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Abstract: In this work, we proposed a controller based on reinforcement learning (RL) for
the unseeded batch crystallization of paracetamol in ethanol. The controller aims to achieve
the crystal mean volume size and the crystal mass at five different targets by manipulating
the temperature. We used the deep deterministic policy gradient (DDPG) algorithm to train
the control agent. The performance of the RL controller was compared to an NMPC using a
population balance model (PBM) as its internal model and tested for the five different scenarios.
The controllers were also tested taking into account a 5% disturbance in the concentration
measurement. Both controllers were able to reach values of the controlled variables close to
the targets even accounting for disturbances. However, the RL controller was able to calculate
the control action much faster than the NMPC and imposed less temperature changes, which
presents as better alternative for real control applications. Therefore, the RL controller presented
as a more suitable approach than an NMPC using a PBM as its internal model for controlling
the paracetamol batch crystallization process.
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1. INTRODUCTION

Crystallization is a unit operation where a solid crys-
talline product is typically produced from a solution (Ahn
et al., 2022). For the process to be efficient, the resulting
crystals must meet specific shape and size requirements
that comply with product quality regulations. As a result,
an effective control system is essential to ensure these
standards are achieved (Nagy and Braatz, 2012; Moraes
et al., 2023).

Model predictive control (MPC) is a control strategy that
utilizes an internal model to manage the process, and it
is commonly applied to crystallization processes in the
literature (Nayhouse et al., 2015; Cao et al., 2016; Botschi
et al., 2018). One such application was developed by Sita-
pure and Kwon (2023), who employed a population bal-
ance model (PBM) accounting for growth and nucleation
of cadmium telluride quantum dot batch crystallization
within the MPC framework. They conducted simulations
to regulate the mean crystal size and the desired standard

deviation of the crystal size distribution (CSD) by adjust-
ing the solute concentration.

Szilagyi et al. (2018) introduced a nonlinear model predic-
tive control (NMPC) algorithm and evaluated its perfor-
mance in simulation-based applications for controlling the
crystal size distribution (CSD) in batch-cooling crystal-
lization processes. Recently, Lima et al. (2024) developed
an NMPC to control both the mean crystal size and the
yield in paracetamol batch crystallization in ethanol, with
temperature as the manipulated variable.

The machine learning methodology known as reinforce-
ment learning (RL) has been standing out in the area
of artificial intelligence (Faria et al., 2023, 2024b). The
impressive results achieved in these areas (largely driven
by advances in deep neural networks and new RL algo-
rithms) have sparked interest within the process control
community (Faria et al., 2022). RL is defined by an agent
that learns autonomously within a system through nu-
merical rewards, following a Markov decision process. The



agent’s learning occurs through interactions, without the
need for a process model, and can incorporate data-driven
insights and simulation-based information (Sutton and
Barto, 2018). As a result, RL is emerging as a promising
alternative to traditional model-based control methods,
such as Model Predictive Control (MPC), for managing
batch processes.

The application of reinforcement learning (RL) to control
crystallization processes is a relatively recent development
in the literature. The first instance of RL being used
for crystallization control was by Zhang et al. (2020),
who developed control policies to determine the opti-
mal field shapes and orientations for rapidly eliminating
grain boundaries and restoring circular crystal morpholo-
gies from anisotropic forms. Following this, Manee et al.
(2021) applied RL to control the crystallization of NaCl
in a water-ethanol system, adjusting antisolvent addition
and temperature to regulate the mean crystal size. They
demonstrated the effective implementation of this control
strategy in an experimental setup.

Anandan et al. (2022) developed an inverse reinforcement
learning approach to control paracetamol batch crystal-
lization. The machine learning model was trained using
crystallization processes controlled by PID and MPC, and
then applied in simulations of paracetamol crystallization.
Manee et al. (2022) employed convolutional neural net-
works (CNNs) as soft sensors combined with reinforce-
ment learning to control sodium chloride crystallization
in water, using ethanol as an antisolvent. They manipu-
lated both temperature and antisolvent addition to control
crystal size in an experimental setup. Meng et al. (2023)
applied reinforcement learning in simulations to control
crystal size in the crystallization of KDP in water and
aspirin in ethanol-water mixtures. In the KDP system,
temperature was the key manipulated variable, while both
temperature and antisolvent addition were adjusted in the
aspirin crystallization system.

