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Abstract: Extended Dynamic Mode Decomposition (EDMD) has received increasing attention
in the last decade, but neural networks remain the most popular approach to the data-driven
representation of biochemical processes in the published literature. This study explores the
potential of pqEDMD—a variant of EDMD using a reduced set of orthogonal polynomials—to
approximate the dynamics of a complex system, i.e., a raceway pond for the biological treatment
of wastewater and the production of algal biomass. We carefully discuss the main ingredients
of the method, and illustrate the performance of the method with numerical results, showing
promising prospects.
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1. INTRODUCTION

In recent years, the modeling of raceway ponds has gained
increasing interest due to their pivotal role in producing
microalgae, which have a wide array of industrial and
environmental applications (Fernández et al., 2017). Race-
way ponds are not only essential for wastewater treat-
ment (Rayen et al., 2019) but also drive the production
of diverse bioproducts such as animal feed and biofuels,
making them a significant renewable energy source (Kiran
et al., 2014; Moreno-Garcia et al., 2017). In addition, mi-
croalgae from these systems contribute to carbon capture,
bioremediation, and even food additives, making them
a cornerstone of sustainable industrial processes (Sayre,
2010). Given the growing demand for these resources,
optimizing raceway pond performance through accurate
predictive models is crucial for improving efficiency, max-
imizing biomass yield, and minimizing costs and environ-
mental impact (Otálora et al., 2024).
To achieve such optimization, it is necessary to under-
stand and predict the biological and physical processes
that yield microalgae proliferation in raceway ponds. To
reach this level of understanding, two broad categories of
mathematical models are usually considered: mechanistic
and data-driven. Mechanistic models rely on fundamental
principles of physics and biology, providing a detailed
representation of the system’s components and their in-
teractions. By explicitly modeling processes like biomass
growth, dissolved oxygen dynamics, nutrient uptake, light
penetration, and carbon dioxide exchange, mechanistic ap-
proaches offer deep insights into how variables such as light
intensity, temperature, and mixing affect microalgae pro-
ductivity (Banerjee and Ramaswamy, 2017). For example,

mechanistic models can rely on a biological model that de-
scribes the growth of microalgae in the reactor, a dynamic
mass balance for oxygen and total inorganic carbon, and a
thermal model of the heat exchange mechanisms between
the reactor and the environment (Fernández et al., 2017;
Rodríguez-Miranda et al., 2021; Otálora et al., 2024). How-
ever, these models require precise parameter estimation,
which can be challenging in dynamic environments.
In contrast, data-driven models like those produced by the
Extended Dynamic Mode Decomposition (EDMD) and
neural networks rely on experimental data to capture the
system behavior without necessarily detailing the under-
lying physical laws. EDMD extends traditional Dynamic
Mode Decomposition by incorporating nonlinear observ-
ables, allowing it to model more complex dynamics by
mapping the system into a higher-dimensional function
space (Williams et al., 2015). Neural networks, particu-
larly deep learning models, excel at modeling nonlinear
relationships between inputs and outputs (Park and Sand-
berg, 1991; Hanin, 2019). Both EDMD and neural network
methods can operate on the same input-output relation-
ships, using variables such as temperature, solar radiation,
dilution rates, harvesting schedules, CO2 injection and
aeration rates to make an approximation of the same set of
measurements, such as volume, biomass, dissolved oxygen,
and pH. They learn from historical data to predict system
performance under varying scenarios, offering flexibility
and adaptability. Even though it is possible to achieve
similar objectives with the two frameworks, the EDMD al-
gorithm, along with all its variants, like the pqEDMD (p-q-
quasi norm EDMD) (Garcia-Tenorio and Vande Wouwer,
2022), can provide better performance when there are lim-
ited computational resources and limited quantity of data.



