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Abstract:

Soft sensors, or inferential sensors, are crucial in quality and process control systems because
they allow for e!cient, online estimation of essential quantities that are otherwise di!cult
or expensive to measure directly. In many applications, it is common to use cost-e”ective
measurement equipment, o”ering faster data collection than high-fidelity measurements, albeit
at the price of reduced accuracy. These low-fidelity data can provide useful information to
enhance the estimation of output quantities of interest, thereby facilitating the design of
inferential control systems. In this work, we introduce an innovative approach to soft sensing
by employing hierarchical, multi-fidelity surrogate models as soft sensors, integrated with
Bayesian optimization for input variable selection. Our method creates a parsimonious model by
identifying and organizing relevant inputs into a fidelity hierarchy, which enables a multi-fidelity
neural network to sequentially refine estimations by extracting crucial information progressively.
First, we showcase the e”ectiveness of the proposed framework on a numerical benchmark, then
we use our method to create a surrogate model as soft sensor for accurately determining the
atmospheric particulate matter concentration (PM2.5) using real data collected from low-cost
sensors.
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1. INTRODUCTION

1.1 Soft Sensors and Challenges in Soft Sensor Design

Soft sensors, also known as inferential sensors or virtual
sensors, are software-based methods that combine avail-
able measurements with dynamic models in order to esti-
mate observable system variables that are not measured
directly. By this definition, state observers are a type of
soft sensor. Soft sensors are often used in process control
to estimate process variables that cannot be automatically
measured or can only be measured at high cost, with
low sampling frequency or with high delays (Souza et al.,
2016). The output of a soft sensor can be used as feedback
signal to a controller, which is the basis of inferential
control. An industrial example of inferential control us-
ing Model-Predictive Control and a soft sensor based on
Partial Least Squares is given by Kim et al. (2013).

The soft sensor setup we propose is shown in Fig. 1. The
soft sensor takes as input the output measurements yM of
a system actuated by u and a”ected by unknown distur-
bances and noise. It should be noted that measurements
of the inputs u can be included in yM. The system outputs
are noisy, have limited measurement resolution, and might
be a”ected by sensor dynamics. For these reasons, any
subset of yM can be seen as a set of Low-Fidelity (LF)

Fig. 1. Proposed soft sensor design using a hierarchical
multi-fidelity surrogate model. Bayesian optimization
is used for input variable selection during training.

signals, suggesting that these signals are less reliable than
the High-Fidelity (HF) variables yHF, which are the output
quantities that we aim to estimate 1 . The development of
the soft sensor typically requires a dataset consisting of
(yLF,yHF) pairs. If the soft sensor is a dynamic system, the
training dataset should be one or multiple time-series with
appropriate time resolution.

1 This terminology is consistent with the one used in the Multi-
Fidelity modeling field.



The main challenges in soft sensor development are the
treatment of missing data, outlier detection, the selection
of input variables, as well as model training, validation and
maintenance. Souza et al. (2016) present an overview of the
most common methods to address these issues. A review
on the use of data-driven soft sensing and control methods
in process industry, focused on practical implementation,
is provided by Lawrence et al. (2024).

1.2 Hierarchical Multi-Fidelity Regression as Soft Sensor

In this contribution, we explore the possibilities of using
a hierarchical Multi-Fidelity (MF) model as a soft sensor,
using the setup shown in Fig. 1.

MF modeling was developed to deal with the limitations of
computational resources when computing HF simulation
outputs, especially in applications that require results in
real-time and/or at a high sampling rate. In order to
address this issue, MF models incorporate LF data that are
readily available, easily accessible or cheaply computable,
to improve and speed up HF estimations. This creates an
equivalence between MF modeling and soft sensor design,
in which LF system outputs are used to estimate HF
variables of interest.

