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Abstract: Metabolic network models are powerful tools for understanding cellular functions and
guiding biotechnological applications. Yet, the complexity of these models poses challenges in
accurately predicting intracellular flux distributions, considering limited measurement availabil-
ity. To address this, we propose a novel bilevel optimisation framework to metabolic network
reduction using Bayesian optimisation. Our method assigns continuous probability values to
reactions and iteratively refines a reduced model that balances network simplification with
predictive performance. The upper-level Bayesian optimisation process selects reaction removal
probabilities, while the lower level evaluates model feasibility and performance through flux
sampling. A Gaussian Process surrogate is trained to approximate the impact of reaction
removals on model accuracy, guiding the optimisation toward a minimal yet representative
network. We applied our methodology to a Chinese Hamster Ovary (CHO) cell metabolic
model using multiple datasets, demonstrating its ability to adapt to different datasets and
suggest targeted measurements. By unifying lumping and sensitivity analysis concepts in a data-
driven framework, our approach systematically simplifies metabolic models, increasing their
applicability in both development and manufacturing processes.
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1. INTRODUCTION

Metabolic network models are a community resource
that supports understanding metabolic function, identify-
ing cell engineering targets and guiding the optimisation
of biotechnological applications (Fouladiha et al., 2019;
Schinn et al., 2021; Kol et al., 2020). Metabolic models
describe the reactions that occur inside the cell in either
a lumped or detailed form and may include other path-
ways such as protein synthesis, folding and secretion. The
number of reactions in metabolic models can range from a
few dozen to a few thousand, with the largest models that
are based on detailed gene-protein-reaction networks be-
ing genome-scale metabolic models (Strain et al., 2023a).
Industrial and academic researchers do not routinely mea-
sure intracellular fluxes, as that would require intricate
experimental setups. Instead, extracellular metabolite con-
centrations are typically measured instead and then used
to determine the exchange flux rates. This means that
the number of unknown fluxes typically far exceeds the
number of measurements, leading to an underdetermined
system of equations that is solved via optimisation. The
most common methodology for this is flux balance analysis
(FBA) (Orth et al., 2010), where a cellular objective is
assumed to generate a set of steady-state flux predictions.

There are several sources of uncertainty in this activ-
ity, one of which is the model network itself, the choice
of which greatly influences modeling outputs (Bernstein

et al., 2021). Furthermore, overly complex metabolic mod-
els may lead to solutions with high uncertainty, while
simplified models may overlook insights from the data.
There have been several efforts towards reducing reaction
network size, either in biochemical networks described
parametrically (Danø et al., 2006; Snowden et al., 2017)
or via the introduction of constraints (Erdrich et al., 2015;
Ataman and Hatzimanikatis, 2017; Ataman et al., 2017).
Regarding the former, literature divides model reduction
techniques into three types: lumping, sensitivity analysis
and time-scale based Okino and Mavrovouniotis (1998);
Danø et al. (2006); Snowden et al. (2017); Radulescu et al.
(2012). Lumping involves aggregating kinetic expressions
to lower the dimensions of the system by decreasing the
number of species to include in the model. Sensitivity
analysis includes perturbing the biochemical system and
eliminating sections of the network that contribute less to
the overall system. Time-scale-based methods identify fast
and slow reactions, which simplifies the dynamical system
via the application of the quasi-steady-state assumption.

There is no superior method for reducing network and
the choice of method should be determined both by the
complexity and the objective of the reduction (Danø et al.,
2006; Snowden et al., 2017). For example, some methods
require the assumption of a fully parameterizable initial
model, which in genome-scale models is currently im-
possible. Hence, in constraint-based models, researchers



have employed other types of techniques such as pruning
based on reactions with lower fluxes (Erdrich et al., 2015),
identifying and lumping the minimal size subnetworks that
produce each key component of the biomass equation (Ata-
man and Hatzimanikatis, 2017), deriving a reduced stoi-
chiometric matrix via graph search that makes exclusions
based on pre-determined rules (Ataman et al., 2017) and
automating reduction methods for faster reduced model
creation (van Rosmalen et al., 2021). The limitations of
these approaches include requiring a user-defined initial
model and having an imposed length of subsystem connec-
tions, leading users to decide between more rigid or more
flexible model reduction techniques (Singh and Lercher,
2019). While most studies focus on structural reduction
or sensitivity analysis in isolation, there lacks an approach
that could unify these strategies while still allowing for
flexibility to adapt to new data.