Additionally, the family of EDMD algorithms provides an
evolution equation that operates on the set of observables
that has a traditional linear model structure. Therefore, it
is possible to translate linear analysis and control methods
to the new framework (Budišić et al., 2012; Korda and
Mezić, 2018). This article explores the feasibility of using
EDMD as an alternative method to neural networks for
modeling the dynamics of a raceway pond system. To this
end, this study uses a simulation tool (Fernández et al.,
2017; Nordio et al., 2024) that provides the necessary
outputs according to real temperature and solar radiation
data. By demonstrating how EDMD can effectively model
key components of the process, such as biomass growth
and dissolved oxygen dynamics, with fewer data and fewer
parameters, we hope to foster the use of EDMD in this
and other application areas as well as to propose useful
raceway pond models that can be exploited for monitoring
and control.

2. RACEWAY POND

The in silico representation of the raceway pond comes
from a first principle analysis and parameter fitting of
the real experimental setup from IFAPA research center,
under the collaboration agreement with the University
of Almería, Spain (Fernández et al., 2017; Nordio et al.,
2024). The reactor has two 40-meter channels connected
by two 180◦ bends at the ends. An electric motor drives
a paddle wheel that circulates the liquid around the pond
and into a sump. The reactor instrumentation includes
three pH-T probes and three dissolved oxygen sensors
positioned at the end of each channel, at the paddle-wheel,
and at the sump. Additionally, the system automatically
injects air or CO2 gas through a diffuser at the sump
bottom to control the dissolved oxygen and pH levels in
the culture, respectively.
The Simulink® model (Fernández et al., 2017; Rodríguez-
Miranda et al., 2021; Nordio et al., 2024) relies on mass
balances, transport phenomena, thermodynamic relation-
ships, and biological kinetics occurring within the reac-
tor. Therefore, it provides a complete dynamic simulation
model. Using the model, we can predict the evolution of
the system’s main variables—including biomass concentra-
tion, pH, dissolved oxygen, and total inorganic carbon in
the liquid phase in addition to oxygen and carbon dioxide
exchange in the gas phase. The identification and valida-
tion of the model parameters come from an experimental
dataset of the 80 m2 pilot-scale plant, providing a tool to
determine the influence of design parameters on system
performance or design controllers of critical variables like
the pH (Banerjee and Ramaswamy, 2017; Nordio et al.,
2024). For this study, the simulation tool will provide
synthetic experimental data to feed into the pqEDMD
algorithm and determine the feasibility of this algorithm
for data-driven modeling of the raceway pond.
Figure 1 shows the block diagram of the simulation tool
in Simulink®. The rightmost block contains the raceway
dynamics that is unknown to the pqEDMD algorithm.
The inputs of the system are solar radiation, water tem-
perature, dilution rate (inflow), harvesting flow rate (out-
flow), and air and CO2 flow rates. The outputs are the
volume of water, biomass concentration, dissolved oxygen

concentration, and pH. From the set of outputs, only the
last three are relevant for modeling because the volume
depends on the dilution and harvesting rates in a trivial
way. Especially, the regular operation of the reactor uses
the same dilution and harvest during the day, making the
volume constant in between cycles. The blocks to the left
are the on-off feedback controllers for the air and CO2
flow rates. These variables are in a closed loop, which is
required to maintain favorable conditions in the pond.
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Fig. 1. Simulink® model of the raceway pond.

Air injection serves two purposes: mixing and oxygen
removal. Air bubbles help to circulate the algae, ensur-
ing that sufficient amounts of light and nutrients reach
the whole population. During photosynthesis, the algae
population produces oxygen, and without mixing, oxygen
accumulates in the pond. High oxygen levels are detrimen-
tal, leading to oxidative stress for the algae and creating
harmful conditions for biomass growth.
Injecting CO2 has two competing purposes. The algae
require carbon dioxide to perform photosynthesis, required
for biomass growth, and CO2 injection satisfies this carbon
requirement. The problem of having an excess of CO2
injection is the drop in pH levels that triggers growth
inhibition, and under very low conditions, it can harm
cells. Therefore, it is essential to maintain an optimal CO2
injection to balance pH. This optimal flow corresponds
to the matching of injection and consumption. For the
experimental 80 m2 raceway pond, the matching occurs at
a pH level around 8 (Banerjee et al., 2024). Even though
that is the optimal operation of the raceway, the objective
of this work is to have reliable data-driven models for the
subsequent analysis and control of the system. Therefore,
we will use feedback methods that guarantee an acceptable
level of dissolved oxygen and pH while driving the variables
around a sufficiently large portion of the state space for an
accurate identification of the nonlinear dynamics.

