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Abstract: This paper proposes a new generic mass balance model that allows simulating biological cultures 

in bioreactors at a macroscopic scale. A multi-layer perceptron (MLP) describes the kinetic and 

stoichiometric parts of the model with one input layer (made of the concentrations of the different 

components, as well as their inverse TReLU – Thresholded Rectified Linear Unit – transforms), one hidden 

layer (each neuron output corresponding to one specific reaction rate and being activated by a reciprocal 

function 1 / x ) and one output layer (each neuron output being the sum of all the reaction contributions of 

a specific component to its mass balance). The parameters to be identified are split into two subsets: one 

for the kinetic parameters (weights on the links between input layer and hidden layer) and one for the 

stoichiometric parameters (weights on the links between hidden layer and output layer). This MLP structure 

exhibits several advantages, among which its versatility, the biological interpretation of the parameters, 

and an easy and efficient first estimation of the kinetic and stoichiometric parameters based on 

measurements of the component concentrations and estimations of their time derivatives. The first 

parameter estimation can subsequently be used for model reduction and as initial guess for a final nonlinear 

parameter estimation of the set of ODEs describing the mass balances. The performances of the new generic 

model are illustrated with a simulated case study.  

Keywords: mass balance model, kinetic model, kinetic parameters, stoichiometric parameters, multi-layer 

perceptron, biological culture, bioprocess, parameter identification. 

 

1. INTRODUCTION 

Mass balance models at a macroscopic scale are abundantly 

used for predicting concentration time profiles of the main 

extracellular components (e.g., substrates, metabolites, 

products of interest), as well as the biomass, in biological 

cultures performed in bioreactors (Bastin and Dochain, 1990; 

Mairet and Bernard, 2019). Lots of specific kinetic model 

structures have been introduced, accounting for different 

effects (e.g., activation, saturation, inhibition) of some 

components in some reactions. As the choice of specific model 

structures consists of a key issue, generic model structures 

have been introduced. For example, S-systems were based on 

power laws (Savageau, 1979), with the drawback that a given 

component cannot exhibit a double effect of activation and 

inhibition in a given reaction (as it can be done with a Haldane 

law). Their equivalence with generalized Volterra-systems has 

also been studied (Voit and Savageau, 1982). Several 

macroscopic modeling approaches for describing mammalian 

cell growth and metabolism are reviewed in Ben Yahia et al. 

(2015). Given the difficulties linked to kinetic parameter 

estimation, and especially the risks of overparameterization 

and/or convergence to local minima when minimizing the 

identification cost function, some generic methods were 

developed aiming at efficient parameter estimation. Haag et al. 

(2005) proposed a general formalism based on an extension of 

Monod kinetics (but with the drawback, already mentioned 

above, concerning the impossibility to represent a double 

effect of activation and inhibition). Another general formalism 

coupled power laws for activation effects and negative 

exponentials for inhibition effects (Bogaerts et al., 1999; 

Grosfils et al., 2007), with the advantage that both effects 

could be simultaneously defined, that the kinetic model 

structure could be rigorously linearized w.r.t. the parameters 

and that it could be easily translated in classical extended 

Monod formalisms (Richelle and Bogaerts, 2015). The 

linearization requires however the possibility to identify the 

stoichiometric parameters independently of the kinetics 

(Bogaerts et al., 2003, Bernard and Bastin, 2005), which is 

unfortunately not possible in many cases. Other approaches 

were based on Artificial Neural Networks – ANNs – (Chen et 

al., 2000; Vande Wouwer et al., 2004), which benefit from a 

large flexibility to describe nonlinearities associated to the 

reaction kinetics, but which are limited to black-box 

descriptions in which the biological interpretation of the 

kinetic parameters is lacking. Instead of considering generic 

kinetic model structures, Mailier and Vande Wouwer (2012) 

proposed a bank of candidate kinetic model structures among 

which the choice is made by some decision algorithm. 

Recently, Reinforcement Learning was used to tackle the case 

of history-dependent kinetic systems (Mowbray et al., 2023).  