In this work, we adopted RL for controlling the unseeded
batch crystallization of paracetamol in ethanol. Parac-
etamol is a medicine and its crystallization has been of
interest in the literature for control applications (Griffin
et al., 2017; Grover et al., 2020; Anandan et al., 2022;
Lima et al., 2024). We used the population balance model
(PBM) developed by Kim et al. (2023) to train the agent.
The controller aims to maintain the crystal mean volume
size and the crystal mass at the targets by manipulating
the temperature for five scenarios. Different from previous
works, the current controller uses the temperature, the cur-
rent values of the controlled variables and their deviations
from the setpoints as inputs. The performance of the RL
based controller was compared to an NMPC and they were
also tested considering disturbances in the concentration
measurement.

2. DEEP REINFORCEMENT LEARNING BASED
CONTROL

This work employs reinforcement learning to control the
unseeded batch crystallization of paracetamol in ethanol.
To simulate this process, we used the PBM previously
developed by Kim et al. (2023). More details about the

PBM can be found in Kim et al. (2023) and Lima et al.
(2024).

The RL problem is formulated as an MDP (Markov de-
cision process), as shown in Fig. 1. The agent learns the
control task based on the experience obtained when in-
teracting with the simulated process environment (PBM),
guided by rewards. Specifically, the Markov state is de-
fined by the current value of the control action, controlled
variable and its deviation in relation to the setpoint. The
agent executes the control action (the increments of the
manipulated variable Au(k) = AT(k)) based only on the
current state (sy), which causes the environment to transi-
tion to a new state (sg41 = p(Sk+1|Sk,ax)) approximated
with PBM. The reward (ry) used to guide the control
agent’s learning considers the absolute setpoint error and
control action deviation with relative importance weighted
by Q = [Qla"' aQNy] and R = [R17"' 7RNH]a with Ny
and N, representing the size of these respective vectors.
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Fig. 1. MDP scheme for controlling the paracetamol batch
crystallization in ethanol.

To produce the optimal policy, the agent executes this
process repeatedly (episodes). A self-parameterized policy
(6, € R*) is assumed, in which the objective is to
maximize the cumulative sum of rewards (R(7)) obtained
regardless of the sampled trajectory 7 = s1,a1, - , 1, ar,
initial state (p(s1)) and state transition s;11, as shown in
(1), with ~ representing the discount factor.
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In this study, the deep deterministic policy gradient
(DDPG) (Lillicrap, 2015) algorithm was considered for
training the control agent. Fig. 2 details the structure of
the critic and actor employed, in which the critic network
estimates the value of rewards by solving (2), then the
actor uses the gradient from (1) to improve the policy
by ascending gradient, according to the theorem of de-
terministic gradient, as shown in (3). More details about
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Fig. 2. Structures of actor and critical networks for training the control agent applied to the crystallization process.

the implementation of the algorithm can be seen in Faria
et al. (2024a).
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Once trained, the resulting actor network implements the
control actions in the actual process. Therefore, this con-
troller does not depend on an internal model to compute
control actions as it evaluates an approximate function by
a neural network, potentially resulting in an inherently
adaptive and computationally efficient controller.

The training of the control agent was based on the DDPG
algorithm, in which the definition of the structure of the
actor and critical networks, parameters of the ADAM
optimizer and parameters of the algorithm itself are sum-
marized in Table 1. Specifically, N, D, K were chosen to
balance computational and learning efficiency of the algo-
rithm. The DDPG algorithm was selected because many
works successfully applied this approach for regulatory
control (Faria et al., 2022, 2023). The number of episodes
was selected based on a sensitivity analysis. The policy
used for testing was the one for the last episode. The struc-
ture of the actor and critic networks was selected based
on the hyperparameter analysis carried out in Faria et al.
(2022). Based on Faria et al. (2022), the critic and actor
networks have different optimal configurations. The actor
presents more layers and a lower learning rate compared to
the critic network, since it approximates the deterministic
gradient. Therefore, a more conservative actor network
than the critical network was used in order to improve the
convergence of the algorithm and, consequently, improve
the training of the reinforcement learning agent.

