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Abstract: In this work the optimal control problem of maximizing the cell production rate in
chemostat reactors by manipulating the dilution rate under possibly time–varying uncertainties
in the growth rate is addressed. Considering that the cell mass distribution is not an available
measurement during cultivation, three estimation problems are formulated and addressed. Based
on the respective observability property of each subsystem, extended Kalman filters are designed
for the estimation of the gradient with respect to the input, uncertainties in the growth rate,
and the cell mass distribution density function based on biomass measurements. Finally, the
convergence of the proposed observers and optimal control strategy is tested in simulations.
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1. INTRODUCTION

The interest of cell population distributions in biological
systems has increased considerably in the last few decades
(Ramkrishna and Singh, 2014). This is due to the de-
velopment of modern sensors such as flow cytometry for
the measurement of cell distributions and the fact that
different metabolic and product formation pathways of
biological cultures are often related to their respective
cell stage. The number of cells within these stages can
be represented by cell size, mass or age distributions.
Mathematically, these structured cell population dynamics
can be described by cell population balance models, which
usually consist of a partial integro–differential equation
that is coupled to a set of ordinary differential equations to
account for nutrient dynamics. These types of models have
successfully been utilized to design nonlinear model–based
control schemes in a simulative environment (Sharifian
and Fanaei, 2008; Kurth et al., 2021) and for control and
observer design in an experimental lab–scale reactor of
yeast fermentation (Jerono et al., 2021a, 2022).

A big challenge when these models are utilized for the
control of real processes is the regulation and mutational
adaptation of the cells in long–term cultivations, which are
documented for several species (see, e.g., Ferenci (2007)).
In a lab–scale yeast fermentation chemostat experiment,
it turned out that a stabilizing feedback controller is
crucial for maintaining the control target of a desired cell
density distribution (Jerono et al., 2022). This becomes
most relevant when the control target is to drive the
system to an optimal operation point, like a maximum
cell production rate, which might be a priori unknown
and also might change over time. Due to the stochastic
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nature of biological diversity and mutational adaptation,
the quantization of these effects is difficult and might
not be repeatable between experiments. Therefore, it is
convenient to consider model–free optimization control
schemes like extremum seeking and its partly model–free
variations (Ariyur and Krstic, 2003; Guay et al., 2004;
Guay and Dochain, 2015).

Additional challenges arise, when the objective function is
not directly measured, which requires to integrate an ob-
server operating on available measurements in the control
strategy. The observer design and its convergence typically
rely on the observability property with respect to the
process dynamics by means of a mathematical model and
the available measurements during cultivation. When the
process dynamics are additionally uncertain, the questions
arise if these uncertainties can also be estimated by a
feasible observer design and what is their impact on the
estimation of the objective function.

In this work the optimal control problem of maximizing
the cell production rate in chemostat reactors under the
effect of possibly time–varying uncertainties in the growth
rate by manipulating the dilution rate is addressed. The
main idea is to separate the estimation of the cell distribu-
tion and uncertainties in growth from the optimal control
problem, which can also be formulated as an estimation
problem in terms of estimating an unknown gradient.
Based on the analysis of the observability property of
the considered subsystems, extended Kalman filters are
designed to estimate the cell distribution density function,
estimate possibly time–varying uncertainties in the growth
dynamics and to drive the system to optimal operation
conditions by means of the cell production rate in chemo-
stat operation.



2. MODEL FORMULATION

Consider the cell population balance equation

∂tn(m, t) = −∂m[r(m, s)n(m, t)]− Γ(m, s)n(m, t)

+ 2

∫ m∗

m

Γ(µ, s)p(m,µ)n(µ, t)dµ

−Dn(m, t)

n(m∗, t) = 0, n(m, 0) = n0(m)

(1a)

in chemostat operation with the dilution rate D ̸= 0.
Furthermore, t ∈ R≥0 is the time and m ∈ [m∗, m

∗] is the
cell mass with its minimum and maximum given by m∗
and m∗, respectively. The cell mass distribution density
function is given by n(m, t) : [m∗, m

∗]× R≥0 → R≥0 and
the cell growth rate is denoted as r(m, s) : [m∗, m

∗] ×
R≥0 → R≥0 with the substrate concentration s ∈ R≥0.
The cell division rate is given by Γ(m, s) : [m∗, m

∗] ×
R≥0 → R≥0 and p(m,µ) : [m∗, m

∗] × [m∗, m
∗] → R≥0 is

the division probability density function, which determines
the possibility that a mother cells of mass µ produces
daughter cells of mass m by division. In virtue of its
definition, p(m,µ) fulfills the property

p(m,µ) = 0 , ∀µ ≤ m.