A wide range of MF methods have been developed using
Gaussian Processes (GP) (Kennedy and O’Hagan, 2000;
Alvarez et al., 2012) or neural networks (NNs) (Guo et al.,
2022; Meng and Karniadakis, 2020; Motamed, 2020). In
particular, MF NNs have demonstrated significant capabil-
ities in handling nonlinear correlation among datasets and
in extracting relevant patterns. Especially when dealing
with time-series data, NNs based on recurrent or atten-
tion mechanism – such as, e.g., long short-term memory
networks (LSTM) and transformers, respectively – have
enabled the detection of time dependencies in an auto-
matic, data-driven fashion, and improved performance of
MF methods in forecasting (Conti et al., 2023, 2024).

Among MF techniques, hierarchical approaches show en-
hanced flexibility in real-life scenarios, when dynamic in-
tegration of newly acquired data is essential, and allow to
maintain operational robustness in the case of missing or
corrupted inputs, which is advantageous in a soft sensor
setting. These models adeptly navigate the balance be-
tween accuracy and e!ciency, enabling fast estimates by
utilizing intermediate results without fully traversing the
hierarchy. Furthermore, by breaking down the construc-
tion into multiple levels, hierarchical models could poten-
tially enhance feature extraction and pattern recognition,
as opposed to processing the data in its entirety at once.

Nevertheless, the applicability of MF techniques faces chal-
lenges in scenarios that demand the processing of extensive
volumes of LF signals, especially when the input hierar-
chy is undefined. Such requirements significantly increase
model complexity and computational costs. Paired with
the limited availability of HF data, this scenario may
inadvertently lead to overfitting and diminished model
performance.

As shown in Fig. 1, we propose the use of a hierarchical MF
model as soft sensor with the integration of Bayesian Opti-
mization (BO) during training to determine the hierarchy
of the components of yM, and discard components which do

not improve the model quality, resulting in a subset yLF,
that is used for the MF method. The use of BO reduces
the complexity and computational expense of the resulting
MF model and avoids overfitting, similar to the approach
followed by Lips et al. (2024) for system identification
using BO. The variable input selection can be done fully
automatically by the BO, or guided by expert knowledge,
e.g., in pre-selecting components of yLF or pre-assigning
components to a certain hierarchy level. Unlike methods
based on Principal Component Analysis or Partial Least
Squares, the latent space of the proposed method does not
rely on linear combinations of components of yLF to achieve
a dimensionality reduction. This provides transparency on
which components of yLF are relevant for the soft sensor.
It is even possible to use the model when data from the
highest hierarchical levels is not available, for example in
case a component of yLF is corrupted. In this case, the
soft sensor can give an intermediate result, which is not
a”ected by the corrupted component, as output.

To the best of our knowledge, both (a) the application
of hierarchical MF models in a soft sensor context, and
(b) the combination of hierarchical MF models with BO
for hierarchy determination and input selection, have not
been carried out before. The methodology is explained in
Sec. 2. The method is successfully applied to two examples
in Sec. 3. The first example is a benchmark problem used
in MF modeling. It illustrates that our method successfully
determines the correct hierarchy of the LF data, discards
noisy signals and can model nonlinear, discontinuous func-
tions. In the second example, a dynamic model is used
to create a soft sensor for accurately determining the
particulate matter (PM2.5) concentration in ambient air
using real data collected from low-cost (LF) sensors. In
Sec. 4, conclusions and outlooks (outlines) are provided.

2. METHODOLOGY

2.1 Multi-Fidelity Framework

A hierarchy of n low-fidelity input signals {y(i)
LF
}ni=1

is
considered. For simplicity, we assume all input data share

the same dimensionality, i.e., y
(i)
LF

→ Rdin for all i =
1, . . . , n. Correspondingly, a hierarchy of neural network
models {NNi}ni=1

is sequentially trained to estimate the
high-fidelity signals yHF → Rdout , as outlined below.