There is still a need for generic kinetic model structures that i) 

are flexible enough to describe the basic phenomena 

(activation and inhibition) by any component in any reaction, 

and, ii) allow an efficient parameter estimation, especially in 

terms of convergence to a global minimum instead of local 

minima. For reaching these goals, a new formalism is proposed 



 

 

     

 

in this paper and consists in lumping all the reaction terms 

included in a system of mass balances in a Multi-Layer 

Perceptron (MLP). This latter is not a classical black-box ANN 

without biological interpretation. It is made of three (input – 

hidden – output) layers, some neurons of which containing 

nonlinear activation functions without parameters to be 

identified. All the parameters to be estimated appear only as 

weights on the links between, on the one hand, input and 

hidden layers for the kinetic parameters, and, on the other 

hand, hidden and output layers for the stoichiometric 

parameters. Three different categories of kinetic parameters 

account for kinetic constants, activation parameters and 

inhibition parameters. Inputs and outputs of the MLP simply 

consist of, respectively, the component concentrations (or the 

inverse of their TReLU transform) and their (estimated) time 

derivatives. This allows an efficient first identification of the 

kinetic and stoichiometric parameters which consists in a 

supervised learning of the weights included in this MLP. This 

result can then be used for model reduction and as an initial 

guess in a final nonlinear identification step that uses the 

system of ODEs describing the mass balances.  

This new generic model, and especially the part corresponding 

to the MLP, is described in Section 2. The methodology is 

illustrated with a simulated case study in Section 3. Finally, 

Section 4 draws some conclusions and perspectives. 

2. GENERIC MASS BALANCE MODEL 

2.1 Reaction scheme and mass balances 

We consider here a reaction scheme that describes the main 

reactions occurring at a macroscopic scale within a biological 

culture of microorganisms (e.g., bacteria, yeasts) or animal 

cells, that takes place in a (batch, or continuous, or fed-batch) 

bioreactor. Let m be the number of reactions and n the number 

of components involved in the scheme (e.g., biomass, 

substrates, metabolites). Let 𝑐 ∈ ℝ𝑛 be the vector of all the 

component concentrations, one of them being 𝑋 ∈ ℝ the 

biomass concentration. Let 𝜑 ∈ ℝ𝑚 be the vector of the 

reaction rates, structured in the usual form 𝜑 = 𝜇 𝑋 where 𝜇 ∈
ℝ𝑚 is the vector of specific reaction rates. Even though not 

explicitly mentioned, all these variables depend on time t. The 

mass balance model is then written under the classical form 

𝑑𝑐

𝑑𝑡
= 𝐾 𝜇 𝑋 −

𝐹

𝑉
 𝑐 +

𝐹

𝑉
 𝑐𝑖𝑛 (1) 

where 𝐾 ∈ ℝ𝑛×𝑚 is the stoichiometric matrix (or matrix of 

macroscopic yield coefficients), 𝑐𝑖𝑛 ∈ ℝ𝑛 is the vector of input 

concentrations and, regarding the flow rate 𝐹 ∈ ℝ, 𝐹 = 0 with 

a constant volume 𝑉 ∈ ℝ (batch mode), or 𝐹 = 𝐹𝑖𝑛 = 𝐹𝑜𝑢𝑡 ≠
0 with a constant volume V (chemostat), or 𝐹 = 𝐹𝑖𝑛 ≠ 0 with 

𝐹𝑜𝑢𝑡 = 0 and a volume V such that 
𝑑𝑉

𝑑𝑡
= 𝐹 (fed-batch mode).  

2.2 Multi-layer perceptron-based kinetics and stoichiometry 

The specific reaction term 𝐾 𝜇 in (1) is represented with a 

multi-layer perceptron (MLP) given in Fig. 1. The input layer 

builds the signals that will be used as activation (respectively, 

inhibition) factors thanks to green (respectively, red) neurons. 

The outputs of inhibition (red) neurons simply correspond to 

the concentrations of the different components 𝑐𝑖  (𝑖 ∈ [1, 𝑛]). 

The outputs of activation (green) neurons correspond to 

inverse Thresholded Rectified Linear Units (TReLU) of the 

component concentrations, 1/TReLU(𝑐𝑖), where 

TReLU(𝑐𝑖) = max(𝑐𝑖 , 𝛿) (2) 

with 𝛿 > 0, an arbitrarily low threshold.  