A potential approach to address the limitations of reduc-
tion techniques is via bilevel optimisation. Bilevel opti-
misation, largely studied in Process Systems Engineer-
ing, specifically for hierarchical supply chain planning and
scheduling problems. These problems are typically expen-
sive to solve directly as they become intractable in real-
life examples Chu et al. (2015). Hence, there has been a
lot of literature proposing alternatives to bypass this hur-
dle, such as, developing bilevel decomposition algorithms,
heuristics or replacing the lower level problem by a cheaper
model, surrogate to the original one Erdirik-Dogan and
Grossmann (2008); You et al. (2011); Chu et al. (2015).

This study proposes a framework for iteratively reduc-
ing the size of metabolic networks given available data.
The proposed framework is applied to a Chinese Ham-
ster Ovary (CHO) cell metabolic model and tested with
experimental datasets from carbon labeling experiments.
Our approach is inspired by both lumping and sensitivity
analysis methods, as it suggests which reactions could be
removed (or lumped) via exploration and exploitation of
different reaction removal combinations. Furthermore, it
allows for adaptation to new data, bridging a gap between
structural and functional reduction techniques.

The contributions of this work are as follows: (1) we
introduce a bilevel approach for the iterative reduction
of metabolic network models, adaptable to data; (2) we
aggregate structural reduction with sensitivity analysis
and make use of that for the decision which reaction to
remove; (3) by leveraging a surrogate model for the lower-
level, our framework is amenable to any initial network
model size; and (4) we demonstrate the applicability of
our framework for different CHO cell culture datasets.
Our proposed framework can be used at the process
development and manufacturing levels, when deciding
which model to use given measurement availability, but
also at the metabolic model curation stage, as it can
consider different gene annotations in the search space.

2. METHODOLOGY

2.1 Framework Overview

Our approach, shown in the following figure 1, is bilevel.
The two levels comprise the following:

(1) Upper-Level Problem: Iterative reduction of the
metabolic network via the assignment of a contin-
uous probability value (between 0 and 1) to each
unmeasured reaction. The exploration/exploitation is
conducted through Bayesian Optimisation.

(2) Lower-Level Problem: Checking the feasibility of the
metabolic network model followed by conducting flux
sampling in order to evaluate how well the new model
performs. The performance is then used as feedback
to refine the upper-level decisions.

Fig. 1. Bilevel Approach. The upper level iteratively re-
duces the metabolic network size by assigning reac-
tion removal probabilities to each reaction. The lower
level evaluates the feasibility and performance of the
reduced model from the upper level. The stopping
criteria was the number of iterations (250).

As shown in figure 1, solving the metabolic model requires
optimisation. This means that this bilevel approach con-
tains an optimisation in both layers. Solving the bilevel
optimisation problem directly was considered intractable.
As such, the metabolic network optimisation is replaced
by a Gaussian process, which can be sampled, rather
than optimised. The proposed framework to solve the
bilevel problem is shown in the following figure 2. It is
composed of a training and a validation phase. In the
training phase, we define a train a Gaussian Process (GP)
surrogate that predicts the impact of reaction removals on
the model performance. This process includes performing
kernel selection, kernel hyperparameter optimisation and
model training. We use Bayesian Optimisation to itera-
tively refine the best set of reactions to be removed from
the model, using the GP. This process includes allowing
the optimisation to suggest an set of reaction removal
probabilities, checking for feasibility of the model with
FBA, flux sampling the new model, calculating the error
between predicted and experimental fluxes and iteratively
updating the model with the lowest error. Each of these
major steps will be explained in detail in the following
subsections.

2.2 Outer Loop: Training Phase

The training process consists of iterating through each of
the multiple datasets (6 in total, 80% used for training),
and for each identifying the set of reaction probabilities
with the lowest loss function. The final reaction probabil-
ities set will be the lowest of all of the datasets.

2.3 Inner Loop: Bayesian Optimisation

For the inner loop, a custom Bayesian Optimisation pro-
cess was setup. We define a Gaussian Process (GP) as a
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surrogate model that relates the probability of reaction
removal with metabolic model performance. A custom
acquisition function is defined as:

a(x) = µ(x)− 0.01σ(x) + 0.1(
1

R

R∑
i=1

xi) (1)

where µ(x) is the predicted mean loss for reaction prob-
abilities, σ(x) is the predicted standard deviation, R the
number of reactions and the last term is a regularization
term to prevent removal of a lot of reactions. This acquisi-
tion function aims to balance exploration and exploiting,
while encouraging a sensible network sized model. The op-
timisation of the acquisition function uses scipy minimize
routine (Virtanen et al., 2020), specifically the L-BFGS-B
optimiser.