The first neural network model is defined as:

NN1(·; W1) : y
(1)

LF
↑↓ NN1(y

(1)

LF
;W1) = ŷ

(1)

HF
→ Rdout , (1)

where W1 denotes the network weights. These optimal
weights are determined by minimizing the mean squared

error (MSE) ||ŷ(1)

HF
↔ yHF||22 through standard gradient-

based optimization techniques. For i = 2, . . . , n, the
subsequent neural networks are iteratively defined as:

NNi(·; Wi) : (y
(1)

LF
, . . . ,y

(i)
LF
) ↑↓ NNi(y

(1)

LF
, . . . ,y

(i)
LF
;Wi)

= ŷ
(i)
HF

→ Rdout . (2)

Feedback connections between hidden layers of subsequent
models facilitate information transfer and incremental
refinement of the estimates {y(i)

HF
}ni=1

(Conti et al., 2025).
The hierarchical multi-fidelity model setup is illustrated
in Fig. 1. When all input signals in the hierarchy are

accessible, the final estimate ŷ
(n)
HF

is used. Conversely, if



an input signal y(i)
LF

is missing – for reasons such as, e.g.,
computational limitations or signal corruption – continuity

in estimation is maintained by utilizing ŷ
(i↑1)

HF
.

This flexible framework accommodates various input-
output data types by selecting an appropriate neural
network architecture. For instance, feed-forward networks
are well-suited for parameters and vector-valued inputs,
whereas LSTM networks can be used for time-series data.
With reference to Fig. 1, the system inputs u can also be
taken as part of the LF input data, entering the hierarchy.
This can be achieved by augmenting the system output
matrices with feedthrough of the relevant inputs.

2.2 Hierarchy Determination using Bayesian Optimization

The measurement data

yM =
[
y
(1)

M
| y(2)

M
| ... | y(m)

M

]
→ Rdin↓m

might contain unnecessary or redundant signals. Using
these signals can result in increasing computational costs
and in poorer performance of the soft sensor. Because
of this, a subset of n signals is to be chosen from yM.
The total number of unique hierarchies drawn from an m-
element set shows factorial growth. Hence, extensive grid
search should not be used for finding the optimal input
variables. We propose to use Bayesian optimization (see,
e.g., Garnett (2023)), which – although still subject to
the curse of dimensionality – often scales more favourably
with problem size. BO is a so-called wrapper method,
which is a method that performs variable selection during
the soft sensor training and generally perform better than
filter methods, which perform variable selection before the
training of the soft sensor. Examples of filter methods
are the Pearson Correlation Coe!cient (CC) and the
univariate Mutual Information (MI).

BO is an informed search algorithm that can be used to
find an optimized set of hyperparameters for the training
of the multi-fidelity surrogate model described in Sec. 2.1.
In this context, the hyperparameters considered are the
Fidelity Score vector, FS → # ({1, . . . ,m}), which is
an element of the set of permutations # of {1, . . . ,m}
indicating a hierarchy of how reliable each signal in yM

is, and the number n of LF signals to be considered. The
signal with fidelity score 1 is the most reliable signal,
while the signal with fidelity score m is the least reliable
signal. The hyperparameters ω = {FS, n}, selected by BO,
unambiguously determine the hierarchy of the LF signals
to create the input vector yLF → Rdin↓n to the multi-
fidelity surrogate model. In particular, yLF is constructed
by stacking the n most reliable signals in reverse order
with respect to their fidelity score:

yLF =
[
y
(in)
M

| y(in↑1)

M
| · · · | y(i1)

M

]
, (3)

where ij such that FS(ij) = j. The inverse order accom-
modates the surrogate modeling requirement of processing
inputs from the least to the most reliable, as this reflects
the rationale that more reliable data is related to higher
computational costs. The advantage of using FS as hyper-
parameters and the treatment of permutations that result
in the same yLF are covered in later sections.

Fig. 2. Bayesian optimization workflow for determining the
hierarchy and fidelity of yM to build the input, yLF, to
the multi-fidelity surrogate model (see Sec. 2.1).

