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Abstract:
General anesthesia, typically induced using a combination of hypnotic (propofol) and analgesic
(remifentanil) drugs, is crucial for the success of surgical procedures, but it can cause dangerous
cardiovascular side effects. In this context, models and simulations offer new opportunities to
address the intrinsic complexity of the process, accelerating advances and innovation in the
technology of anesthesia. This study aims to improve the modeling of hemodynamic effects under
general anesthesia by expanding the applicability of a recent mechanistic model in combination
with data-driven modules. In particular, we use a dataset related to plastic surgery for both
model calibration and testing, preserving the physical interpretability of the mechanistic model
while integrating it with data-driven components to enhance its predictive capabilities. The
results demonstrate a significant improvement in the model ability to simulate hemodynamic
variables under surgical conditions, offering potential applications for anesthesia monitoring and
control systems design that consider the patient’s cardiovascular safety. This enhanced hybrid
model provides a more accurate representation of the complex interactions between anesthetic
drugs and cardiovascular dynamics in real surgical settings.

Keywords: Control of Total Intravenous Anesthesia, first-principle model, data-driven model,
hemodynamic effects.

1. INTRODUCTION

Surgical procedures are a routine part of medical prac-
tice, with millions of people worldwide undergoing surgery
every day. One of the critical factors contributing to the
success of these complex procedures is general anesthesia,
which is accomplished through the combined administra-
tion of hypnotic and analgesic drugs, typically propofol
and remifentanil (Smith et al., 2023). Over the past two
decades, the integration of technology into various aspects
of medicine has led to the adoption of automation in
anesthesiology practice. This has been achieved through
a range of solutions, including PID control and model
predictive control (Pawlowski et al., 2023; Schiavo et al.,
2023). These solutions are designed to optimize drug in-
fusion, enhancing patient safety by preventing over- or
under-dosing, detecting critical events, and reducing the
overall workload of anesthesiologists as well as anesthesia-

related costs (Ghita et al., 2020). However, closed-loop
control systems often focus solely on utilizing an indicator
of depth of hypnosis as the controlled variable, without
considering the effects of the drugs on other vital vari-
ables critical to patient safety. For instance, propofol and
remifentanil can cause cardiovascular side effects, particu-
larly arterial hypotension, which significantly impacts sur-
gical outcomes (Elliott et al., 2000; Sahinovic et al., 2018).
Intraoperative hypotension has been associated with an
increased risk of postoperative mortality, myocardial in-
jury, myocardial infarction, cardiogenic shock, acute re-
nal failure, delirium, and stroke (Guarracino and Bertini,
2022). In this context, predicting hemodynamic variables
can enhance patient safety and stability by enabling pre-
cise, personalized drug dosing, particularly in automated
anesthesia systems, to prevent complications and support
faster recovery. However, existing hemodynamic models
are limited, with many being empirical and lacking physi-



ological grounding, making them difficult to interpret and
to accept clinically (Su et al., 2023). To the best of our
knowledge, the mechanistic model proposed in (Su et al.,
2023) is the first to describe both the functioning of the
cardiovascular system and how the interaction between
propofol and remifentanil affects it. The model is a human-
scale extension of a previously identified hemodynamic
model that was developed in rats (Snelder et al., 2014).
Although the model is potentially clinically acceptable due
to its physical nature, we hypothesize that it is not yet
suitable for simulating hemodynamic variables in practical
applications. Its development was based on data from a
single study (Kuizenga et al., 2018) involving a healthy, ho-
mogeneous population without surgical stimulation, which
oversimplifies the physiological responses occurring during
invasive procedures in realistic settings.

The aim of this study is to to extend the applicability
of the (Su et al., 2023) mechanistic model for forecasting
hemodynamic data during surgeries. This is achieved by
preserving as much of the original model structure as pos-
sible while balancing goodness-of-fit and interpretability.
To this end, we propose a hybrid approach that combines
the mechanistic model with black box models in a first-
principle-data-driven fashion. In particular, the overall
model is calibrated and tested exploiting a dataset which
includes anesthesia-related observations from 48 plastic
surgery procedures.

The paper is organized as follows: the surgery dataset is
presented in Section 2.1. A brief overview of the (Su et al.,
2023) mechanistic model is presented in Section 2.2. The
proposed methodologies involving model calibration and
hybrid modeling are described in Sections 2.3 and 2.4,
respectively. Results are reported in Section 3. Finally,
discussion of results and conclusions are given in Section
4.