The GP surrogate is trained by fitting a Gaussian Process
Regressor to the training data. For efficiency reasons, only
the first dataset is used to for model selection as well as
train the kernel’s hyperparameters. Each kernel is evalu-
ated using k-fold cross validation, by computing the neg-
ative log-marginal likelihood. The kernel with the lowest
score is selected and used for the subsequent iterations.

Loss Function

The loss function is composed of four main steps:

(1) Reaction Removal based on Probabilities: Reactions
are removed if their probabilities are below a user-
defined threshold.

(2) Feasibility Check: A standard FBA Orth et al. (2010)
is run to check that a feasible solution exists. If not,
the the irreducible infeasible subsystem of the prob-
lem is calculated to define the constraints that are
infeasible (Gurobi Optimization, LLC, 2024). Those
constraints are relaxed, and this iteration is repeated
until the problem has a solution or a maximum of 50
iterations is achieved.

(3) Flux Sampling of 5000 samples is conducted (Saun-
ders et al., 2019).

(4) Calculation of Total Loss (explained below).

The total loss is computed as follows:

Total Loss = α×WMAE+ β × Flux Variability

+ γ × Sparsity Penalty
(2)

The Weight Mean Absolute Error (WMAE) is defined as
the difference between the average sampled fluxes (from
flux sampling) and experimental fluxes (the mean values
of the datasets), normalized by the standard deviation
(assumed to be half the gap between lower and upper
bounds of the experimental values). N stands for the
number of measured reactions.

WMAE =
1

N

N∑
i=1

∣∣∣vsample
i − vexpi

∣∣∣
σexp
i

(3)

Flux Variability represents the standard deviation across
samples:

Flux Variability =
1

N

N∑
i=1

σ
(
vsamples
i

)
(4)

The Sparsity Penalty acts like a regularization term that
discourages removing too many reactions, as it scales with
the sum of 1− reaction probability, represented by pi.

Sparsity Penalty =
1

R

R∑
i=1

(1− pi) (5)

α, β and γ represent the importance of each of different
parts that compose the loss, are were given the values of
1.0, 0.1, 0.01.

2.4 Validation Phase

The validation phase consisted in sampling the model,
applying the reaction removals obtained in the training
phase and resampling the model, with the experimental
bounds of the validation datasets.

2.5 Experimental Data and Pre-Processing

The applicability of the framework is demonstrated us-
ing published data from carbon labeling Chinese hamster
ovary (CHO) cell culture experiments presented in various



studies and summarised in Strain et al. (2023b). The data
comprises uptake and secretion rates for CHO cells grown
under various conditions, as well as intracellular fluxes
estimated from 13C labelling. Two cases were considered,
with two different thresholds and different training and
validation datasets. Table 1 summarizes the setup. The

Threshold 0.4 0.6

Training

SVGS SV
SVM1 SVM1
SVM2 SVM2
SVM4 SVM3

Validation
SV SVGS

SVM3 SVM4

Table 1. Training and Validation Cases for
Different Thresholds

base model used for reduction is CHOmpact (Jiménez del
Val et al., 2023). It contains 144 reactions and 156 metabo-
lites. This model was chosen for its relevance to CHO cell
metabolism, making it an ideal starting point for applying
the iterative reduction methodology. The framework is
modelled in Python 3.10. We used an Intel Core i7 CPU
with 6 Cores and 12 Logical Processors, and Microsoft
Windows Pro as our operating system.

3. RESULTS & DISCUSSION

3.1 Hyperparameter Tuning of Gaussian Process Model

The two Gaussian Process (GP) models have a similar
structure but differ in their kernel hyperparameters. Both
models use a kernel of the form:

k(x, x′) = σ2
1 ·Matern(ℓ1, ν) + σ2

2 · RationalQuadratic(α, ℓ2)

+ σ2
n ·WhiteKernel. (6)

where:

Matern(ℓ, ν) =
1

Γ(ν)2ν−1

(√
2ν∥x− x′∥

ℓ

)ν

Kν

(√
2ν∥x− x′∥

ℓ

)
,

RationalQuadratic(α, ℓ) =

(
1 +

∥x− x′∥2

2αℓ2

)−α

,

WhiteKernel = σ2
nδ(x, x

′).

where the Matern and Rational Quadratic kernels capture
different smoothness properties of the function, and the
White Kernel accounts for noise.

3.2 Reduced Model

Figure 3 shows the reaction probabilities for both thresh-
olds. The probability of each reaction is computed in the
inner loop of the methodology presented in 2 based on
whether its inclusion improves model accuracy when com-
pared to experimentally determined flux values. A thresh-
old of 0.6 results in a model with 64 reactions, whereas
a threshold of 0.4 results in a model with 84 reactions.
This is to be expected, as a lower threshold leads to more
reactions being retained in the model.