Based on the activation and inhibition factors, the hidden layer 

builds the specific reaction rates 

𝜇𝑗 =
1

𝛼𝑗+∑ (
𝛾𝑖𝑗

TReLU(𝑐𝑖)
+𝛽𝑖𝑗 𝑐𝑖)

𝑛
𝑖=1

  (3) 

with 𝑗 ∈ [1,𝑚] and 𝛼𝑗 ≥ 0 the bias. This latter plays an 

equivalent role of a kinetic constant. It allows, e.g., defining a 

constant specific rate 𝜇𝑗 = 1/𝛼𝑗 if 𝛽𝑖𝑗 = 𝛾𝑖𝑗 = 0 ∀𝑖. The 

inhibition effect of 𝑐𝑘 on 𝜇𝑗 when 𝛽𝑘𝑗 > 0 is obvious in this 

reciprocal function. The activation effect of 𝑐𝑘 on 𝜇𝑗 when 

𝛾𝑘𝑗 > 0 comes from 

lim
𝑐𝑘→0

𝜇𝑗 =
𝛿

𝛿𝛼𝑗+𝛿 ∑ (
𝛾𝑖𝑗

TReLU(𝑐𝑖)
+𝛽𝑖𝑗 𝑐𝑖)

𝑛
𝑖=1
𝑖≠𝑘

+𝛾𝑘𝑗

 (4) 

which tends to 0 if 𝛿 tends to 0 and 𝛾𝑘𝑗 > 0, while it tends to 

a nonzero value (1 (𝛼𝑗 + ∑ (
𝛾𝑖𝑗

TReLU(𝑐𝑖)
+ 𝛽𝑖𝑗  𝑐𝑖)

𝑛
𝑖=1
𝑖≠𝑘

)⁄ ) if 𝛿 

tends to 0 and 𝛾𝑘𝑗 = 0.  

Note that if a specific rate 𝜇𝑗 only depends on a single 

component concentration  𝑐𝑖 (e.g., a specific growth rate 

depending on a single substrate concentration), then the kinetic 

model (3) becomes rigorously equivalent to a Haldane kinetic 

law when 𝛼𝑗 > 0 (and for  𝑐𝑖 >  𝛿): 

𝜇𝑗 =
1

𝛼𝑗

𝑐𝑖
𝛾𝑖𝑗

𝛼𝑗
+𝑐𝑖+

𝛽𝑖𝑗

𝛼𝑗
𝑐𝑖
2
= 𝜇𝑚𝑎𝑥

𝑐𝑖

𝐾+𝑐𝑖+
𝑐𝑖
2

𝐾𝑖

  (5) 

with 𝜇𝑚𝑎𝑥 = 1/𝛼𝑗, 𝐾 = 𝛾𝑖𝑗/𝛼𝑗 and 𝐾𝑖 = 𝛼𝑗/𝛽𝑖𝑗. This rigorous 

equivalence doesn’t hold anymore in case 𝛼𝑗 = 0 which leads 

to 

𝜇𝑗 =
𝑐𝑖

𝛾𝑖𝑗+𝛽𝑖𝑗𝑐𝑖
2  (6) 

or in case of a specific rate depending on two or more 

component concentrations.  

Finaly, the output layer builds the reaction term for the mass 

balance of each component, i.e., ∑ 𝑘𝑖𝑗  𝜇𝑗
𝑚
𝑗=1  with 𝑖 ∈ [1, 𝑛].  

The main advantages of this MLP are that 

 



 

 

     

 

 

Fig. 1. MLP representing the specific reaction term 𝐾 𝜇 in the mass balance model (1). 