2. METHODS

2.1 Data description and pre-processing

The dataset consists of anesthesia-related observations
from 48 plastic surgery procedures performed at Brescia
Hospital in Italy and it is limited to cases where only
propofol and remifentanil were administered to minimize
potential confounding effects from other drugs. Patient de-
mographic data include age, sex, weight, height, and Body
Mass Index (BMI). The cohort comprises 16 male and 32
female patients, with ages ranging from 27 to 82 years,
thereby encompassing the entire adult age spectrum. BMI
ranges from 19.2 to 36.4 kg/m2, representing a general
population that includes both underweight and obese indi-
viduals. The considered variables are propofol infusion rate
up [µg·s−1], remifentanil infusion rate ur [ng·s−1], Hearth
Rate (HR) [min−1], non-invasive Systolic blood Pressure
(SP) [mmHg] and non-invasive Diastolic blood Pressure
(DP) [mmHg]. Since specific and complex instrumentation
is required, variables such as Total Peripheral Resistance
(TPR) and Stroke Volume (SV) are not directly measured
in practice. However, it is possible to obtain indirect mea-
surements of these variables by exploiting some relation-
ships that describe the physiology of the cardiovascular
system. Starting from SV, assuming that the ability of

the arterial system to expand and contract in response to
changes in blood pressure remains constant, SP and DP
can be used as a surrogate of SV as: SV = 1.5 (SP −
DP) (Su et al., 2022). Mean Arterial Pressure (MAP) is
calculated using MAP = (SP + 2DP) /3.
Propofol plasma concentrations Cpp [µg/mL] are esti-
mated by giving up in input to the pharmacokinetics (PK)
model presented in (Eleveld et al., 2018). Remifentanil
plasma concentrations Cpr [ng/mL] are estimated by giv-
ing ur as input to the PK model presented in (Eleveld
et al., 2017).
We will refer to the considered patients group with S.
The following approaches are tuned on a group STRAIN =
{s1, s2, · · · , s40} of 40 subjects, while to analyse the
generalizability of our methods, we use the remaining 8
subjects denoted as STEST = {s41, · · · , s48}.

2.2 Mechanistic model

The mechanistic model presented in (Su et al., 2023)
distinguishes between two types of parameters: system-
specific and drug-dependent. The former describes the
cardiovascular system’s physiological functioning, includ-
ing the baroreceptor reflex and the inverse effect of HR
on SV (Snelder et al., 2014). The latter details how the
interaction between propofol and remifentanil affects the
cardiovascular system itself. To have a deep understanding
of each parameter, see (Su et al., 2023). Here, we propose
to rewrite the model in its state space representation:{

ẋ(t) = f (x(t)) + g (x(t)) l (u(t)) ,

y(t) = h (x(t)) ,
(1)

where x ∈ R3×1 is the state vector, f ∈ R3×1, g ∈ R3×5

and h ∈ R are nonlinear functions of x, and l ∈ R5×1 is a
nonlinear function of the system inputs u ∈ R2×1.
More specifically,

x =

[
x1(t)
x2(t)
x3(t)

]
=

[
TPR(t)
HR(t)
SV∗(t)

]
, (2)

f = k

 x10x20x30

1− IE ln
x2(t)

x20


FB

A(x(t)) x(t)◦(−FB)

− kx(t), (3)

g = kB(x(t)). (4)

In (3), ◦(−FB) denotes the Hadamard power of the vector
x, obtained by raising each entry to the −FB power.
Moreover, FB, IE, and k [s−1] are positive system-specific
parameters (Su et al., 2023). The initial conditions of x(t),
i.e., x(0) are x10, x20, and x30, and they are set to the
median values of the observed TPR, HR and SV before
the start of drug administration. In (3) and (4), A ∈ R3×3

and B ∈ R3×5 are matrices that depend on the state vector
and they are defined in (5) and (6).