The nominal process conditions (initial condition) and de-
sired values were varied during each episode, randomly se-
lecting, considering a uniform distribution, from 5 different
previously defined cases, meaning that 50,000 PBM-based
simulations were used to fill the buffer, with the following
20,000 updates for the algorithm to learn. Additionally, the
parameters referring to the relative importance of states
and inputs for the objective function were Q@ = [1,0.01]
and R = [0.01]. The same tuning was considered for

Table 1. The DDPG algorithm parameters.

Parameters Value
DDPG
Discount factor (v) 0.99
Batch size (K) 250
Buffer (D) 50000
Episodes (V) 70000
Time constant (k) 0.005
Actor Network
Activation Function ReLU, Tanh

Layers 6
Neurons (5, 250, 250, 120, 80, 1)

Critic Network
Activation Function ReLU, Linear
Layers 4
Neurons (6, 250, 150, 1)

DNN training algorithm

Optimizer ADAM
Actor learning rate (aq) 0.0035
Critic learning rate (a) 0.0035
Decay learning rate (9) 0.9

NMPC and the limit of control increments for NMPC and
DDPG were —1 < AT'(k) < 1.

The performance of the RL controller was compared to
an NMPC previously developed by Lima et al. (2024).
The controllers were applied to maintain the crystal mean
volume size and the crystal mass in the targets by manip-
ulating the temperature. They were tested for five cases
as presented in Table 2. The conditions in Table 2 were
considered to train the RL controller. Before starting the
process control, the crystallization was maintained at the
initial temperature for 60 min in all cases to promote the
initial growth. After that, the control is started and the
process is controlled for 100 min. A sampling time of one
minute was adopted. The performance of the controllers
was also tested considering a 5% disturbance in the con-
centration measurement at 110 min. All simulations were
performed with a computer having the following specifica-
tions: Intel Core 17-12700, CPU 2.10 GHz, and 32 GB of
RAM.

3. RESULTS AND DISCUSSION

The NMPC used in this work is the same developed by
Lima et al. (2024) with prediction horizon equals to 10 and



Table 2. Setpoints and initial conditions con-
sidered to test the controllers’ performance.

Case L3h [um] m*P[g] So Tp[C]
1 225 9.0 1.35 30.0
2 200 9.0 1.35 30.0
3 175 7.0 1.30 33.4
4 160 8.0 1.25 40.0
5 170 7.5 1.30 35.0

a control horizon of 5. Table 3 presents the performance of
the RL controller and the NMPC for the five cases consid-
ered. Comparing the values of the controlled variables in
the end of each batch, both approaches presented a close
performance. The controllers were able to achieve values of
the controlled variables close to the targets for all batches.
Specially for Case 1, the NMPC presented an offset for
both controlled variables, which is expected as only one
manipulated variable is used to control two variables. On
the other hand, the RL controller was able to reach values
closer to the targets. Comparing all cases, Case 1 is the
most difficult to control because it aims to produce the
largest crystals with the highest mass, considering a high
initial supersaturation and unseeded crystallization. Even
with all these difficulties, the RL controller was able to
perform better than the NMPC. Moreover, the RL con-
troller imposed less temperature changes than the NMPC
in most cases, as presented in Table 3.

Table 3. Lso and m values at the end of the
controlled batches with the NMPC and the
RL, and the total control effort.

Case System Lzp (um) m (g) ZAu(k)2
Target 225.0 9.00 -
1 NMPC 213.2 9.85 9.94
RL 221.6 9.27 11.45
Target 200.0 9.00 -
2 NMPC 197.9 9.15 11.73
RL 202.2 9.12 5.29
Target 175.0 7.00 -
3 NMPC 175.0 6.99 36.95
RL 174.9 7.00 28.38
Target 160.0 8.00 -
4 NMPC 160.0 7.99 163.92
RL 159.1 8.03 22.61
Target 170.0 7.50 -
5 NMPC 170.0 7.50 48.07
RL 172.4 7.49 30.65

Fig. 77 presents the performance of the controllers from
Case 1 of Table 2. Both controllers were able to achieve
the setpoints and maintain the control variables in the
desired values. The temperature changes imposed by the
manipulated variables were similar, imposing a decrease
in this value to promote crystal growth and nucleation,
followed by an increase to reach the equilibrium. The RL
controller presented an overshooting that was not observed
for the NMPC.