 

1) the parameters appear in two sets of linear weights: the 

kinetic coefficients 𝛼𝑗, 𝛽𝑖𝑗 and 𝛾𝑖𝑗 between the input and 

hidden layers, and the stoichiometric coefficients 𝑘𝑖𝑗 between 

the hidden and output layers; 

2) the nonlinearities are confined within some of the neurons 

(the activation green neurons of the input layer and the neurons 

of the hidden layer) and do not include any parameter to 

estimate; 

3) inputs and outputs of the MLP are available: its inputs 

consist in (discrete measurements of) the component 

concentrations 𝑐𝑖(𝑡𝑘) (𝑖 ∈ [1, 𝑛]), while its outputs 

𝑦𝑚𝑒𝑎𝑠,𝑖(𝑡𝑘) can be deduced from (1) and estimates 𝑐̂̇𝑖 of the 

time derivatives of 𝑐𝑖: 

𝑦𝑚𝑒𝑎𝑠,𝑖(𝑡𝑘) = 

(𝑐̇̂𝑖(𝑡𝑘) +
𝐹(𝑡𝑘)

𝑉(𝑡𝑘)
 𝑐𝑖(𝑡𝑘) −

𝐹(𝑡𝑘)

𝑉(𝑡𝑘)
 𝑐𝑖,𝑖𝑛(𝑡𝑘)) /𝑋(𝑡𝑘). (7) 

Given these advantages, a first estimation of the unknown 

kinetic and stoichiometric parameters can be efficiently 

obtained on the basis of the MLP and the 

measurements/estimations of its inputs/outputs, e.g., using a 

backpropagation algorithm in the MLP supervised training, or 

any other optimization algorithm for minimizing a least 

squares criterion written as 

𝐽𝐿𝑆(𝜗) = ∑ ∑ 𝑤𝑖(𝑡𝑘)(𝑦𝑚𝑒𝑎𝑠,𝑖(𝑡𝑘) − 𝑦𝑖(𝑡𝑘 , 𝜗))
2𝑛

𝑖=1
𝑁
𝑘=1  (8) 

where N is the total number of measurement times, 𝑤𝑖(𝑡𝑘) are 

user-defined weights accounting for the measurement 

accuracy,  𝑦𝑚𝑒𝑎𝑠,𝑖(𝑡𝑘) is given by (7),  𝑦𝑖(𝑡𝑘 , 𝜗) by  

𝑦𝑖(𝑡𝑘, 𝜗) = ∑ 𝑘𝑖𝑗  𝜇𝑗(𝑡𝑘)
𝑚
𝑗=1  (9) 

with 𝜇𝑗(𝑡𝑘) from (3), and 𝜗 ∈ ℝ(3𝑛+1)𝑚 is the vector of the 

parameters to identify: 

𝜗𝑇 = [𝑘𝑖𝑗 𝛼𝑗 𝛽𝑖𝑗 𝛾𝑖𝑗]   𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1,𝑚] (10) 

under some equality and/or inequality constraints (see below).  

A final classical nonlinear estimation of the parameters can 

then be implemented based on the set of nonlinear ODEs (1) 

and the minimization of a least squares cost function, starting 

with the results 𝜗̂1 which minimized 𝐽𝐿𝑆(𝜗) in (8). Note that 

parameters close to 0 in 𝜗̂1, indicate possible model reduction 

as will be illustrated in the case study of Section 3. The 

solution 𝜗̂ of this final problem would minimize the least 

squares criterion (8) but with  

𝑦𝑚𝑒𝑎𝑠,𝑖(𝑡𝑘) = 𝑐𝑚𝑒𝑎𝑠,𝑖(𝑡𝑘) (11) 

which only involves the concentration measurements 𝑐𝑚𝑒𝑎𝑠,𝑖 

(without the estimation of their time derivatives), and  

𝑦𝑖(𝑡𝑘, 𝜗) = 𝑐𝑖(𝑡𝑘, 𝜗) (12) 
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obtained by integrating (1) with an ODE solver and using the 

set of parameters in 𝜗.  

The number of reactions m can be determined, e.g., based on a 

Principal Component Analysis as proposed by Bernard and 

Bastin (2005). The model is fully generic in the sense that it 

can detect 

- the involvement of any component in any reaction, which 

corresponds to 𝑘𝑖𝑗 ≠ 0, with 𝑘𝑖𝑗 < 0 if the i-th component is 

consumed in the j-th reaction and 𝑘𝑖𝑗 > 0 if it is produced;  

- the activation effect of any component within any reaction 

rate, which corresponds to 𝛾𝑖𝑗 > 0 for the i-th component in 

the j-th reaction;  

- the inhibition effect of any component within any reaction 

rate, which corresponds to 𝛽𝑖𝑗 > 0 for the i-th component in 

the j-th reaction.  