B =



x10

 x10x20x30

x1(t)x2(t)x3(t)

(
1− IE ln

x2(t)

x20

)


FB

0 x1(t) 0 0

0 0 0 x2(t) 0

0 x30

 x10x20x30

x1(t)x2(t)x3(t)

(
1− IE ln

x2(t)

x20

)


FB

0 0 x3(t)


(6)

A =


x10

(x2(t)x3(t))
FB

0 0

0
x20

(x1(t)x3(t))
FB

0

0 0
x30

(x1(t)x2(t))
FB


(5)

In (1), l is a function of u(t) = [Cpp(t), Cpr(t)]⊺ defined
as follows:

l =


EpTPR(u(t))
EpSV(u(t))
ErTPR(u(t))
ErHR(u(t))
ErSV(u(t))

 , (7)

where each row corresponds to a pharmacodynamic (PD)
relation. In particular, EpTPR(u(t)) and EpSV(u(t)) de-
scribe propofol’s effect, influenced by remifentanil, on TPR
and SV, respectively. Similarly, ErTPR(u(t)), ErHR(u(t))
and ErSV(u(t)) represent the effect of remifentanil, in-
fluenced by propofol, on TPR, HR and SV, respectively.
These PD functions constitute the drug-specific part of the
(Su et al., 2023) model.
Finally, MAP is the model output y(t) ∈ R defined by the
h function in (1) as follows:

h = x1(t)x2(t)x3(t)

(
1− IE ln

x2(t)

x20

)
. (8)

2.3 Model calibration

We recalibrate the mechanistic model to enhance its per-
formance in predicting data specific to surgical procedures,
as its original development dataset did not fully represent
real invasive operations. Our approach seeks to optimize
specific parameters to values closely aligned with those
identified in (Su et al., 2023), thereby maintaining their
biological significance.
First, we perform a Global Sensitivity Analysis (GSA)
to gain a deep understanding of the mechanism-based
model and to rank its parameters. Then, the most influ-
ential parameters are optimized to provide a calibrated
version of the model. Thus, GSA avoids the problem of
blindly selecting parameters for optimization. Our ap-
proach involves screening parameters using Morris indices
evaluation (Morris, 1991), followed by ranking the sig-
nificant parameters quantitatively by decomposing the
variance of the model output into fractions attributable
to parameters or a combination of parameters (Saltelli,
2008). High-ranked parameters are those that most sig-
nificantly influence the variability of the model output.
For the mechanistic model (1), we estimated the so called

first-order and total-order Sobol indices (Saltelli, 2008).
GSA was performed using the SAFE Toolbox (Pianosi
et al., 2015) version for MATLAB, which is available at
https://safetoolbox.github.io.
Formally, we denote by p the set of parameters of model
(1). We choose to optimize the m most sensitive param-
eters, that are denoted by ϕ. The goal is to solve the
following minimization problem:

ϕ∗ = arg min
ϕ∈Φ

{J(ϕ)STRAIN
} (9)

where J is a cost function designed for quantifying the
performance of (1), evaluated for a given ϕ, in predicting
hemodynamics observations in STRAIN. The solution of
(9) is the set of optimal parameters ϕ∗ that minimizes J ,
found within the m-dimensional parameters search space
Φ. We denote by p∗ the parameter set resulting from sub-
stituting the m optimized parameters ϕ∗ for their original
values in p.
In practice, to solve (9), we employ the Bayesian Optimiza-
tion (BO) methodology (Shahriari et al., 2015), following
an implementation protocol inspired by (Villaverde et al.,
2022), which is summarized in Alg. (1).

Algorithm 1 Parameters Optimization

Initialize: ϕ ▷ Select m most sensitive parameters
Initialize: k ▷ Number of folds for cross-validation
Initialize: {S1, S2, · · · , Sk} = STRAIN ▷ Disjointed
sub-groubs of training subjects
for i = 1, · · · , k do

S
(i)
validation ← Si

S
(i)
train ← S∼i ▷ All sub-groups other than Si

ϕ∗(i) = arg minϕ∈Φ

{
J(ϕ)

S
(i)
train

}
▷

Optimized parameters for current training group using
BO. J is calculated through (10).

∆i (ϕ∗) =

∣∣∣∣∣J(p)−J(ϕ∗(i))
S
(i)

validation

J(p)

∣∣∣∣∣ ▷ Relative J drop

on validation group
end for
ϕ∗ = arg maxϕ∗∈{ϕ∗(1), ϕ∗(2), ··· , ϕ∗(k)} {∆1:k(ϕ∗)}

The J we design depends on both y and the states x2 and
x3, as we are able to compare them with the available data.
Specifically, considering a generic subject s ∈ STRAIN, we
denote the MAP observations over time with the vector

y(s) =
[
y(s)(0), y(s)(t1), · · · , y(s)(tns)

]⊺ ∈ R(ns+1)×1

and HR and SV observations with vectors x
(s)
2 and x

(s)
3 .