The BO framework is shown in Fig. 2. In order to opti-
mize the hyperparameters ω, BO iteratively performs the
MF surrogate model training for a given ω, after which
it evaluates the loss function J(ω), which describes the
goodness of the final soft sensor output:

J(ω) =
∥∥∥ŷ(n)

HF
(ω)↔ yHF

∥∥∥
2

2

. (4)

In order to avoid overfitting, this evaluation should be
done using a di”erent set of yHF than was used in the
training of the MF model. Using all collected information
P = {(ω, J (ω))}, BO then proceeds to model J(ω) as
a Gaussian process J̃ (ω |P). The GP gives the expected
value of the loss function for all ω, including ω that have not
been evaluated yet, and a confidence interval, illustrated in
dark and light blue, respectively, in Fig. 2. Using the GP,
it is possible to choose the next ω, for which a trade-o” is
made between exploring regions of the search space with
high uncertainty and exploiting regions with low expected
loss. To this end, the acquisition function ε is constructed.
ε (ω |P) indicates the estimated suitability of ω based on
the available information. The maximum of ε is the next
ω to be observed. Garnett (2023) describes this procedure
in detail.

Traditionally, continuous search spaces are used for BO.
Di”erent approaches exist to consider binary or categorical
variables (Oh et al., 2019) in a BO framework. In our
case, the integer parameters are first relaxed into real-
valued parameters for the construction of the GP, and
then are mapped back to integers before passing the GP
to the acquisition function. For the optimization of ε,
a gradient-free optimization algorithm is used that can
handle discontinuities. One of the assumptions, on which
BO is based, is that evaluations of J have a certain
correlation in each input dimension (Garnett, 2023). As
part of our innovative approach, the particular definition
of FS and n as hyperparameters, justifies this assumption.
Indeed, it holds that similar values of J (ω) can be expected
to be found for similar ω, e.g., when training the MF
surrogate using yLF defined by the same FS but di”erent
n, or defined by di”erent FS in which the signal j has
similar fidelity score FS

(j).



Some modifications are used to speed up the BO workflow.
Because the training of the MF model is sequential, the
MF surrogate training using ω = (FS, n) includes the
implicit observation of J (ω↔) with ω

↔ = (FS, n↔) for
n
↔ → {1, ..., n ↔ 1}. These intermediate results are also

included in the set of past observations P. Also, J(ω) shows
functional equality for di”erent ω for which the resulting
yLF is the same. Therefore, before creating the new GP,
P is expanded with all ω that were implicitly observed
because of this functional equality.

3. APPLICATION EXAMPLES AND DISCUSSION

Two test cases are presented. The multi-fidelity neural
network models for these cases are constructed using
TensorFlow’s Keras API, with dense layers for the first test
case and LSTM layers for the other. Training is performed
using the ADAM optimizer with L2 regularization. The
BO uses the ARD Matern 5/2 kernel for the GP and
the Expected Improvement acquisition function and is
implemented in MATLAB (Garnett, 2023).

3.1 Benchmark Example

As a first test case, we consider a standard MF bench-
mark (Meng and Karniadakis (2020)), which consists in
estimating the output of the discontinuous scalar function
from a set of low-fidelity inputs. The output fHF simulates
the process variable we aim to estimate and is defined as

a linear combination of two signals f (1)

M
and f

(2)

M
:

fHF(x) =
5

3
f
(1)

M
(x) + 2f (2)

M
(x) +

110

3
+ 4H(x↔ 1

2
),

where H(x) is the Heaviside function, which introduces
discontinuities. In order to test the input feature selec-
tion capabilities of the algorithm, we included the inputs

f
(3)

M
, f

(4)

M
, f

(5)

M
, which are disturbed versions of f (2)

M
, as well

as f (6)

M
, which is pure noise. The set of available low-fidelity

inputs (here with subscript M for ‘measured’) is illustrated
in Fig. 3. See Appendix A for mathematical definition of

f
(i)
M

, i = 1, . . . , 6. We employ our method to automatically
select the relevant input signals and simultaneously con-
struct a hierarchical MF surrogate model as a soft sensor
estimating the HF function. To this end, we consider
NMF↑train = NBO↑train = 7 equidistant locations for MF-
and BO-training data sampling for each fidelity level (see
Fig. 3). Standard feed-forward networks with dense layers
are employed in the MF model to approximate the scalar
outputs of the one-dimensional functions (din = dout = 1).

