Rm is the reaction rate vector; (2b)

q : Rn → Rn is the gasification vector; (2c)

f : R → Rr is the influx concentration vector; (2d)

N ∈ Rn×m is the stoichiometric matrix; (2e)

B ∈ Rn×r is the input matrix; and (2f)

d ∈ R+ is the dilution rate. (2g)

Assumption 1. We assume as known (i) the concentration
vector, (ii) the gasification rate, (iii) the stoichiometric
matrix (iv) the input matrix, and (v) the dilution rate,
which we consider to be constant and different from zero.

In general it is not possible to have an online measurement
of the full concentration vector; here, however, we solely
focus on the estimation of the unknown input, f(t), and
the reaction rate vector, v(c); and leave the concentrations
estimation for future work.

In this light, we may restate (1) as

d

dt
c(t) = − (dc(t) + q (c(t))) + Mz(t) (3a)

d

dt
z(t) = η(t), (3b)

where

M := (N dB) (3c)

z(t) :=

(
v(c(t))
f(t)

)
(3d)

η(t) :=

 d

dt
z(t)

d

dt
f(t)

 . (3e)

Please note that we have gathered the unknown signals v
and f in the vector z. The aim of the following section is
to estimate such vector.

3. OBSERVER FOR REACTION RATES AND
UNKNOWN INPUTS

Now, in this section we present an observer for z(t) for
systems that comply with the following assumptions.

Assumption 2. Let us consider that

n = m + r,

which implies that the dimensions of c(t) and z(t) are the
same.

Assumption 3. In addition, we consider the case in which
the time derivative of both v(c) and f(t) are element-wise
bounded. Thus

||η(t)||2 ≤ ℓ ∀t,
and we assume ℓ known. In addition, let M in (3c) be
nonsingular.

In the following, the estimated variables are denoted as
ĉ(t) and ẑ(t), which are obtained with the following
observer.

Proposition 3.1. Consider Assumptions 1, 2, and 3. Then
the following dynamical system estimates in finite-time the
state z(t):

d

dt
w(t) = − k1ϕ1(ec) + k3ẑ(t)

+ (W − In) (dc(t) + q (c)) (4a)

d

dt
ẑ(t) = − k2ϕ2(ec), (4b)

where

ec(t) :=ĉ(t) − c(t) (4c)

ĉ (t) =w(t) + Wc(t) (4d)

W :=In − k3M
−1. (4e)

Moreover

ϕ1 (ec) :=
(
α ||ec(t)||−p

2 + β + γ ||ec(t)||q2
)
ec, ϕ1 (0) := 0,

(4f)

ϕ2 (ec) :=
(
α(1 − p) ||ec(t)||−p

2 + β+

γ(1 + q) ||ec(t)||q2
)
ϕ1 (ec) , (4g)

where ||ec(t)||2 :=

√
e
⊤
c (t)ec(t). In addition, α, β, γ > 0,

p = 1/2, and q > 0; furthermore, k1, k2, and k3 are such
that the following matrix is Hurwitz

A =

(
−k1 k3
−k2 0

)
. (4h)

Additionally

α > 2

√
ℓ
λ (P)

λ (Q)
.

2

The proof may be found in Appendix A.

Under the current assumptions, it is remarkable that the
observer may recover the reaction rates along with the
unknown influx to the system. To attain this, the stoi-
chiometric matrix must be known, which is a reasonable
assumption since it can be inferred from the form of the
reaction network and the stoichiometric coefficients can be
computed by the conversion of species.

The dimension constraint in Assumption 2 is more re-
strictive since it renders the observer useful for reaction
networks whose number of species is equal to the number
of reaction rates plus unknown influxes. In the future, we
aim to seek to remove such restrictions.



It is also important to note that the matrix M in (3c) is
defined with the dilution rate, which is assumed as positive
and constant. In fact, we could allow the dilution rate to
be piecewise constant, by computing again the matrix M
whenever the dilution rate is updated and thus updating
the observer gain W.

Now, the choice of the particular forms of ϕ1 and ϕ2 endow
the dynamics with a robust, finite-time convergence of the
observation error. Moreover, with such a choice both ĉ(t)
and ẑ(t) converge to their actual values exactly at the
same time; but the presence of noise or an unmodelled
perturbation will propagate to all the estimates, despite it
being present in only a particular channel, as discussed in
(López-Caamal and Moreno, 2015).

4. NUMERICAL SIMULATION

Let us consider the following reaction network

S1 + S2
ν1−−→ S3

S1 + S3
ν2−−→ S4

S2

ν3f−−⇀↽−−
ν3b

0,

along with the reaction rate vector

v(t) =

(
ν1c1c2
ν2c1c3
ν3fc1 − ν3b

)
,

with

ν1 = 0.25

ν2 = 0.75

ν3f = 0.1

ν3b = 0.2.

Here ci represents the concentration of Si. Such reaction
rates are unknown to the observer. However the stoichio-
metric matrix is known and has the form

N =

−1 −1 0
−1 0 −1

1 −1 0
0 1 0

 .

In turn, the input matrix B is

B = (1 0 0 0)
⊤
,

with the influx

f(t) = max{0, 2 + 3 tan−1(t/2) sin(πt/2) exp(−0.3t)}.
Thus, the number of species, n, equals the sum of reaction
rates number, m, plus the number of influxes, r.