Similarly, we build the (ns + 1)-dimension vectors Cp
(s)
p



and Cp
(s)
r that compose u(s) (see Sec. 2.2) to be given as

input to the model (1) in order to obtain predictions ŷ(s),

x̂
(s)
2 and x̂

(s)
3 . Then, we evaluate the Root Mean Squared

Error (RMSE) for each prediction within s as an indicator
of prediction quality. For ŷ(s) it is calculated as

RMSE(s)
y (ϕ) =

√[
y(s) − ŷ(s)

]⊺ [
y(s) − ŷ(s)

]
ns

and the same can be done to calculate RMSE(s)
x2

(ϕ) and

RMSE(s)
x3

(ϕ). Finally, to build J with the required specifi-
cations to solve the minimization problem (9), we define:

J(ϕ)S =
∑

i∈{y,x2,x3}

wi

( ∑
s∈S RMSE

(s)
i (ϕ)

max{RMSE
(s)
i (ϕ)}s∈S

)
. (10)

The normalization in (10) allows us to compare the RMSE
of different quantities. The weights wy, wx2

and wx3
are

positive user-defined values such that wy +wx2
+wx3

= 1.
S represents the general group of subjects for which we
aim to globally assess the model performance.

2.4 Hybrid modeling

Techniques aimed to identify unknown or partially-known
process mechanisms constrained by already defined first-
principles equations are referred to as hybrid modeling
(Sohlberg and Jacobsen, 2008; Czop et al., 2011). In this
context, parallel and series hybrid options integrate first-
principle (white-box) and data-driven (black-box) mod-
els. The difference lies in how these modules interact to
generate the final prediction. In hybrid-parallel architec-
tures, the two modules are both fed with the same data
simultaneously: while the mechanistic module estimates
the system behavior based on first principles, the data-
driven component aims to predict the residuals that need
to be added to the mechanistic model predictions to obtain
the observed experimental data (Duarte et al., 2004). The
main challenge is to train, using STRAIN, a generalizable
black-box model zpar (u, ŷ, x̂2, x̂3, θpar) able to give a
prediction of ry = y−ŷ, rx2 = x2−x̂2 and rx3 = x3−x̂3,

where y is a vector built by concatenating y(s) ∀s ∈
STRAIN, formally:

y =
[
y(s1)

⊺
, y(s2)

⊺
, · · · , y(s40)

⊺]⊺ ∈ R
(∑40

i=1
(nsi

+1)
)
×1

.
(11)

The calculation in (11) is similarly performed to obtain
ŷ, x2, x̂2, x3, x̂3, Cpp and Cpr. Then, we can form u =
[Cpp, Cpr]⊺. θpar is the set of hyper-parameters of the
black-box model. Once trained, the black-box model zpar
can be used in the forecasting phase to predict residuals
that are then added to the mechanistic model outputs in
order to obtain the final parallel hybrid model predictions.
For hybrid models developed using the series approach,
the two modules are fed sequentially (Duarte et al., 2004;
Czop et al., 2011). Here, we propose a sequential approach
in which the black-box model zser(u, θser) predicts for
a given subject s, a subset of m′ optimized parameters
ϕ∗(s) that update p∗(s) of the mechanistic model (1),
which is used to model the system. This series approach
can be seen as a personalized auto-calibration of some
parameters during the simulation. The choice of the m′

parameters to optimize is guided by GSA. θser denotes

the hyperparameters of the model.
To train zser, we must first derive ϕ∗(s) ∀s ∈ STRAIN

by solving the minimization problem (9) separately ∀s.
For this training procedure, we can still exploit Alg.
(1) by performing the k-fold cross-validation on each
subject sample points. Finally, the training is performed
by providing u as input to zser and the concatenation of
ϕ∗(s) ∈ R1×m′ ∀s ∈ STRAIN as the output to predict.
As regards the last hybrid modeling technique we propose,
it is a combination of the two previous ones. That is, a
further data-driven model

zpar′ (u, ŷser, x̂2ser , x̂3ser , θpar′) ,

is added in parallel to the previous described hybrid model
zser(u, θser) with the task of correcting its predictions.
This involves an increase in the structural complexity of
the overall model, as well as a decrease in its interpretabil-
ity: in total 3 models are involved, 2 of these are black-box
models.