Note that some additional information can be provided, if 

available, by adding linear (equality or inequality) constraints 

on some parameters, e.g., 

- normalizing the stoichiometry of a given reaction with 

respect to a given component: 𝑘𝑖𝑗 = −1 (if consumed) or 

𝑘𝑖𝑗 = 1 (if produced); 

- constraining the consumption (respectively, production) of a 

given component in a given reaction: 𝑘𝑖𝑗 < 0 (respectively, 

𝑘𝑖𝑗 > 0); 

- cancelling any activation (respectively, inhibition) effect of a 

given component in a given reaction: 𝛾𝑖𝑗 = 0 (respectively, 

𝛽𝑖𝑗 = 0). 

3. SIMULATED CASE STUDY 

To illustrate the use of the new MLP-based mass balance 

model, we consider the simulated case study proposed in 

Pimentel et al. (2024). The reaction scheme is made of 3 

reactions accounting, respectively, for substrate oxidation 

(13), substrate overflow (14) and biomass death (15): 

𝑘31𝐺 + 𝑘41𝐺𝑛
𝜑1
→ 𝑋𝑣 + 𝑘61𝑃 (13) 

𝑘32𝐺 + 𝑘42𝐺𝑛
𝜑2
→ 𝑋𝑣 + 𝑘52𝐿 (14) 

𝑋𝑣

𝜑3
→ 𝑋𝑑 + 𝑘63𝑃 (15) 

where Xv, Xd, G, Gn, L and P stand, respectively, for viable 

biomass, dead biomass, glucose, glutamine, lactate and the 

product of interest (i.e., monoclonal antibodies), representing 

the components as well as their concentrations. kij are the 

stoichiometric coefficients and 𝜑𝑗 are the reaction rates. The 

system of mass balances (1) becomes here 

𝑑

𝑑𝑡

[
 
 
 
 
 
𝑋𝑣

𝑋𝑑

𝐺
𝐺𝑛
𝐿
𝑃 ]

 
 
 
 
 

=

[
 
 
 
 
 

1 1 −1
0 0 1

𝑘31 𝑘32 0
𝑘41 𝑘42 0
0 𝑘52 0

𝑘61 0 𝑘63 ]
 
 
 
 
 

[

𝜑1

𝜑2

𝜑3

]. (16) 

The reaction rates are structured as 

𝜑𝑗 = 𝜇𝑗𝑋𝑣 (17) 

where 𝜇𝑗 are the specific reaction rates describing overflow 

metabolism (𝜇1 and 𝜇2) and cell death (𝜇3): 

𝜇1 = min (𝜇𝐺 , 𝜇𝐺𝑚𝑎𝑥) (18) 

𝜇2 = max (0, 𝜇𝐺 − 𝜇𝐺𝑚𝑎𝑥) (19) 

𝜇3 = 𝜇𝑑𝑚𝑎𝑥
𝐾𝐺𝑑

𝐾𝐺𝑑+𝐺

𝐾𝐺𝑛𝑑

𝐾𝐺𝑛𝑑+𝐺𝑛
 (20) 

with 

𝜇𝐺 = 𝜇𝑚𝑎𝑥1
𝐺𝑛

𝐾𝐺𝑛+𝐺𝑛
 (21) 

𝜇𝐺𝑚𝑎𝑥 = 𝜇𝑚𝑎𝑥2. (22) 

Parameter values and initial conditions of the state variables 

can be found in Table 1 (taken from Pimentel et al. (2024)). 

We use the same simulated dataset proposed by the authors, 

i.e., one batch experiment lasting 7d, with discrete 

measurements of the 6 state variables every 0.1d and a 

Gaussian measurement noise with zero mean and a relative 

standard deviation equal to 0.5%.  

Table 1. Simulation parameters (from Table 2 in Pimentel et 

al. (2024)). 