According to Mantzaris and Daoutidis (2004); Jerono et al.
(2021b) it is chosen as a symmetric binomial distribution

p(m,µ) =
1

B(q)

1

µ

(
m

µ

)q−1(
1− m

µ

)q−1

,

where B(q) denotes the normalization factor given by the
symmetric Beta distribution

B(q) =
2Γf (q)

Γf (2q)
,

and the cell division rate γ(m) is given by a ramp function

γ(m) =

{
0, if m ≤ m̄

βm, if m > m̄,

with a constant slope β and m̄ denotes the minimum cell
mass required for division.

To take into account the substrate dynamics, the cell
population balance equation is coupled with

ṡ = −
∫ m∗

m∗

r(m, s)n(m, t)dm+D (sin − s) , (1b)

where sin denotes the substrate inlet concentration. Com-
bining (1a) and (1b) the model is given by a partial
integro-differential equation coupled with a ordinary non-
linear differential equation accounting for the substrate
dynamics. Further, it is considered that growth is propor-
tional to mass and division is proportional to growth, i.e.,

r(m, s) = ρ(s)m, Γ(m, s) = γ(m)ρ(s)

and ρ(s) is given by the Monod growth rate

ρ(s) = ks
s

Ks + s
. (2)

Recalling mass conservation, i.e., that by division cell mass
is not lost nor produced, it holds that∫ m∗

m∗

mΓ(m, s)n(m, t)dm =∫ m∗

m∗

2m

(∫ m∗

m∗

Γ(µ, s)p(m,µ)n(m, t)dµ

)
dm.

Determining the first moment of the cell population bal-
ance equation (1a) leads to

b =

∫ m∗

m∗

mn(m, t)dm (3)

with b given by the total biomass and further one obtains

ḃ = ρ(s)

∫ m∗

m∗

mn(m, t)dm = ρ(s)b. (4)

Note that in terms of the total biomass dynamics the
model equations (1) can also be written as

ḃ = ρ(s)b−Db (5a)

ṡ = −ρ(s)b+D (sin − s) , (5b)

so that the solution of the biomass in the mass balance
model (5) corresponds to the solution of the first moment
of the cell distribution following the dynamics (1a).

The system measurement is given by the first moment of
the cell distribution density function, i.e.,

y =

∫ m∗

m∗

mn(m, t)dm = b , (6)

and the objective function for optimization is considered
to be total biomass production rate in the operation points
of chemostat cultivation, i.e.,

max
D

J(D) = max
D

∫ m∗

m∗

mn(m, t)dmD (7)

with the input given by the dilution rate D. Note that
in chemostat operation (D ̸= 0) the cell distribution
density function n(m, t) also depends on D although this
dependency is not explicitly highlighted here.

Furthermore, it is assumed that the real process is subject
to time–varying uncertainties in the growth rate due to
mutational adaptation of the cells to the environment.
This behavior is typically present in long–term chemostat
cultivations and documented for several species (see, e.g.,
(Ferenci, 2007)). A crucial aspect of these uncertainties is
given by the fact that the nature and impact are usually
unknown in advance. Here, it is considered that the time–
varying uncertainty ϵ appears in the maximum growth rate
ks in terms of

ρ̄(s, ϵ) = (ks + ϵ)
s

s+Ks
. (8)

Technically, the mutual adaptation can also lead to
changes in the half saturation constant Ks, or even to in-
creased or decreased inhibition effects, which are assumed
not to be present in the given process. Since the unknown
impact of the mutual adaptation gives an additional layer
of uncertainty, it is proposed to decouple the correspond-
ing estimation problem from the optimal control problem
which is discussed in the next section.