2.1 Simulation Setup

It is important, when identifying a system, to ensure
that there is a dataset of sufficient size and information.
For the data-driven identification of the raceway pond,
the available data is a set of six nonconsecutive days of
solar radiation and water temperature. We provide the
pqEDMD with four days of data for training and two days
for testing. Figure 2 shows the first day of data, where
the water temperature and solar radiation come from
measured data from the 24th until the 31st of March 2023



at the raceway plant in Almería, Spain, and the remaining
inputs come from the simulation results. The definition
of the signals in the block diagram for the simulation in
Figure 1 is: rad [W/m2] for the solar radiation, Tmp [℃]
for the water temperature, Qd [m3/60s] for the dilution
rate, and Qh [m3/60s] for the dilution and harvesting
rates. These last are set to 0.001 [m3/60s] or 60 [L/h] and
are active for one hour during the day: from 09:00 until
10:00 for the dilution, and from 11:00 until 12:00 for the
harvesting. Consequently, these profiles effectively keep
the volume constant during a 24-hour cycle. Even though
this behavior is simulated, the experimental setup works
the same way. Finally, the two remaining inputs are the air
and CO2 injection in [m3/60s] that come from two on-off
feedback control loops. In this set of inputs, solar radiation
and temperature are environmental variables that are out
of the system’s control, and dilution and harvest rates
are set as part of the standard system operation. Even if
there is no manipulation of the variables other than the
real data or the dilution/harvesting schedule, the solar
radiation and the water temperature have a sufficiently
large variation range to produce informative data for
identification. For the remaining two input variables (air
and CO2), and arguably, the main drivers of the system,
there is some room to establish experimental conditions
that can give a rich enough spectrum of the system
dynamics for identification while keeping the dissolved
oxygen and pH levels at acceptable values. The objective
of the model is to replicate the behavior of the biomass,
DO, and pH during a 24-hour cycle for subsequent control
and optimization of the process.
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Fig. 2. First set of experimental data for system identifi-
cation, March 26, 2023.

The implementation of the on-off controllers is the same for
the two variables. For the air injection, when the dissolved
oxygen is above the setpoint, the subsequent flow into the
pond is 1/6 [m3/60s]. For the CO2 injection, when the
pH is above the setpoint, the subsequent gas flow into
the reactor is 1/3000 [m3/60s]. These values come from
empirical testing. Figure 2 shows the behavior of these
controllers: sub-figures (b) and (c) show how the dissolved
oxygen and the pH vary around their respective setpoints,
O⋆ = 143.8 [g/m3], and pH⋆ = 7.38 respectively, according
to their respective inputs in sub-figures (f) and (g). In
order to improve the information content of the dataset,
the strategy is to set a different setpoint for all the various
days of the experiment. The setpoints come from drawing a
random number within a range from a uniform probability
distribution, i.e., O⋆ ∼ U(130, 180), and pH⋆ ∼ U(7, 9).
The final detail regarding the simulation setup is the sam-
pling time of the experiments. The original formulation of
the simulator samples the outputs and updates the inputs
every second. For the pqEDMD identification, having such
fast sampling is detrimental to the solution, not only in
terms of computational burden but also in terms of the
numerical conditioning of the least squares solution. After
empirically testing different sampling frequencies, a 60-
second sampling performs well for the algorithm.

3. MODELING

The extended dynamic mode decomposition from Williams
et al. (2015) and its evolution to include forcing signals
from Korda and Mezić (2018) offer a powerful alternative
that can address some of the limitations of machine learn-
ing methods like neural networks. The algorithm provides
a linear evolution rule for the set of observables with the
same structure as a traditional discrete-time linear state
space representation and is, therefore, interpretable. It is
possible to calculate and analyze the eigenvalues of the
transition matrix. Also, under certain circumstances, it is
possible to get an approximation of the Koopman operator
and analyze the eigenfunctions of the operator (Budišić
et al., 2012). Another advantage of the family of EDMD
algorithms is the amount of data to get accurate approxi-
mations, which is, in general, orders of magnitude less than
machine learning methods such as neural networks Otálora
et al. (2023). The last point of contention is the ability
of the algorithm to extrapolate outside the training data
distribution.