Parameters Values Parameters Values 

𝜇𝑚𝑎𝑥1 0.484 d-1 𝑘52 23.9 

𝜇𝑚𝑎𝑥2 0.319 d-1 𝑘61 43.5 

𝜇𝑑𝑚𝑎𝑥 0.866 d-1 𝑘63 14.2 

𝐾𝐺𝑛 0.0089 g/L 𝑋𝑣(0) 0.100 cells/mL 

𝐾𝐺𝑑 1.58 g/L 𝑋𝑑(0) 0.0151 cells/mL 

𝐾𝐺𝑛𝑑 1.33 g/L 𝐺(0) 5.99 g/L 

𝑘31 3.12 𝐺𝑛(0) 0.303 g/L 

𝑘32 15.2 𝐿(0) 0.360 g/L 

𝑘41 0.624 𝑃(0) 6.53 μg/mL 

𝑘42 1.22   

 

A first parameter estimation leading to 𝜗̂1 (𝜗 being defined as 

in (10)) is obtained by minimizing a least squares criterion (8), 

involving (7) and (9), and using a trust-region-reflective 

algorithm (function LSQNONLIN in MATLAB R.2024b). 

The lower bound 𝛿 = 10−4 is used in the TReLU function (2). 

Lower and upper bounds are used to define equality and 



 

 

     

 

inequality constraints defined, for each reaction, in the 

corresponding 2nd (respectively, 1st) line in Table 2 

(respectively, Table 3). Results of this first estimation 𝜗̂1 can 

be found, for each reaction, in the corresponding 3rd 

(respectively, 2nd) line in Table 2 (respectively, Table 3). 

Values of the stoichiometric coefficients in the original model 

are given, for each reaction, in the corresponding 1st line in 

Table 2. Original values of the parameters are not provided in 

Table 3 given that the kinetic model is structurally different in 

the original model and in the MLP-based model. It is worth 

noting that the original values of the stoichiometric 

coefficients are systematically recovered with a very good 

accuracy. The model complexity regarding its stoichiometric 

part is the same as in the original model, with 7 nonzero 

estimated parameters, this result being obtained without any 

use of pruning or sparsity approach.  

A final estimation 𝜗̂ is obtained by minimizing a least squares 

criterion (8), involving this time (11) and (12), using the same 

trust-region-reflective algorithm, with 𝜗̂1 as initial guess. A 

model reduction is performed when computing 𝜗̂ from the 

initial guess 𝜗̂1, given that 8 parameters close to 0 in 𝜗̂1 are 

constrained to 0 in the estimation of 𝜗̂ (corresponding to the 

bold values in Tables 2 and 3). The results are given, for each 

reaction, in the corresponding 4th (respectively, 3rd) line in 

Table 2 (respectively, Table 3). The final estimates 𝜗̂ keep 

close to their first estimates in 𝜗̂1, illustrating that the essential 

of the stoichiometric and kinetic coefficients has been captured 

just based on the MLP and the measurements/estimates of its 

inputs/outputs. It is worth noting that the inhibition effects of 

glucose and glutamine on the original specific death rate (20) 

are clearly detected via the nonzero values of 𝛽𝐺3 and 𝛽𝐺𝑛3 in 

Table 3. Model validation is proposed in Fig. 2, which exhibits 

the ability of the MLP-based model to accurately reproduce 

the data. Fig. 3 shows that the MLP-based kinetics are close to 

the original kinetic models, although they are based on 

drastically different model structures as they do not contain the 

min/max nonlinearities involved in (18)-(19) to account for the 

overflow metabolism. The model complexity, regarding its 

kinetic part, has been increased from 6 parameters (in the 

original model) to 10 nonzero estimated parameters (in the 

new model). The total number of parameters has increased 

from 13 to 17, with the recovery of all stoichiometric 

parameters (see Table 2) and of the essential features of the 

kinetic rates (see Fig. 3). 

4. CONCLUSIONS 

The MLP that we propose to describe kinetics and 

stoichiometry in a generic mass balance model includes 

biologically interpretable parameters which only consist in its 

links between input and hidden layers (for the kinetic 

parameters) and between hidden and output layers (for the 

stoichiometric parameters). Nonlinearities appear in (some of) 

 

 

 

Fig. 2. Model validation (blue circles: simulated 

measurements; red curves: MLP-based model simulation, 

based on (3), (16) and (17)). 

 

Fig. 3. Reaction rate estimation based on smoothing splines of 

the measured component concentrations (blue dotted curves: 

original model reaction rates, based on (17)-(22); red curves: 

MLP-based model reaction rates, based on (3) and (17)). 