3. SEPARATION OF THE ESTIMATION PROBLEMS

Based on the previous considerations, three estimation
problems are addressed. One is given by estimating the
cell distribution density function, namely n̂(m, t), based
on online available biomass measurements taking the cell
population model (1) into account. The second estimation
problem consists of estimating uncertainties in the growth
rate, namely ϵ̂, also based on biomass measurements taking



into account the mass balance model (5). Finally, the last
estimation problem is given by estimating the gradient
of the considered cost functional (9), which is derived
in this section. Note that in general these estimation
problems are not decoupled because the uncertainties
in the growth rate directly couple into estimation the
cell distribution density and also have an impact on the
gradient estimation. Nevertheless, the estimation of the
uncertainties in the growth kinetics are not required for
the gradient estimation when a model free estimation
approach is chosen for the extremum seeking controller.
In this case, the gradient estimation can be decoupled
from the other estimation problems. This separation is in
particular advantageous when the nature and magnitude
of the uncertainties are unknown. In the following the
process models for the observers of the given estimation
problems are derived.

3.1 Observer based extremum seeking controller

Extremum seeking control techniques have proven to be
suitable for the optimal control of uncertain dynamics.
Although the underlying idea of the concept is rather old
(Leblanc, 1922), it has been modified and improved with
respect to various properties under certain assumptions
(see, e.g., Ariyur and Krstic (2003); Guay et al. (2004);
Guay and Dochain (2015)).

In this work an observer based extremum seeking control
strategy is proposed similar to the one presented in Gelbert
et al. (2012); Lutz et al. (2019). The technique relies
on estimating the gradient of an a priori unknown but
measured cost function, which is assumed, given a feasible
separation of the time scales, to behave like a static map
with respect to the system input. The schematic sketch of
the controller is shown in Fig. 1 where d(t) denotes a zero
mean dither signal.

Plant

Observer+1
s k

d(t)

Static optimization Gradient estimation

J(u)

u̇ (∇uJ)est

u

Fig. 1. Schematic sketch of the extremum seeking con-
troller with observer based gradient estimation.

Consider the measurement of an unknown static cost
function

y = J(u) (9)

driven by the input u. The time derivative of (9) then
reads

J̇(u) =
∂

∂u
J(u)u̇ . (10)

Introducing the state vector x =
[
J(u), ∂

∂uJ(u)
]T

, equa-
tion (10) can be written as

ẋ1 = x2u̇ . (11)

Clearly, the time derivative of x2, namely the gradient
with respect to u, is unknown so that its process model
is assumed to be driven by a Gaussian random process
w ∼ N (0, q). By this assumption the state space equations
read

ẋ =

[
0 u̇
0 0

]
x+

[
0
w

]
, (12)

which are linear, but time–variant due to u̇. Note that
according to Fig. 1 the time derivative of the input is given
by

u̇ = kx2 + d .

Therefore, the resulting state space equations read

ẋ1 = x2(kx2 + d) (13a)

ẋ2 = w (13b)

and represent a nonlinear, time–variant system.

An alternative process model is obtained when the dither
signal is added after the integrator instead of before in Fig.
1. By this modification one obtains

u =

∫ t

t0

k
∂

∂u
J(u)dτ + d+ u0 =

∫ t

t0

kx2(τ)dτ + d+ u0 .

The time derivative of the input signal reads

u̇ = kx2 + ḋ .

The process model of the unknown cost function is then
given by

ẋ1 = x2

(
kx2 + ḋ

)
(14a)

ẋ2 = w (14b)

and depends, in contrast to (13), on the time derivative
of the dither signal. Nevertheless, in this work the dither
signal is passed before the integrator. An advantage of this
variant becomes clear when investigating the observability
property of the given process model for gradient estimation
which is addressed in Section 4. It is worth to mention
that the proposed extremum seeking control scheme does
not stabilize a possible unstable optimum. Therefore, it
is necessary that the plant dynamics are stable, which
holds true for the operation points of bioreactors following
Monod kinetics in chemostat operation.

3.2 Growth rate disturbance process model

The process model for estimating uncertainties in growth
dynamics can be derived as follows. Let ϵ denote an
unknown function in the growth dynamics such that the
total biomass growth rate reads

ρ̄(s, ϵ) = (ks + ϵ)
s

Ks + s
.