3.1 Problem Setup

Consider a discrete-time system with state variables
x(k) ∈ Rn, and forcing signal, or input vector u(k) ∈ Rm,
at a specific instance of time k,

x(k + 1) = T (x(k), u(k)) (1)
where T : Rn×Rm → Rn is the differentiable vector-valued
evolution map. The goal of pqEDMD is to approximate
the nonlinear mapping in a higher-dimensional function
space or feature space whose evolution is linear. Thus, the
development gets linearity while sacrificing dimensionality.
Defining the function space as a set of observable func-
tions, i.e., a vector of functions of the state,

Ψ(x) = [ψ1(x) ψ2(x) · · · ψd(x)]
T
, (2)



where each element comes from a family of orthogonal
polynomials, and a selection rule based on p-q-quasi norms
determines the inclusion or exclusion of a particular poly-
nomial in the basis (more on that later), the linear evo-
lution mapping on the set of observables takes the form

Ψ(x(k + 1)) = AΨ(x(k)) +Bu(k) (3a)
x(k) = CΨ(x(k)), (3b)

where A ∈ Rd×d is the observables transition matrix, a
linear operator acting on the function space Ψ(x), B ∈
Rd×m is the input matrix, and C ∈ Rn×d is the output
matrix that brings an arbitrary value of the function
space back to the state space. Equation (3) is a nonlinear
evolution mapping on the state, but linear on the set of
functions Ψ(x). Hence, to evolve the state, it is sufficient to
evaluate the state at time k with the observables, perform
the evolution with A, B and u(k), and finally, bring the
value back to the state space with C.

3.2 Data Collection

To approximate the A, B and C matrices in (3), it is nec-
essary to collect sequences of snapshots {(x+i , x

−
i , ui)}

Nj

i=0
from experiments on a real system or, like in this case, data
coming from a simulator, from the successive application
of (1) from an initial condition x(0) = x0 according to
a known sequence of inputs {u(k)}Nj

k=0, where Nj is the
number of points per experiment and N =

∑
j Nj is the

total number of points, and with x+i = T (x−i , ui), so that
the following data matrices can be formed
X+ =

[
x+1 . . . x+N

]
, X− =

[
x−1 . . . x−N

]
, U = [u1 . . . uN ] . (4)

Notice that X+ is just one step ahead of X−. If there
are several sequences from different initial conditions, it
is possible to put them alongside in the data matrices (4)
and perform the same calculation. For nonlinear systems
with multiple asymptotically stable equilibrium points, it
is necessary to have multiple samples that converge to
different attractors.

3.3 Observables

There are many alternatives to select the observables, e.g.,
radial basis functions, the set of monomials, trigonometric
functions, or an arbitrary set of functions (Williams et al.,
2015; Garcia-Tenorio et al., 2021; Brunton et al., 2016).
Arguably, the best performance comes from using a family
of orthogonal polynomials under a p-q-quasi norm reduc-
tion method because it improves the numerical stability of
the solution (Garcia-Tenorio and Vande Wouwer, 2022). A
vast panel of orthogonal polynomials exists under different
inner products. An important property is that the product
of two polynomials from the same family is still orthogonal.
Hence, each element of the observables set is the product
of n univariate polynomials on each of the original states
of the system,

ψ(x) =

n∏
j=1

παj (xj), (5)

where παj (xj) is a polynomial of degree αj . Thus, the
only necessary information to define an element of the
set is the tuple of orders or degrees of the polynomial

for each variable, α = (αj)
n
j=1. If there is no restriction

on the maximum order of the observables, a set that
contains all possible combinations of αj up to order
p produces a large basis, with some high-order terms,
possibly affecting the numerical stability and the overall
error of the approximation. To prevent this situation,
pqEDMD applies a p-q-quasi norm reduction to the set
and only retains the elements whose q-quasi norm is
less than p. In other words, the α vector that defines a
multivariate polynomial Ψ(x) satisfies