Results After 25 iterations, our proposed method suc-

cessfully detects the signals f
(2)

M
and f

(1)

M
to be relevant,

which are indeed the components defining fHF. Note that,
because of the implicit observations of intermediate models
for each iteration, after 25 iterations, up to 6 · 25 = 150
unique hierarchies have been observed, which is about
7.7% of the total number of possible hierarchies. The
method proves robustness by discarding all the remaining
noisy and/or uncorrelated inputs. These results cannot be
achieved by using input selection based on the CC and MI
methods, as is shown in Appendix A.

The relevant signals, f (2)

M
and f

(1)

M
are used in sequence by

our method to construct the hierarchical MF soft sensor
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Fig. 3. Low-fidelity input and high-fidelity output func-
tions considered in the benchmark test case. The
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of MF- and BO-training data.
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Fig. 4. Comparison of the outputs of the MF surrogate

model ŷ(1)

HF
, ŷ

(2)
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with respect to the reference fHF.

to estimate fHF. Fig. 4 and Table 1 show the surrogate
performance (for both levels in the hierarchy) compared
to the reference HF solution, on a test set consisting of
Ntest = 100 equidistant data points.

3.2 Air Quality Monitoring Example

As a second example, we consider an air quality moni-
toring problem. Because of the negative e”ects of partic-
ulate matter (PM) on human health, PM monitoring is
widespread. A distinction is made between PM10, which
are coarse particles with a diameter of up to 10µm, and
PM2.5, which are fine particles with a diameter of up
to 2.5 µm. The use of low-cost sensors for air quality
measurements has gained increased attention in the last
decades as they would allow to significantly increase PM
monitoring coverage. However, these sensors are associated
with lower fidelity than expensive devices. For example,
high relative humidity is known to have a negative e”ect

Table 1. RMSE of the hierarchical soft sensor
model for the benchmark test case.

Model MF-Training BO-Training Test

ŷ
(1)
HF

0.058 0.062 0.063

ŷ
(2)
HF

0.017 0.038 0.030
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Fig. 5. PM2.5 high-fidelity data and the results from the trained soft sensor.

on the accuracy of PM measurement devices, and is not
adequately compensated for by low-cost sensors.

Air quality data from three measurement devices posi-
tioned at a single location in Stuttgart, Germany, was
kindly provided by Chacón-Mateos et al. (2022). The data
is available in 60 s resolution for 190 consecutive hours.
Two of the devices, ‘LF-Device 1’ and ‘LF-Device 2’, are
di”erent low-cost (LF) devices, the third one is a high-
cost (HF) reference measurement device, ‘HF-Device’. LF-
Device 1 is a low-cost sensor of the type Nova Fitness
SDS011. LF-Device 2 was a custom device, built by the
authors, which provided additional LF-measurement data.

For this example, we want to estimate the PM2.5 con-
centration measured with the HF-Device. A potentially
relevant subset of the LF-measurements is pre-selected as
available LF inputs for the model training. An overview of
considered HF and LF signals is given in Tab. 2.

We employ our method using an LSTM-based NN for
the multi-fidelity model to automatically rank and select
the relevant input signals and simultaneously construct
a dynamic, hierarchical MF model for the soft sensor,

estimating the HF signal. The time signal y
(1)

LF
is pre-

selected as input for the first level. We use time-series of
56 h of MF-training data and 24 h of BO-training data.

Results After 25 iterations, the best model found by
our proposed method utilizes 5 out of the 8 input signals.
The selected input signals and their level hierarchy are
given in the last column of Tab. 2. The performance of

Table 2. Low- and High-Fidelity signals for the
air quality example, and the input hierarchy of

the selected signals for the MF model.