Note that depending on ρ̄(s, ϵ) it is possible to estimate ϵ
and s jointly based on biomass measurements. To illustrate
this in Section 4 consider the state vector xb = [b, s, ϵ] and
the process model

ḃ = ρ̄(s, ϵ)b−Db

ṡ = −ρ̄(s, ϵ)b−D(s− sin)

ϵ̇ = wρ

y = b,

(15)

where it is assumed that the dynamics of the unknown
function ϵ are driven by a Gaussian random process wρ ∼
N (0, qρ).



3.3 Cell distribution process model

For the design of the cell distribution observer the model
equations (1) are discretized in the mass domain. The par-
tial derivative is approximated using a first–order upwind
finite difference scheme and the integral term representing
cell birth and the first moment of the cell distribution
density function is approximated by the trapezoidal rule.
The discretized model equations then read

ṅi = − 1

∆m
ρ̄(s, ϵ)(mini −mi−1ni−1)− Γ(mi, s, ϵ)ni

−Dni + 2∆m

z∑
j=i+1

Γ(mj , s, ϵ)p(mi,mj)nj (16a)

ṡ = −ρ̄(s, ϵ)∆m

z∑
i=1

mini −D(s− sin) =: fs(x) (16b)

nz+1 = 0, ni(0) = ni,0, s(0) = s0 , (16c)

where the discretization step size is given by ∆m, the cell
density of mass mi at time t is denoted by ni, and z is
the number of interior discretization points. Introducing
the state vector xn = [nT , s]T = [n1, ... , nz, s]

T equations
(16) can be re–cast into the form

ẋn = f(xn) =

[
A(s, ϵ)n
fs(xn)

]
, xn(0) = xn,0 ∈ Rz+1

≥0 , (17)

where A(s) is constructed from (16a) and has a triangular
matrix structure with additional elements on the first
lower off diagonal

A(s, ϵ) = ρ̄(s, ϵ)



∗ ∗ ∗ ∗ · · · ∗ ∗ ∗
∗ ∗ ∗ ∗ · · · ∗ ∗ ∗
0 ∗ ∗ ∗ · · · ∗ ∗ ∗
0 0 ∗ ∗ · · · ∗ ∗ ∗
...

...
...

...
...

...
...

...
0 0 0 0 · · · 0 ∗ ∗

 . (18)

Note that the boundaries of the cell distribution n0 and
nz+1 can be excluded from the state vector, because of the
containment conditions ρ̄(s, ϵ)m∗ = 0 and nz+1 = 0. The
analysis of the observability property of each subsystem
considering total biomass measurements is addressed in
the next section.

4. OBSERVABILITY ANALYSIS OF THE
ESTIMATION PROBLEMS

In the previous sections the considered optimal control
problem is addressed using three estimation problems.
One given by estimating the gradient with respect to the
input and measuring an unknown cost function, another
given by estimating possible uncertainties in the growth
dynamics and the third by estimating the cell density
distribution. Thus the fundamental question arises about
the observability property of each considered problem,
which gives insight about the observer dynamics, i.e.,
about the stabilization of the estimation error dynamics.

4.1 Observability of the gradient estimation

In the previous section two process models for the gradient
estimation are derived. Note that these are given by the
nonlinear time–varying dynamics (13) and (14) and that
both models only differ in the demodulation by means

of the dither signal. The linearization of the observability
map of (13) for the measurement equation (9) reads

∂

∂x
O(x) =

∂

∂x

[
x1

x2(kx2 + d)

]
=

[
1 0
0 2kx2 + d

]
which is of full rank and thus locally observable as long as
2kx2 + d ̸= 0 holds true.

Considering (14) and (9) one obtains

∂

∂x
O(x) =

[
1 0

0 2kx2 + ḋ

]
(19)

which is of full rank as long as 2kx2 + ḋ ̸= 0 holds true.

It is important to note that both process models are
not globally observable. Especially close to the optimality
condition, where x2 ≈ 0 holds true, the observability
property relies only on the dither signal. To avoid poor
conditioning, the dither signal should be chosen such that
2kx2+d or 2kx2+ ḋ are large for most times. Is the dither
signal given by a classical sine wave, one obtains

d = αd sin(ωdt), ḋ = αdωd cos(ωdt)

with the amplitude αd and angular frequency ωd. It can be
seen that in case of (14) ωd can serve as a design parameter
to address the conditioning, i.e., for ωd ≫ 1 conditioning
is enhanced, whereas for ωd ≪ 1 the matrix in (19) might
be poor conditioned. Nevertheless, arbitrary values for ωd

can generally not be assigned in the proposed extremum
seeking approach due to a required separation of the time
scales of the excitation and the system dynamics. Since
local observability is lost at specific points and times (due
to d being time–variant) an optimization based observer
approach like the Kalman filter and its extensions for
nonlinear system is proposed (see, e.g., Lewis et al. (2017))
for the estimation problem, instead of an observer design
approach relying on the inverse of the observability map.