α =
{
α ∈ Nn

+ : ∥α∥q ≤ p
}
, (6)

where q ∈ R+, and ∥α∥q = (
∑n

j=1 α
q
j)

1/q is the q-quasi
norm of the set of orders, and p ∈ N is a positive integer
that determines the maximum order of the multivariate
polynomial function ψ(x).
With the set of observables, the next step is to evaluate the
snapshot data and calculate a solution to the two linear
problems

Ψ(X+) = [A B]

[
Ψ(X−)
U

]
︸ ︷︷ ︸

X

+rA,B (7a)

X− = CΨ(X−) + rC , (7b)
where r• is the residual term to minimize in either equation
and X ∈ R(d+m)×N is the regression matrix of the first
linear problem.

3.4 Solution

For the two linear systems of equations in (7), it is feasible
to use a traditional least squares solution: based on the
pseudo inverse of the right-hand-side of (7a) like in the
original formulation by Williams et al. (2015), a regu-
larized least squares solution like the SINDY algorithm
by Brunton et al. (2016), or even a maximum likeli-
hood approach for uncertain systems (Garcia-Tenorio and
Wouwer, 2022), or any other optimization method that
minimizes the residual term rA,B .
Arguably, the best method to solve the first linear system
of equations, in terms of the possible rank deficiency of the
regression matrix, is with a singular value decomposition
of it X T = USV T , the calculation of the effective rank
and the orthonormal transformation of the matrices. The
effective rank or ϵ-rank is,

rϵ = min{r : σr ≤ ϵNσ1} (8)
where ϵ << 1, an arbitrarily small number, e.g., eps
in Matlab®, and {σi}d+m

i=1 are the singular values of X T .
The effective rank eliminates the zero singular values and
the arbitrarily small singular values from the range of X .
With the effective rank, the solution is an orthonormal
transformation of the matrices in the linear system of
equations (7a). Notice that the first rϵ right singular
vectors, i.e., Vrϵ = V : ,1: rϵ are already an orthonormal
transformation of X T , because S−1

rϵ UrϵX T = V T
rϵ . Then by

applying the same orthonormal transformation to Ψ(Y )T ,
i.e., S−1

rϵ U
T
rϵΨ(Y )T = Drϵ , the solution of the linear system

of equations is,
[A B]

T
= VrϵDrϵ , (9)

where all the rϵ subscripts denote the appropriate slicing
of the matrices.



The second linear system of equations to solve is (7b),
but rather than using an additional least-squares solution,
which will inherently introduce numerical error, we con-
sider the first-order elements of the polynomial basis of ob-
servables. These elements have a unique functional inverse,
which translates into matrix form to produce the matrix
C that returns the state from the function space (Garcia-
Tenorio and Vande Wouwer, 2022).

4. NUMERICAL RESULTS

4.1 Simulation Parameters

For quick reference, Table 1 summarizes the simulation
parameters to produce the training and testing sets.

Table 1. Simulation parameters to generate the
training and testing sets.

Symbol Value Units
∆t 60 [s]
T Sensor data [℃]
rad Sensor data [W/m2]
Qh 0.001 @09h–10h [m3/∆t · s]
Qd 0.001 @11h–12h [m3/∆t · s]
pHr ∼ U(7, 9) [g/m3]
DOr ∼ U(130, 180) [g/m3]
Air fb-gain 1/6 [-]
CO2 fb-gain 1/(50 · 60) [-]

In the six days of experiments, the second day provides
only half a day of data (about 700 data points instead
of 1400). The training set considers days one until four,
and the testing set considers days five and six. In total,
there are 5011 points for training, and 2880 for testing.
In comparison with machine learning algorithms, this is a
minimal set of points for the approximation.
An important remark regarding the data gathering is the
on-off feedback controller loops. Independently of the data-
driven strategy, a direct approach to system identification
under feedback control is a strategy that disregards the
presence of the controller and makes an approximation
using input/output data (Ljung, 1998). Even though there
is no consideration of the closed-loop data dependency,
the on-off architecture of the controller, especially a “bad”
implementation of it, works in favor of the algorithm.
The oscillation of the dissolved oxygen and pH around
their respective working points does not limit the range of
system responses, there is limited noise amplification, and
there are no controller induced dynamics.