Table 4 presents the mean time that each controller took
to calculate the optimal control action for all simulations.
For the five cases, the RL controller calculated the optimal
control action much faster than the NMPC. Both con-
trollers are able to calculate the control action fast enough
for the sampling time of one minute. However, obtaining
this value faster is a relevant advantage. In the crystalliza-

tion system used by Kim et al. (2023), the temperature
change imposed by the controller is not done immediately.
There is a dead time after imposing this temperature
change. Therefore, calculating the control action faster is
an advantage for a quicker change in the system.

Table 4. Mean time for the RL based controller
and the NMPC to calculate the optimal tem-

perature.

Case NMPC time (s) RL time (s)
1 5.0 x 1072 31x 107
2 1.6 x 10~1 2.6 x 10~4
3 1.0 x 1071 2.8 x 10~4
4 1.5 x 1071 2.3 x 104
5 2.2 x 1071 32x10%

The crystallization system used by Kim et al. (2023) to
perform the crystallization batches includes attenuated
total reflectance-Fourier transform infrared (ATR-FTIR).
This equipment was used to get the absorbance and
this value was used to obtain the concentration with a
calibration curve. Situations like a change in the position
of the ATR-FTIR probe can lead to disturbances in
the concentration measurement. In order to check the
performance of the controllers for this issues, we considered
a perturbation of 5% in the concentration measurement
at 110 min (ie., C(110) = C(110) + 0.05 x C(110)).
Table 5 presents the performance of the controllers for the
simulations account for disturbances in the concentration
measurement. Compared to the values in Table 3, the
performance of the controllers was similar accounting for
disturbance. The RL controller imposed less temperature
changes, as previously observed.

Table 5. L3g and m values at the end of the
controlled batches with the NMPC and the
RL, and the total control effort for the sim-
ulations with disturbance in the concentration

measurement.
Case System Lgzo (um) m (g) ZAu(k)2

Target 225.0 9.00 -
1 NMPC 213.3 9.85 13.20
RL 220.8 9.32 12.55

Target 200.0 9.00 -
2 NMPC 197.8 9.15 17.90
RL 200.5 8.98 11.93

Target 175.0 7.00 -
3 NMPC 175.0 6.99 38.80
RL 177.1 7.28 28.94

Target 160.0 8.00 -
4 NMPC 160.0 7.99 166.00
RL 164.6 8.13 56.38

Target 170.0 7.50 -
5 NMPC 170.0 7.50 49.97
RL 173.3 7.62 31.63

Fig. 4 presents the performance of the controllers for
Case 2 from Table 2 considering the disturbance in the
concentration measurement. At 110 min, a change in the
manipulated variable behavior can be observed. However,
the performance of the controllers is still efficient to keep
the controlled variables at the targets.

Table 6 presents the mean time demanded by each con-
troller to obtain the control action for the five simulations
with disturbance. The computational cost was similar to
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Fig. 4. Performance of the NMPC and the RL for Case 2 with disturbance in the concentration measurement.

what was previously presented in Table 4. Therefore, the
NMPC and the RL controller presented efficient perfor-
mance to control the unseeded batch crystallization of
paracetamol in ethanol. However, the RL controller ob-
tained the control action faster and the fewer temperature
changes imposed, being a more suitable option to control
this process.

Table 6. Mean time for the RL based controller
and the NMPC to calculate the optimal tem-
perature for the simulations with disturbance.