4.2 Observability of the uncertainties in the growth rate

The linearization of the observability map of system (15)
reads

∂

∂xb
O(xb) =

 1 0 0

ρ̄(s, ϵ)−D
∂

∂s
ρ̄(s, ϵ)b

∂

∂ϵ
ρ̄(s, ϵ)b

O31 O32 O33


with O31, O32, and O33 given by

O31 = (ρ̄−D)
2
+

(
∂

∂s
ρ̄

)
[D(sin − s)− 2bρ̄]

O32 = b

[(
∂

∂s
ρ̄

)
(2ρ̄−3D) +

(
∂2

∂s2
ρ̄

)
ṡ− b

(
∂

∂s
ρ̄

)2
]

O33 = b

[
2

(
∂

∂ϵ
ρ̄

)
(ρ̄−D) +

(
∂

∂ϵ∂s
ρ̄

)
ṡ− b

(
∂

∂s
ρ̄

)(
∂

∂ϵ
ρ̄

)]
where the dependency of ρ̄(s, ϵ) is not indicated for the
sake of clarity. It can be seen that rank loss occurs when
O32 = O33 = 0 holds. Clearly, this is the case when
no biomass is in the reactor, i.e. b = 0. It is also worth
to point out that D is given by the proposed extremum
seeking control scheme, such that a continuous excitation
by means of the dither signal d is applied. Nevertheless,
since the performed analysis is only local an optimization
based observer scheme is considered.



Note that there is no interconnection between the consid-
ered estimation problems so far. Clearly, the actual value
of ϵ has also an impact on the actual value of ∇uJ(u) but
the knowledge of ϵ is not required in the control scheme
such that the gradient estimation is independent of the
reactor model.

4.3 Observability of the cell population balance model

Finally, the observability property of system (16) and
the measurement equation (6) is discussed. Note that
the structural observability of this system without any
uncertainties, i.e., ϵ = 0, ∀t > t0 is addressed in Jerono
et al. (2021a) revealing local structural observability in
batch operation (D = 0) as long as s ̸= 0 holds. For
the special case of equal cell partitioning, z = 2 and
s ≫ Ks the existence of indistinguishable trajectories
can be excluded, which is shown in Jerono et al. (2023).
Nevertheless, having uncertainties in the growth rate,
the estimation of the cell population distribution cannot
be decoupled from the estimation of the uncertainties ϵ,
leading to a cascaded structure of these two estimation
problems. Technically, the model (16) considering the
growth dynamics (8) lead to a nonlinear time–varying
system due to the time–varying parameter ϵ, which is
estimated by the other observer. Because the analysis
of such systems in high dimensions is cumbersome, the
observability property discussed here is also in a structural
manner. Note that the specific structure of the model can
be written in terms of (17) and (18). Noting that the
measurement in terms of trapezoidal rule reads

y =

∫ m∗

m∗

mn(m, t)dm ≈ ∆

z∑
i=1

mini , (20)

the same network graph as in Jerono et al. (2021a)
is obtained with the only difference given by the fact
that, here, the growth dynamics are changing with time.
Nevertheless, since the structural analysis is restricted
to state interconnections, which are non–zero, the same
structural result is obtained as long as ρ̄(s, ϵ) ̸= 0. This also
means that, as in the previous subsections, the (structural)
observability cannot be ensured for the general case, so
that an optimization based observer, like the extended
Kalman filter, is also designed for this estimation problem.

