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Abstract: There is growing interest in shifting from batch manufacturing to continuous
manufacturing in the pharmaceutical industry. Constructing statistical models that accurately
predict critical quality attributes (CQAs) from operating conditions with minimal experiments
in the new process is required to identify the optimal operating conditions and monitor the
process. This study aims to demonstrate that heterogeneous transfer learning (TL) using data
from the batch direct compression (BDC) process can enhance the prediction performance of
CQAs in the continuous direct compression (CDC) process. We conducted 26 BDC experiments
and 19 CDC experiments. Predictive models of tablet hardness were then built using partial
least squares regression, Gaussian process regression, and random forest regression. We employed
frustratingly easy heterogeneous domain adaptation (FEHDA) to the two experimental datasets,
treating BDC as the source domain and CDC as the target domain. We found that FEHDA
achieved lower RMSE and higher R2 than those by models trained using only the CDC dataset.
RFR attained the best predictive performance with an average RMSE improvement of 9.36 N.
Notably, FEHDA improved the prediction performance in the region where no samples were
obtained from the BDC process. These results support the effectiveness of heterogeneous TL
for the shift from BDC to CDC.
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1. INTRODUCTION

In the pharmaceutical industry, a shift from batch man-
ufacturing (BM) to continuous manufacturing (CM) has
been gaining attention (Food and Drug Administration,
2019) because CM offers several advantages, including
adaptability to fluctuations in supply demands and a
smaller footprint. A successful transition from BM to CM
requires determining the range of operating conditions
of the new CM process that achieves critical quality at-
tributes (CQAs) of the product within the specifications.
One of the effective approaches is to construct statistical
models representing the relationship between operating
conditions and CQAs. The accuracy of statistical mod-
els tends to improve as the amount of data increases;
however, conducting a sufficient number of experiments
is difficult due to the high cost of raw materials, such
as active pharmaceutical ingredients (APIs). Thus, it is
essential to develop strategies for building models with
high predictive performance using limited data available
in new CM processes.

Transfer learning (TL) (Pan and Yang, 2010) can be a
solution to this data shortage problem. Many machine
learning methods assume that the training and test data
are drawn from the same feature space and distribution.
TL is a technique that improves the performance of models
in a target domain (TD) with a small amount of data by
transferring knowledge from a source domain (SD), where
data are either already available or inexpensive to obtain.
When the feature spaces differ between the SD and TD,
TL methods are specifically referred to as heterogeneous
TL.

Heterogeneous TL approaches are suitable for the shift
from BM to CM since BM and CM have different process
variables. Although BM and CM differ in their equipment
and operating methods, they have similarities in the mech-
anisms and objectives of unit operations, suggesting the
potential for transferring knowledge from BM to CM.

TL has been applied to manufacturing processes (Bang
et al., 2019). In the context of tablet manufacturing
processes, TL was used for the scale-up of tablet presses
(Yaginuma et al., 2024). However, there is no research on



applying TL to the transition from BM to CM nor to
direct compression processes, which are one of the primary
methods of tablet manufacturing.

This study aims to demonstrate the effectiveness of TL
using data on the batch direct compression (BDC) process
in improving the prediction performance of CQAs in the
continuous direct compression (CDC) process. We first
conducted two sets of experiments: one using the BDC
process and the other using the CDC process. Then, we
employed frustratingly easy heterogeneous domain adap-
tation (FEHDA) (Kobayashi et al., 2022), a method of the
heterogeneous TL, to build statistical models for predict-
ing the tablet hardness as a CQA. The datasets collected
in the BDC and CDC process experiments were used
as the SD and TD, respectively. Finally, we compared
the prediction performance of these models with that of
models constructed using only the TD dataset.

2. MATERIALS AND METHODS

2.1 Experiments

To collect data from the two different domains, two sets
of experiments were conducted using the CDC process
and the BDC process. In all experiments, Acetaminophen
(APAP) (Spera Nexus, Japan) was used as an API, Su-
perTab 11SD (DFE Pharma, Germany) was used as an
excipient, and magnesium stearate (MgSt) (Taihei Chem-
ical Industrial, Japan) was used as a lubricant.

In the CDC process, the API and excipient were fed into
the continuous API mixer (MG100, Powrex, Japan) by two
screw feeders (LIW-300-P, Ishida, Japan). MgSt and the
intermediate product from the API mixer were fed into the
continuous lubricant mixer (MG100, Powrex, Japan). The
intermediate product from the lubricant mixer was fed into
the rotary tablet press (FETTE 102i, Fette Compacting,
Germany) to produce tablets.

In the BDC process, the API and excipient were weighed
and then fed into the mini-batch API mixer (MG200,
Powrex, Japan). After mixing for a specified time, weighed
MgSt were added to the MG200, and it was used as the
batch lubricant mixer. After mixing for another specified
time, the intermediate product from the lubricant mixer
was fed into the rotary tablet press (FETTE 102i, Fette
Compacting, Germany) to produce tablets.