 

the neurons and without parameters to be identified. Given that 

inputs and outputs of the MLP are available via measurements 

of the component concentrations and estimations of their time 

derivatives, a first estimation of the kinetic and stoichiometric 

parameters can easily be obtained and subsequently used i) for 

a model reduction and ii) as initial guess for a final nonlinear 

estimation of the parameters in this reduced model. Versatility, 

biological interpretation and efficient two-step parameter 

estimation are the main strengths of this new model.  

Future works could focus on other simulated and real case 

studies, on the sensitivity of the parameter estimation w.r.t. 

measurement noise and / or w.r.t. the choice of the tuning 

parameter 𝛿 in the TReLU function, on the adaptability of the 

approach to more complex macroscopic systems with larger 

scales, on the potential addition of some pruning strategy and 

on the way to exploit this specific MLP-based model structure 

for building state observers and/or closed-loop controllers. 



 

 

     

 

Table 2. Identified stoichiometric coefficients (for each 

reaction: original values in line 1, constraints in line 2, first 

estimation 𝜗̂1 in line 3, final estimation 𝜗̂ in line 4). Bolded 

values correspond to equality constraints deduced from 𝜗̂1 

and added for the final estimation. 

𝒌𝑿𝒗𝟏 𝒌𝑿𝒅𝟏 𝒌𝑮𝟏 𝒌𝑮𝒏𝟏 𝒌𝑳𝟏 𝒌𝑷𝟏 

1 0 -3.12 -0.624 0 43.5 

1 0 [-102,0] [-102,0] [0,102] [0,102] 

1 0 -2.81 -0.610 0.000 42.5 

1 0 -3.30 -0.653 0 42.1 

𝒌𝑿𝒗𝟐 𝒌𝑿𝒅𝟐 𝒌𝑮𝟐 𝒌𝑮𝒏𝟐 𝒌𝑳𝟐 𝒌𝑷𝟐 

1 0 -15.2 -1.22 23.9 0 

1 0 [-102,0] [-102,0] [0,102] 0 

1 0 -16.1 -1.27 24.4 0 

1 0 -15.3 -1.19 26.1 0 

𝒌𝑿𝒗𝟑 𝒌𝑿𝒅𝟑 𝒌𝑮𝟑 𝒌𝑮𝒏𝟑 𝒌𝑳𝟑 𝒌𝑷𝟑 

-1 1 0 0 0 14.2 

-1 1 0 0 [0,102] [0,102] 

-1 1 0 0 0.000 15.2 

-1 1 0 0 0 14.2 

 

Table 3. Identified kinetic coefficients (for each reaction: 

constraints in line 1, first estimation 𝜗̂1 in line 2, final 

estimation 𝜗̂ in line 3). Bolded values correspond to equality 

constraints deduced from 𝜗̂1 and added for the final 

estimation. 

𝜶𝟏 𝜸𝑮𝟏 𝜸𝑮𝒏𝟏 𝜸𝑳𝟏 𝜷𝑮𝟏 𝜷𝑮𝒏𝟏 𝜷𝑳𝟏 

[0,102] [0,102] [0,102] 0 [0,102] [0,102] [0,102] 

1.6861 0.0000 0.0238 0 0.2182 0.0000 0.1045 

1.4852 0 0.0091 0 0.2366 0 0.1866 

𝜶𝟐 𝜸𝑮𝟐 𝜸𝑮𝒏𝟐 𝜸𝑳𝟐 𝜷𝑮𝟐 𝜷𝑮𝒏𝟐 𝜷𝑳𝟐 

[0,102] [0,102] [0,102] 0 [0,102] [0,102] [0,102] 

0.0000 0.0000 0.5435 0 0.0000 16.8958 0.6264 

0 0 0.5461 0 0 16.9559 0.9177 

𝜶𝟑 𝜸𝑮𝟑 𝜸𝑮𝒏𝟑 𝜸𝑳𝟑 𝜷𝑮𝟑 𝜷𝑮𝒏𝟑 𝜷𝑳𝟑 

[0,102] 0 0 0 [0,102] [0,102] [0,102] 

0.8869 0 0 0 0.8035 2.9863 0.0000 

0.8912 0 0 0 0.7970 3.2146 0 
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