5. SIMULATION RESULTS

Based on the analysis of the previous sections the proposed
control strategy and estimations by means of extended
Kalman filters is tested in simulations. The Kalman filters
are designed with a continuous correction scheme, given
that the growth dynamics of bioprocesses are usually much
slower than the sampling time of online biomass sensors.
The corresponding simulation and tuning parameters are
listed in Table 1, where rm is the covariance of measure-
ment noise and qb and qg represent the tuning parameters
of the Kalman filters for the uncertainty and gradient
estimation, respectively. The uncertainty ϵ is chosen to
be given by a sine wave with the amplitude aϵ and radial
frequency ωϵ, which is added to a ramp function of slope
βϵ in the time interval t ∈ [200 h, 700 h] (see also Fig. 2
bottom–left). The tuning parameters of the Kalman filter
for the cell distribution estimation are given by

Table 1. Parameter list

Parameter Value Unit Parameter Value Unit

ks 1 h−1 z 50 −
Ks 0.2 g/l q 5 −
ωϵ 0.0105 rad/h βϵ 0.001 1/h
sin 1 g/l αd 0.01 1/h
m∗ 0 g ωd 0.2 rad/h
m∗ 1.5 · 10−11 g qb,b 0.01 g2/l2/h
β 1.21 · 10−3 − qb,s 0.01 g2/l2/h
rm 10−6 g2/l2 qb,ϵ 0.6 1/h3

qg,1 10−4 g2/l2/h3 qg,2 0.1 g2/l2/h4

qn,i,i = kq
1√
2πσ2

e

(
− (mi−mq)2

2σ2

)
, i ∈ {1, ... , z} ,

which represents a scaled and shifted Gaussian distribu-
tion withmq = 4.326·10−11, σ = 1.8·10−11 and kq = 3.161·
1027 and is based on the consideration that close to the
boundaries of m ∈ [m∗, m

∗] model (16) is assumed to be
more accurate than in between. The results of estimating
the uncertainty in the growth rate is presented in Fig.
2. The estimations are given by dashed red lines and
the true values are marked blue. On the left side the
estimations over the whole cultivation period of 1000 h are
shown, whereas the right side shows the initial convergence
behavior. It is important to note that although no initial
error in the uncertainty is assumed, the estimation is faulty
within the first 20 hours, which is due to initial errors in the
substrate and total biomass concentration. From an exper-
imental perspective, the initial errors can be avoided by a
preceded batch experiment. Nevertheless, to illustrate the
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Fig. 2. Simulation results of the uncertainty estimation.
True trajectories (blue) and estimated trajectories
(dased red) for t ∈ [0 h, 1000 h] (left) and initial
convergence (right).
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Fig. 3. Simulation results of cell distribution estimation
and extremum seeking controller. True values (blue),
estimated values (red) and optimal operation points
before and after change in growth (dashed black).

convergence behavior initial errors are considered in the
simulations. Note that the substrate concentration and the
uncertainty are well estimated over the whole experiment.
Fig. 3 shows the estimation of the cell distribution density
function and the performance of the proposed extremum
seeking control scheme for maximizing the cell production
rate. To evaluate the convergence behavior of the cell
distribution estimation a normalized approximation of the
L1–norm by means of

ζn(t) =
1∫m∗

m∗
n(m, t)dm

∫ m∗

m∗

|n(m, t)− n̂(m, t)|dm

in the time interval of t ∈ [0 h, 15 h] is shown. It can be
seen that the estimation error ζn(t) converges within the
first 5 hours.

For a validation of the optimality with respect to the
cell production rate the corresponding (constant) opti-
mal inputs D and related objective function values J are
highlighted dashed black before and after the considered
changes in the growth rate by means of ϵ with D∗ and
D∗, as well as J∗ and J∗, respectively. Note that these
values can be obtained by bifurcation analysis. It can be
seen that proposed control scheme is capable of maintain-
ing optimality in the simulations despite the considered
uncertainties.

6. CONCLUSION

In this work the optimal control problem of maximizing the
cell production rate in chemostat reactors under possibly
time–varying uncertainties in the growth rate is addressed.
The optimal control problem is addressed using three
estimation problems. For each subsystem the observability
property is investigated revealing that local observability
cannot be ensured for all time instances due to the time–
varying behavior of the uncertainties and the dither signal.
Based on these results three extended Kalman filters are
designed for the estimation of the gradient with respect
to the input, uncertainties in the growth rate and the
cell mass distribution density function based on biomass

measurements. The estimation and control performance
is tested in simulations showing that optimality can be
preserved in the presence of time–varying uncertainties.
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