The CDC process has nine process variables; five variables
are common to CDC and BDC, and the other four vari-
ables are CDC-specific, as shown in Table 1. Similarly, the
BDC process has 11 process variables; five variables are
common to CDC and BDC, and the other six variables are
BDC-specific. The variables were set at three levels in the
ranges presented in Table 1, and the combinations of their
values were determined based on a definitive screening
design (Jones and Nachtsheim, 2011). The design for nine
variables was utilized for the CDC process, and the design
for twelve variables with a center run was used for the
BDC process. As a result, 19 samples for the CDC process
and 26 samples for the BDC process were obtained.

In each experiment, the tablet hardness [N] was measured
as a CQA with the hardness measurement machine (TBH
425 TD, Erweka, Germany).

2.2 CQA prediction models

BDC was used as an SD, and CDC was used as a TD. The
process variables in Table 1 were used as input variables
of models. In the following, Ns is the number of samples in
the SD, Nt is the number of samples in the TD, ps is the
number of variables in the SD, pt is the number of variables
in the TD, and pc is the number of variables common to
both domains.

As shown in Table 1, the input variables differ in the CDC
and BDC processes. Thus, we applied FEHDA as a TL
method. In FEHDA, the input variable matrix of the SD

is divided into X
(s)
c ∈ RNs×pc and X

(s)
u ∈ RNs×(ps−pc),

which are the matrices of the variables common to both
domains and SD-specific variables, respectively. Similarly,

the input variable matrix of the TD is divided into X
(t)
c ∈

RNt×pc and X
(t)
u ∈ RNt×(pt−pc), which are the matrices

of the variables common to both domains and TD-specific
variables, respectively. FEHDA defines the matrix of input
variables as follows:
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c X

(s)
c X

(s)
u O O

X
(t)
c O O X

(t)
c X

(t)
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)
, (1)

where O is the zero matrix. The output variable vector y
is expressed as follows:

y =

(
y(s)

y(t)

)
, (2)

where y(s) ∈ RNs and y(t) ∈ RNt are output variable
vectors for the SD and TD, respectively.

The preprocessing was performed for both X and y. In the
preprocessing of X, columns containing data from both
domains were standardized together. For other columns,

X
(s)
c , X

(s)
u , X

(t)
c , and X

(t)
u were first respectively standard-

ized, and then zero matrices were added. In the preprocess-
ing of y, the data from both domains were standardized
together.

To investigate how FEHDA works with different regression
methods, we built CQA prediction models using three
methods: partial least squares regression (PLSR) (Geladi
and Kowalski, 1986), Gaussian process regression (GPR)
(Rasmussen and Williams, 2005), and random forest re-
gression (RFR) (Breiman, 2001). PLSR is a linear regres-
sion method using latent variables (LVs). The number
of LVs is a hyperparameter. GPR is one of the kernel
methods. We used a kernel composed of a constant kernel,
radial basis function kernel, and white kernel, as follows:

k(xn,xn′) = c exp

(
−d(xn,xn′)2

2l2

)
+ σδnn′ , (3)

where xn is the input variable vector of the nth sample,
d(xn,xn′) is the Euclidean distance between xn and
xn′ , and δnn′ is a Kronecker delta. c, l, and σ are
hyperparameters. RFR is one of the ensemble learning
methods using multiple decision trees. The number of trees
and the maximum depth of decision trees were chosen as
hyperparameters.

The evaluation criteria of models are the root mean square
error (RMSE) and the coefficient of determination (R2).



Table 1. Process variables changed in the experiments using the CDC and BDC processes.

Variable Name Common to CDC & BDC CDC-specific BDC-specific Range

API content ✓ - - 5–15%
Production speed ✓ - - 15–25 kg/h
Force feeder speed ✓ - - 10–50 rpm
Pre-compression to main-compression force ratio ✓ - - 20–60%
Main-compression force ✓ - - 5–20 kN
Continuous API mixer center blade speed - ✓ - 500–2500 rpm
Continuous API mixer scraper blade speed - ✓ - 30–70 rpm
Continuous lubricant mixer center blade speed - ✓ - 100–1000 rpm
Continuous lubricant mixer scraper blade speed - ✓ - 30–70 rpm
Batch API mixer center blade speed - - ✓ 500–1500 rpm
Batch API mixer scraper blade speed - - ✓ 20–80 rpm
Batch API mixing time - - ✓ 30–90 s
Batch lubricant mixer center blade speed - - ✓ 100–500 rpm
Batch lubricant mixer scraper blade speed - - ✓ 20–50 rpm
Batch lubricant mixing time - - ✓ 30–60 s

RMSE=

√√√√ 1

N

N∑
n=1

(yn − ŷn)2, (4)

R2 = 1−
∑N

n=1(yn − ŷn)
2∑N

n=1(yn − ȳ)2
, (5)

where N is the number of the samples, yn is the nth actual
value, ŷn is the nth predicted value, and ȳ is the mean of
the output variable.

The procedure of model construction and evaluation is as
follows:

1 Randomly split the TD data into a training dataset

D
(t)
train with nine samples and a test dataset D

(t)
test with

ten samples.
2 Prepare X and y of FEHDA using the SD data and

D
(t)
train.