Var. Description Hier.

y
(1)
M

Time [s] 1

y
(2)
M

Ambient relative humidity (LF-Device 2) [%] 3

y
(3)
M

Ambient temperature (LF-Device 2) [→C] -

y
(4)
M

PM2.5 mass concentration (LF-Device 1) [µg/m3] 4

y
(5)
M

PM2.5 mass concentration (LF-Device 2) [µg/m3] 2

y
(6)
M

Internal Relative humidity (LF-Device 2) [%] -

y
(7)
M

Internal temperature (LF-Device 2) [→C] 5

y
(8)
M

Baseline Particle Count (LF-Device 2) [-] -

yHF HF PM2.5 mass concentration (HF-Device) [µg/m3]

Table 3. RMSE [µg/m3] of hierarchical soft
sensor models and LF PM2.5 measurements.

Model MF-Training BO-Training Test

ŷ
(1)
HF

2.854 1.990 2.363

ŷ
(2)
HF

1.994 0.762 2.020

ŷ
(3)
HF

1.714 0.700 1.633

ŷ
(4)
HF

1.174 0.541 1.059

ŷ
(5)
HF

0.831 0.508 1.028

y
(4)
M 1.030 0.642 1.340

y
(5)
M 1.464 0.623 2.337
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Fig. 6. Normalized inputs for a representative section of
the test data. Coloured signals are used by the MF

soft sensor ŷ(5)

HF
.

the final model, ŷ(5)
HF

, as well as the intermediate models,

ŷ
(i)
HF

(i → {1, 2, 3, 4}), was evaluated on a test time-series
of 110 h. The RMSE of the hierarchical models is given in
Tab. 3. The model performance systematically increases
with increasing hierarchical level. The final model outper-
forms both LF-sensors on MF-training, BO-training and

test set. In case LF-Device 1 (signal y(4)
LF

) is not available,

model ŷ
(3)

HF
can be used, which uses only signals from

LF-Device 2 and outperforms the PM2.5 measurement

delivered by LF-Device 2 (y(5)
LF

) for all datasets.

The estimates of the ŷ
(5)

HF
soft sensor are shown together

with the HF data in Fig. 5, showing that the MF soft
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Fig. 7. Comparison of the outputs of the MF soft sensor
model at the di”erent hierarchical levels with the
reference signal yHF for a section of the test data.

sensor e”ectively captures both rapid and gradual signal
variations. The performance of the soft sensor remains con-
sistent, even when making forecasts significantly beyond
the training time window. Fig. 5 comprises a magnifica-
tion of a representative section of 8 h of test data, for
which the normalized input signals are shown in Fig. 6
and the corresponding results of the di”erent hierarchi-

cal models are shown in Fig. 7. The final output ŷ
(5)

HF

is computed using all the selected relevant signals, i.e.,

yLF = (y(1)
M

, y
(5)

M
, y

(2)

M
, y

(4)

M
, y

(7)

M
). The intermediate output

ŷ
(i)
HF

uses the first i signals from this tuple. The increasing
accuracy of the models with increasing number of LF
signals used is visible.

4. CONCLUSION AND OUTLOOK

Using hierarchical multi-fidelity models with Bayesian
optimization to select and rank relevant features can be
e”ectively used for soft sensor design. The method was
introduced and successfully applied on both a nonlinear
benchmark and a real-data test case, in which a dynamic
model was created using LSTM neural networks.

In future work, we will aim at reducing the computational
complexity of the method, e.g., by using di”erent search
space design or alternative informed search algorithms. It
is possible to apply our method to signals featuring diverse
sampling frequencies, which can be handled using a MF
approach (Guo et al., 2022). Using the LSTM networks,
the method can also be applied for system identification of
overactuated systems, as in Lips et al. (2024). Finally, data
assimilation techniques could be integrated to monitor and
enhance the reliability of the soft sensor over prolonged
operations by preventing sensor drift and refining the
multi-fidelity model within a digital twin framework, e.g.,
for predictive maintenance or process optimization.

CODE AND APPENDIX ACCESSIBILITY

The source code of the proposed method and the bench-
mark example are available as GitHub repository on
github.com/ContiPaolo/MultiFidelityBO SoftSensor, to-
gether with Appendix A.
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