4.2 Training and Testing

From the description of the pqEDMD algorithm in Sec-
tion 3, there are three parameters to choose for the ap-
proximation: the family of orthogonal polynomials and
the p-q pair of parameters. The relationship between the
polynomial type and a particular system is still an open
question, especially since there are some systems where
all the polynomials produce the same result. There is
some work in the related field of sparse identification and
algorithms like SINDY (Brunton et al., 2016), which can
provide some insight to make the best choice. For this
work, the approximation of the system is not indepen-
dent of the polynomial family, and the choice comes from

testing the different families and comparing the resulting
empirical error for the same p-q parameter sweep. The
definition of the error is

ϵ =
1

N

N∑
i=1

|ŷi − yi|
|yi|

, (10)

where ŷ is the approximation of the output and y is the
output from the dataset.
The results for a parameter sweep where p = [2, 3, 4]
and q = [0.5, 1.0, 1.5] gives two alternatives to select the
model. Table 2 highlights the best-performing p-q pair for
the best-performing polynomial bases, and for comparison,
it also shows the counterpart of the best p-q pair in the
other polynomial, where the best-performing families are
Laguerre and Legendre.

Table 2. pqEDMD parameters, number of ob-
servables and error for the best polynomials.

Polynomial
Laguerre Legendre

p 2 3 2 3
q 0.5 0.5 5.0 0.5
d 9 13 9 13
ϵ 0.0194 0.0189 0.0194 NaN

Table 2 provides some interesting results. First, for two
cases, the best-performing p-q pair is the most restrictive
in terms of the q-quasi norm. Lower values of q give
stronger truncations and eliminate more elements of the
set of observables. p = 3, q = 0.5 for the Legendre
polynomials produce an A matrix that is not Hurwitz, and
the trajectories of the testing set diverge, showing the im-
portance of testing several p-q pairs. For this example, the
choice of having the first four days of data for the training
set and the last two for testing is arbitrary, and a different
combination could result in different approximations for
the same set of parameters.
Notice that the empirical error for the same p-q parameter-
ization, i.e., p = 2 and q = 0.5 has precisely the same error,
ϵ = 0.0194. This result is related to the open question
regarding the dependence of the solution on the family
of polynomials and the hypothesis that some families are
better than others on a particular application. Notice
also that the best-performing Laguerre polynomial is only
slightly better than its lower-dimensional counterparts.
Comparing these two solutions, there is a difference of 4
elements in the set of observables. Even though it is not
much, the difference in the cardinality of two competing
solutions may be the most important factor when selecting
one or the other. For example, a smaller A matrix may
have better chances of producing feasible solutions if the
model is the basis of a model predictive control algorithm.
Figure 3 shows the approximation of the best solution on
the two experiments of the testing set. The simulation
starts at the same initial conditions as the experimental
data, and the evolution comes from the iterative applica-
tion of 3 according to the sequence of inputs of the ex-
periments. This is, therefore, an open-loop approximation
of the closed-loop dynamics of the raceway pond. These
results show that the model is accurate enough to predict
the system behavior, and it is a good candidate for testing
on actual data from the reactor.
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Fig. 3. pqEDMD approximation of the testing set of
experimental data, march 30-31 2023.

5. CONCLUSIONS

This paper deals with a data-driven approximation of an
in silico model of a raceway pond bioreactor using the
pqEDMD algorithm. We discuss the procedure to derive
accurate approximations and some aspects of the algo-
rithm, like the p-q parameterization and the choice of poly-
nomials for the set of observables. This study’s source code
and example data can be found in the examples/Raceway
directory of the garten-cam GitHub repository.
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