Case NMPC time (s) RL time (s)
1 3.8 x 102 3.1x 10 %
2 1.9 x 101 4.7 x 1074
3 9.2 x 1072 2.2x 1074
4 1.5 x 10—t 2.9 x 10~¢
5 2.9 x 1071 3.6 x 1074

4. CONCLUSION

In this work, we proposed a controller based on RL and
showed its potential for controlling batch crystallization

processes. The RL controller was used to control the crys-
tal mean volume size and the crystal mass by manipulat-
ing the temperature and its performance was compared
to an NMPC using a PBM as its internal model. Five
cases were simulated, accounting for different setpoints
and initial conditions. Both controllers were able to effi-
ciently achieve the targets, even accounting for disturbance
in the concentration measurement. However, the RL was
able to calculate the optimal control action and imposed
less temperature changes to the system compared to the
NMPC. Therefore, the RL controller proved to be a good
alternative to the NMPC and for real crystallization ap-
plications.

ACKNOWLEDGEMENTS

This study was financed in part by the Coordenagao de
Aperfeicoamento de Pessoal de Nivel Superior - Brasil
(CAPES) - Finance Code 001. Professor Mauricio B. de
Souza Jr. is grateful for financial support from CNPq
(Grant No. 311153/2021-6) and Fundagao Carlos Chagas
Filho de Amparo a Pesquisa do Estado do Rio de Janeiro
(FAPERJ) (Grant No. E-26/201.148,/2022).



REFERENCES

Ahn, B., Bosetti, L., and Mazzotti, M. (2022). Sec-
ondary nucleation by interparticle energies. ii. kinet-
ics.  Crystal Growth €& Design, 22(1), 74-86. doi:
https://doi.org/10.1021/acs.cgd.1c00928.

Anandan, P.D., Rielly, C.D., and Benyahia, B. (2022).
Optimal control policies of a crystallization process
using inverse reinforcement learning. In L. Montas-
truc and S. Negny (eds.), 32nd European Symposium
on Computer Aided Process Engineering, volume 51 of
Computer Aided Chemical Engineering, 1093-1098. El-
sevier. doi:https://doi.org/10.1016/B978-0-323-95879-
0.50183-1.

Botschi, S., Rajagopalan, A.K., Morari, M., and Maz-
zotti, M. (2018).  Feedback control for the size
and shape evolution of needle-like crystals in sus-
pension. i. concepts and simulation studies. Crys-
tal Growth & Design, 18(8), 4470-4483. doi:
https://doi.org/10.1021/acs.cgd.8b00473.

Cao, Y., Kang, J., Nagy, Z.K., and Laird, C.D. (2016).
Parallel solution of robust nonlinear model predictive
control problems in batch crystallization. Processes,
4(3), 20. doi:https://doi.org/10.3390/pr4030020.

Faria, R.R., Capron, B., Secchi, A., and Souza Jr., M.
(2024a). A data-driven tracking control framework
using physics-informed neural networks and deep rein-
forcement learning for dynamical systems. Engineering
Applications of Artificial Intelligence, 127, 107256. doi:
https://doi.org/10.1016/j.engappai.2023.107256.

Faria, R.R., Capron, B.D.O., de Souza Jr, M.B.,
and Secchi, A.R. (2023). One-layer real-time op-
timization using reinforcement learning: A review
with guidelines. Processes, 11(1), 123. doi:
https://doi.org/10.3390/pr11010123.

Faria, R.R., Capron, B.D.O., Secchi, A.R., and de Souza,
M.B.J. (2024b). Gas-lift optimization using physics-
informed deep reinforcement learning. Industrial &
Engineering Chemistry Research, 63(32), 14199-14210.
doi:10.1021 /acs.iecr.3c04615.

Faria, R.R., Capron, B.D.O., Secchi, A.R., and
de Souza Jr, M.B. (2022). Where reinforcement learning
meets process control: Review and guidelines. Processes,
10(11), 2311. doi:https://doi.org/10.3390/pr10112311.

Griffin, D.J., Kawajiri, Y., Rousseau, R.W., and Grover,
M.A. (2017). Using mc plots for control of paracetamol
crystallization. Chemical Engineering Science, 164, 344—
360. doi:https://doi.org/10.1016/j.ces.2017.01.065.

Grover, M.A., Griffin, D.J., Tang, X., Kim, Y., and
Rousseau, R.W. (2020). Optimal feedback control of
batch self-assembly processes using dynamic program-
ming. Journal of Process Control, 88, 32-42. doi:
https://doi.org/10.1016/j.jprocont.2020.01.013.