We also account for a zero gasification vector, i.e.,
q(c) = 0, and a dilution rate of d = 0.1. With these
definitions, one has

M =

−1 −1 0 0.1
−1 0 −1 0

1 −1 0 0
0 1 0 0

 ,

which is nonsingular. Thus, by choosing the observer gains

{k1, k2, k3} = {3, 2, 1}
one has

W =

 1 0 −1 −1
0 1 0 −1
0 1 2 1

−10 0 −10 −19

 .

By letting ℓ = 100, one may choose

{α, β, γ} = {18, 2, 5} {p, q} = {0.5, 0.1}.

Figure 1 shows the performance of the estimation of the
concentration vector. As one may note, the estimations
converge to the actual ones in about 10−1 units of time.
Although known, by assuming an initial error of the
concentration vector, the observer corrects the estimate of
both c(t) and z(t), which comprise the unknown reaction
rates and influx.

In turn, Figure 2 depicts the estimation of the unknown
reaction rates, which converge to the actual ones in exactly
the same time as the concentration estimates do. This is
a trait of the form chosen for the STA.

To finalise, the estimation of the unknown input f(t) is
represented in Figure 3.

5. CONCLUDING REMARKS

In this paper, we present an observer for the reaction rate
and unknown concentrations in the influx to a CSTR. Such
an estimator is capable of providing exact estimates in
finite-time for a particular class of reaction networks while
requiring the knowledge of the species concentrations, sto-
ichiometric matrix, dilution rate, and gasification vector.

Appendix A. PROOF OF THE OBSERVER IN §3

Proof 1. To estimate the states of System (3), let us
consider

d

dt
ĉ(t) = − (dc(t) + q (c(t))) + Mz(t)

− k1ϕ1(ĉ− c) + k3(ẑ− z) (A.1a)

d

dt
ẑ(t) = − k2ϕ2(ĉ− c). (A.1b)

The observation error defined as ec(t) := ĉ(t) − c(t) and
ez(t) := ẑ(t) − z(t) satisfies

d

dt
ec(t) = −k1ϕ1(ec) + k3ez(t) (A.2a)

d

dt
ez(t) = −k2ϕ2(ec) − η(t), (A.2b)

which has the form of a generalised multivariable super-
twisting algorithm. When appropriately tuned, it exhibits
a robust, finite-time stable behaviour (López-Caamal and
Moreno, 2019).

The observation error stability may be shown with the
Lyapunov function

V (t) = ζ⊤Pζ, (A.3)

where

ζ(ec, ez) :=

(
ϕ1 (ec)
ez

)
and P := P ⊗ In. In such an expression, the symbol ⊗
denotes the Kronecker product and P ∈ R2×2 satisfies the
algebraic Lyapunov Equation

PA + A⊤P = −Q.

The matrices P and Q ∈ R2×2 are symmetric and positive-
definite; whereas

A :=

(
−k1 k3
−k2 0

)
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Fig. 1. Actual and estimated states of the reaction network. The red line depicts the actual concentration and the blue
line represent the estimate in the left panel and the estimation error in the right one.
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Fig. 2. Estimated reaction rates.

Fig. 3. Estimation of influx concentration f(t).



is Hurwitz. It has been shown that the time derivative of
V (t) along (A.2) is given by (López-Caamal and Moreno,
2016, 2019)

d

dt
V (t) = −ζ⊤ [Q⊗ J(ec)] ζ + 2ζ⊤P

(
0

−η(t)

)
,

where

J (ec) =
(
α ||ec||−p

2 + β + γ ||ec||q2
)
In

+
(
γq ||ec||q2 − αp ||ec||−p

2

) ece
⊤
c

e
⊤
c ec

, (A.4)

which is a positive definite, symmetric matrix; whence

λ (J(ec)) >
α

2
||ec||−1/2

2 , (A.5)

since we have set p = 1/2.

Now, in order to ensure the negativity of d
dtV (t) one may

note that
d

dt
V (t) ≤ −λ (Q)λ (J) ||ζ||22 + 2λ (P) ||ζ||2 ||η||2 ;

by using Eq. (A.5) one obtains

λ (J) ||ζ||2 ≥λ (J)α ||ec||1/22

≥α2

2
||ec||−1/2

2 ||ec||1/22

=
α2

2
.

Thus,

d

dt
V (t) ≤−

(
α2

2
λ (Q) − 2λ (P) ||η||2

)
||ζ||2

≤−
(
α2

2
λ (Q) − 2λ (P) ℓ

)
||ζ||2 .

Hence to ensure negativity one must choose

α > 2

√
ℓ
λ (P)

λ (Q)
.

So far, the stability of the observation error has been
established. However, the observer (A.1) requires the use
of z(t), which is unknown. It can, nevertheless, be written
in terms of the known vector c(t) from (3a) as

z(t) = M−1

(
d

dt
c(t) + dc(t) + q(c(t))

)
.

By using this last Equation in (A.1a) one obtains
d

dt
ĉ(t) = − (dc(t) + q (c(t))) − k1ϕ1(ec)

+ k3ẑ(t) + (M− k3In)z(t)

= − (dc(t) + q (c(t))) − k1ϕ1(ec) + k3ẑ

+ W

(
d

dt
c(t) + dc(t) + q(c(t))

)
d

dt
(ĉ(t) −Wc(t)) = − (dc(t) + q (c(t))) − k1ϕ1(ec)

+ k3ẑ(t) + W (dc(t) + q(c(t)))

d

dt
w(t) = − k1ϕ1(ec) + k3ẑ(t)

+ (W − In) (dc(t) + q (c(t))) ,

which completes the proof.
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