The developed data-driven models were simple Feedfor-
ward Neural Networks (FNNs), chosen based on prior re-
search highlighting their extensive use in hybrid modeling
approaches (Duarte et al., 2004; Sohlberg and Jacobsen,
2008). we considered FNNs with tanh as the activation
function for a single hidden layer composed of L neurons,
where L is a hyperparameter to be tuned. In general,
the nets identification process involves dividing STRAIN

data into training data (85%) and validation data (15%).
Then, to tune L we manually train the network with an
increasing L from 2 to 20. The final L value we choose
is the one that lead the network to have the lowest J
calculated for validation subjects as in (10). Additionally,
the inclusion of demographic variables among the network
inputs is assessed. Demographic variables are evaluated in-
dividually for inclusion in the model. A variable is retained
if its addition reduces prediction error on the validation
data; otherwise, it is excluded if it does not improve or
worsens prediction quality. The implementation was per-
formed using the Deep Learning Toolbox in MATLAB.

3. RESULTS

The mechanistic model presented in (Su et al., 2023),
its calibrated version, and the three implemented hybrid
models are compared by performing predictions on sub-
jects not used during the development of our approaches.
We employ the cost function JSTEST

as in (10) to eval-
uate models performance of the whole test group. We
observe that our calibration results in a 23% reduction
in JSTEST

compared to the original model (see Fig. 1).
Furthermore, all hybrid models performed better than the
calibrated model, particularly due to the inclusion of FNNs
in parallel for residual estimation. The best prediction
quality was achieved by the hybrid series-parallel model,
which shows a 34% reduction in JSTEST

compared to
the original model. We also compare the performance of
the original model and the best hybrid model for each
test subject individually. As shown in Fig. 2, the hybrid
model outperforms the original model in all test subjects
except one. To achieve these results, Alg. (1) is iterated
for increasing values of m. We found that using m = 3
parameters to optimize yields the best result in terms of
cost function reduction during validation. The m = 3
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Fig. 1. Models performance comparison in terms of the
RMSE-based cost function (10) evaluated for the
whole group of test subjects. The number of parame-
ters #p is also reported.
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Fig. 2. Performance comparison between the (Su et al.,
2023) mechanistic model and the hybrid series-
parallel hybrid model in terms of the RMSE-based
cost function (10) evaluated for each test subject
separately.

most sensitive mechanistic model parameters according
to GSA are the system-specific parameter FB and the
drugs-specific parameters INTHR and Emaxp TPR. Once
optimized, these parameters experienced the following ab-
solute changes from their nominal values: -5%, +29% and
-30%, respectively. As regards the design of JS in (10), we
assign a greater weight wy with respect to wx2

and wx3
,

because MAP is the most critical hemodynamic variable
to evaluate for patient safety among the three. Considering
that we aim to employ the model to impose hemodynam-
ics constraints during automatic anesthesia control, an
accurate MAP prediction would be preferred. Then, an
intermediate value is assigned to wx2

. As for wx3
, a lower

weight is assigned since it is an indirect measure that holds
true under certain assumptions (Su et al., 2022). Following
these considerations the weights wy = 0.4, wx2

= 0.35 and
wx3

= 0.25 were set. As for the final structure of the FNNs
adopted for the hybrid models, zpar has a number L = 4
of hidden neurons, 9 input and 3 output neurons. The
patient’s demographics BMI, weight and sex were added
to the net inputs. The FNN for zser has a number L = 5
of hidden neurons, 6 input and 8 output neurons. The
inclusion of patient’s demographics BMI, weight and sex
proved to be influential in achieving a better fit for this
network as well. Note that for this model the 8 outputs
are the 8 most sensitive parameters according to GSA,
as we found that this number of parameters gave bet-
ter results in training phase. Specifically, these are FB,
INTHR, Emaxp TPR, INTSV, INTTPR, Emaxp SV0 and
Emaxr TPR (see (Su et al., 2023) for description). Finally,
the FNN adopted for the hybrid model zpar′ has a number

L = 6 of hidden neurons, 7 input and 3 output neurons.
The patient’s demographics BMI and sex were added to
the net inputs.