Kernel Parameters Threshold 0.6 Threshold 0.4

Matern
Length Scale (ℓ) 1.54× 10−5 0.138
Smoothness (ν) 1.5 1.5

Rational Quadratic
Alpha (α) 0.0342 1.0× 105

Length Scale (ℓ) 1.0× 10−5 3.52

White 1.0× 107 1.0× 107

Table 2. Comparison of Gaussian Process (GP)
Models

Fig. 3. Reaction Probabilities for threshold of 0.6 and 0.4.

Figure 4 depicts the metabolic network with the reaction
probabilities for the two different threshold cases. Darker
and thicker lines have a higher reaction probability while
grey lines exhibit lower reaction probabilities. The higher
threshold model appears to retain stronger flux across ma-
jor pathways, with fewer low-flux pathways being present,
whereas the lower threshold model allows for a broader
range of fluxes, given that it eliminated less reactions.

Some reactions are present in both reduced models and
in the list of measured reactions, including important
exchange reactions for glucose and lactate, and biomass
synthesis. When moving to a higher threshold, there are
reactions that are initially excluded, such as certain gly-
colytic fluxes (F3, F4 and F6). Instead and counterin-
tuitively, carbon flux is channelled through the pentose
phosphate pathway. The opposite also occurs; the product
flux (F143) has a very high probability of retention in
the higher threshold (0.81) and a very low probability
in the lower threshold (0.07). This might be due to the
fluxes being more sparse in the lower threshold, which
may cause the flux leading to the product precursors being
insufficient to justify keeping that particular flux (figure 4).
We therefore proceed to enforce the retention of measured
reactions a posteriori.

3.3 Performance

The original model was reduced according to the proba-
bility values; however, the measured reactions were always
included regardless of their probability value. This rule
was imposed a posteriori to give the optimiser maximum
flexibility. After reduction, both the initial and the reduced
models were sampled. Similarly to what was described in



(a) Threshold = 0.4

(b) Threshold = 0.6

Fig. 4. Reduced network model

section 2.3, after applying the bounds, a feasibility check
was conducted and bounds were selectively relaxed based
on its results.

Fig. 5. Flux Distributions before and after model reduction
on validation dataset SVM3 (threshold = 0.4).

Figure 5 depicts the flux distributions before and after
model reduction, for fluxes 1,2 27 and 84. In the original
model, the product of reaction 1 can flow to reaction 2,

27, 84 or 63. Flux 63 was removed from the model due
to its probability being below the threshold (0.33). Of the
remaining ones, only flux 84 is unmeasured. It is observable
that fluxes 27 and 84 retained their mean and shape after
reduction. The distribution for flux 2 became narrower
but the mean was practically unaffected. Flux 1, however,
exhibited a significantly narrower distribution despite the
mean only increasing half of a tenth-unit. In this example,
the model reduction narrowed the sampling space. This
could be either attributed to the feasibility relaxation or
the fact that reduced models have fewer sinks, and as such
the density per flux needs to be higher.

Fig. 6. Flux Distributions before and after model reduction
on validation dataset SVM4 (threshold = 0.6).

Figure 6 provides an analysis for the same set of reactions,
but for another validation set and for threshold = 0.6.
In this case, flux 84 was removed, having a probability
of 0.35. Similarly to the previous case, the mean of the
samples is relatively unaffected before and after sampling.
However, the spread of the reduced model is narrower and
the density higher.

3.4 Implications for Experimental Design

The results show that this tool can help reduce the size of
metabolic models, while retaining key metabolic pathways,
in a systematic and automated way. The trade-off between
model size and reaction retention is context-dependent,
and as such different thresholds should be studied. The
proposed methodology could also be used as a tool to
prioritize future experimental measurements.

4. CONCLUSION

This study presented a framework for metabolic network
reduction based on flux sampling and Bayesian optimisa-
tion. The framework presents an alternative to existing
methods that consider both lumping and sensitivity anal-
ysis techniques, and capitalizes on existing fluxomic data
from carbon labeling experiments.

The workflow includes a tuning step of the surrogate model
used for the optimisation, which increases the computa-
tional burden of the framework. Future work will focus
on reducing this computational effort by exploring other
hyperparameter tuning techniques, such as automated or
adapted methods. Additionally, we aim to explore alter-
native metrics for the quantification of model performance



and incorporate a cross-validation step for gene essentiality
to make this workflow amenable to genome-scale models.
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