Kim, Y., Kawajiri, Y., Rousseau, R.W., and Grover,
M.A. (2023). Modeling of nucleation, growth,
and dissolution of paracetamol in ethanol solu-
tion for unseeded batch cooling crystallization with
temperature-cycling strategy. Industrial & Engi-
neering Chemistry Research, 62(6), 2866-2881. doi:
https://doi.org/10.1021/acs.iecr.2c03465.

Lillicrap, T. (2015). Continuous control with deep rein-
forcement learning. arXiv preprint arXiv:1509.02971.
doi:https://doi.org/10.48550/arXiv.1509.02971.

Lima, F.A.R.D., de Moraes, M.G.F., Grover, M.A., Bar-
reto Junior, A.G., Secchi, A.R., and de Souza, M.B.J.
(2024).  Neural network inverse model controllers
for paracetamol unseeded batch cooling crystallization.
Industrial € Engineering Chemistry Research.  doi:
https://doi.org/10.1021/acs.iecr.4c02060.

Manee, V., Baratti, R., and Romagnoli, J.A. (2021).
Optimal strategies to control particle size and variance
in antisolvent crystallization operations using deep rl.
Chemical Engineering Transactions, 86, 943-948. doi:
https://doi.org/10.3303/CET2186158.

Manee, V., Baratti, R., and Romagnoli, J.A. (2022).
Learning to navigate a crystallization model with
deep reinforcement learning. Chemical Engineer-
ing Research and Design, 178, 111-123. doi:
https://doi.org/10.1016/j.cherd.2021.12.005.

Meng, Q., Anandan, P.D., Rielly, C.D., and Benyahia,
B. (2023). Multi-agent reinforcement learning and rl-
based adaptive pid control of crystallization processes.
In A.C. Kokossis, M.C. Georgiadis, and E. Pistikopou-
los (eds.), 33rd European Symposium on Compuler
Aided Process FEngineering, volume 52 of Computer
Aided Chemical Engineering, 1667-1672. Elsevier. doi:
https://doi.org/10.1016/B978-0-443-15274-0.50265-1.

Moraes, M.G.F., Lima, F.A.R.D., Lage, P.L.d.C,
de Souza, M.B.J., Barreto, A.G.J., and Secchi, A.R.
(2023).  Modeling and predictive control of cool-
ing crystallization of potassium sulfate by dynamic
image analysis: Exploring phenomenological and ma-
chine learning approaches.  Industrial € FEngineer-
ing Chemistry Research, 62(24), 9515-9532.  doi:
https://doi.org/10.1021/acs.iecr.3¢00739.

Nagy, Z.K. and Braatz, R.D. (2012). Advances and New
Directions in Crystallization Control. Annual Review
of Chemical and Biomolecular Engineering, 3(1), 55-75.
doi:10.1146 /annurev-chembioeng-062011-081043.

Nayhouse, M., Tran, A., Kwon, J.S.I., Crose, M., Ork-
oulas, G., and Christofides, P.D. (2015). Modeling and
control of ibuprofen crystal growth and size distribu-
tion. Chemical Engineering Science, 134, 414-422. doi:
https://doi.org/10.1016/j.ces.2015.05.033.

Sitapure, N. and Kwon, J.S.I. (2023). Model pre-
dictive control of cadmium telluride (cdte) quan-
tum dot (qd) crystallization. In 2023 Ameri-
can  Control Conference (ACC), 3251-3256. doi:
https://doi.org/10.23919/ACC55779.2023.10156018.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement
learning: An introduction. MIT press.

Szildgyi, B., Agachi, P., and Nagy, Z.K. (2018). Chord
length distribution based modeling and adaptive model
predictive control of batch crystallization processes us-
ing high fidelity full population balance models. Indus-
trial & Engineering Chemistry Research, 57(9), 3320—
3332. doi:https://doi.org/10.1021/acs.iecr.7b03964.

Zhang, J., Yang, J., Zhang, Y., and Bevan, M.A.
(2020). Controlling colloidal crystals via mor-
phing energy landscapes and reinforcement learn-
ing. Science advances, 6(48), eabd6716. doi:
https://doi.org/10.1126 /sciadv.abd6716.