4. DISCUSSION AND CONCLUSIONS

The only published mechanistic model for predicting
hemodynamic variables during anesthesia with propofol
and remifentanil (Su et al., 2023) was utilized in this
study. However, we observed that its predictions did not
adequately capture anesthesia-induced hemodynamic vari-
ations in a surgical setting. This limitation may arise
because the cardiovascular system is highly complex and,
during clinical interventions, is significantly affected by
adverse drug reactions, complications, surgical incisions,
noxious stimuli, fluid loss, and other factors that are likely
not fully captured by the mechanistic model’s structure.
Moreover, the data used for model identification originate
from a study design that does not fully account for the
system’s complexity under surgical conditions.
We aimed to improve mechanistic model adherence to
experimental data by preserving its structure in order to
maintain its biological interpretability. To achieve this,
we calibrated the model by optimizing its most sensitive
parameters. This adjustment improved the model’s fit to
test subjects (Fig. 1); however, it did not fully capture the
higher frequency dynamics. Notably, parameter optimiza-
tion resulted in a 5% decrease in FB, indicating a reduced
magnitude of the baroreceptor reflex. This is likely due
to the greater heterogeneity of subjects in our dataset or
the higher drug concentrations (primarily remifentanil),
which may contribute to baroreflex inhibition. The sub-
stantial increase in the absolute value of INTHR appears to
mitigate the HR-raising effect of remifentanil, suggesting
that at high concentrations, remifentanil may not exhibit
the same HR-raising effect reported in (Su et al., 2023).
It is crucial to emphasize that these considerations hold
true only when these parameters are uniquely identifiable;
otherwise, their biological significance becomes ambigu-
ous or even lost. However, conducting an identifiability
analysis for a highly nonlinear model is challenging. As
suggested by (Dobre et al., 2010), GSA can serve as a
valuable tool for gaining insights into parameter identi-
fiability. In this study, we leveraged GSA to establish a
ranking of parameters, providing an initial step toward
understanding their relative importance. In future work,
we intend to further explore GSA techniques specifically
for identifiability assessment, along with a potential re-
parameterization of the model.
Our results confirm that incorporating data-driven models
significantly improves the goodness of fit. In particular,
estimating residuals proves highly effective, whether ap-
plied in parallel with the calibrated mechanistic model or
within the hybrid series model. This effectiveness arises not
only from the increased model complexity and parameter
count but also from the ability of the black-box model to
capture unexplained dynamics in residuals during training.
Notably, the hybrid approach outperformed the calibrated
mechanistic model in 7 out of 8 test subjects (Fig. 2). The
slightly poorer performance observed in subject s48 may
be attributed to peculiar surgical events not represented
within the training group. Overall, only 48 patients were
included in this study, and developing more generaliz-
able black-box models may require a significantly larger



dataset, potentially incorporating data from multiple cen-
ters and hospitals. However, the analysis of residuals from
the best-performing hybrid model indicates that not all
system dynamics are captured. In a future work we will
employ advanced neural networks to achieve white noise
residuals.
Another limitation of our study is that integrating black-
box models with the mechanistic model negatively impacts
its interpretability, a crucial factor for clinical approval. To
address this, methods such as SHAP analysis (Ali et al.,
2023) will be implemented to enhance the explainability of
black-box model predictions. Additionally, we excluded in-
traoperative boluses of drugs to avoid confounding effects
on hemodynamics. While propofol and remifentanil are
the primary agents used for hypnosis and analgesia during
general anesthesia, boluses of other drugs are frequently
administered and contribute to variations in hemodynamic
variables. Future work should incorporate these additional
drugs into the model to improve its physiological accuracy.

In conclusion, we proposed a methodology for adapting
a mechanistic model predictions to hemodynamic obser-
vations in a heterogeneous patient population undergoing
real surgical procedures by optimizing most sensitive pa-
rameters. Additionally, we developed hybrid approaches
that balance interpretability and goodness-of-fit by inte-
grating black-box models with the calibrated mechanistic
model. With access to a larger, multi-center dataset and
more sophisticated neural network approaches, alongside
with their explainability analyses, our approach could be
further refined and potentially integrated into automated
anesthesia control strategies, ensuring that drug infusion
rates maintain the patient’s hemodynamic variables within
a safe range.
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