3 Perform preprocessing of X and y.
4 Select a regression method from PLSR, GPR, or
RFR.

5 Build a model using the preprocessed X and y.

6 Calculate RMSE and R2 using D
(t)
test.

7 Perform Steps 4 to 6 for PLSR, GPR, and RFR.
8 Perform Steps 1 to 7 ten times changing the samples

in D
(t)
train and D

(t)
test.

In Step 5, hyperparameters were determined by leave-one-
out cross-validation (LOOCV) in PLSR and RFR and by
maximum likelihood estimation in GPR.

To verify the benefits of TL, we also built models using

only D
(t)
train and validated the prediction performance with

D
(t)
test. This method using only the TD data is referred

to as only target (OT) in the following. The procedure
for model construction of OT is the same as that of
FEHDA except for Steps 2 and 3. In Step 2, the input
variable matrix and the output variable vector are formed

as X = (X
(t)
c , X

(t)
u ) and y = y(t), respectively. In Step 3,

X and y are standardized.

Fig. 1. Tablet hardness measured in CDC and BDC
processes.

3. RESULTS AND DISCUSSIONS

3.1 Experiments

Figure 1 shows the hardness of tablets manufactured by
the CDC and BDC processes. Since the formulation and
the range of common variables are the same in both pro-
cesses, the difference in the distributions of the hardness is
expected to be explained by the process-specific variables,
suggesting that heterogeneous TL should be applied.

3.2 CQA prediction models

Figure 2 presents the RMSE and R2 of three regression

methods using FEHDA and OT for D
(t)
test across ten splits.

For all regression methods, FEHDA has lower averages of
RMSE and higher averages of R2 than OT. Specifically,
the average RMSEs of FEHDA are lower than those of



Fig. 2. RMSE (left) and R2 (right) of three regression methods using FEHDA (blue) and OT (orange). The red diamond
represents the average value.

Fig. 3. RMSE (left) and R2 (right) by RFR models built using FEHDA and OT across each of the ten splits of the TD
data.

OT, with values of 8.40 N for PLS, 12.0 N for GPR,
and 9.36 N for RFR. Among the regression methods using
FEHDA, RFR has the lowest average RMSE and highest
average R2. Figure 3 illustrates RMSE and R2 by RFR

models using FEHDA and OT for D
(t)
test in each of the ten

splits of the TD data. In all splits, FEHDA outperforms
OT on both criteria. The following paragraph presents
a discussion of the results obtained from Splits 7 and
9, in which FEHDA exhibits the highest and lowest R2,
respectively.

Figure 4 displays the actual and predicted hardness of

D
(t)
test by the RFR models using FEHDA and OT for Splits

7 and 9. For most samples, the plots of FEHDA are closer

to the diagonal line than those of OT. This means that
FEHDA improves their prediction performance. Regarding
the region where the hardness is above 90 N, extrapolation

occurs in the sense that the maximum hardness in D
(t)
test

is higher than that in D
(t)
train in Split 7. Despite the

absence of samples with hardness above 90 N in the
SD data as shown in Figure 1, FEHDA improves the
prediction performance in the region. This suggests that
the performance improvement is not due to increased
sample density in the region with limited TD data. In
the region where the hardness is below 35 N, Figure 5
shows that extrapolation also occurs as the minimum

hardness in D
(t)
test is lower than that in D

(t)
train in Split

9. According to Figure 1, the SD data contain many



Fig. 4. Actual and predicted hardness of D
(t)
test by RFR models using FEHDA and OT for Splits 7 (left) and 9 (right).

Fig. 5. Tablet hardness of the samples in D
(t)
train (blue) and

D
(t)
test (orange) in Splits 7 and 9.

samples below 40 N, which may have contributed to the
improved prediction performance. While both the SD data

and D
(t)
train cover all samples in D

(t)
test in Split 9, one sample

remains uncovered in Split 7. Even though the prediction
performance improved in the extrapolation region (Ωext)
in Split 7, it is still worse than that in the interpolation
region (Ωint), with RMSEs of 38.8 N in Ωext and 15.3 N in
Ωint, respectively.

Extrapolation causes the degradation of prediction per-
formance, and other factors also play a role. In Split 9,
extrapolation no longer exists; however, the prediction

performance is worse than in Split 7. This is mainly due
to the samples whose hardness is between 35 and 50 N.

For these samples, FEHDA does not significantly improve
the prediction performance, although both the SD data

and D
(t)
train contain samples with the hardness similar to

those in D
(t)
test, as shown in Figures 1 and 5. The values

of R2 in training were 0.964 and 0.980 in Splits 7 and
9, respectively. These results eliminate the possibility that
the training did not work successfully. The potential reason
for the poor prediction performance of these samples is
explained below. Figure 6 shows the relationship between
the main-compression force and hardness in the CDC and
BDC processes. A common characteristic of the samples
with poor prediction performance is that both the API
content and the main-compression force are high. The total
number of samples with the API content of 15% and the
main-compression force of 20 N from the CDC process is

three. One of them is included in D
(t)
train in Split 7, and

none of them are included in D
(t)
train in Split 9. As shown in

Figure 6, when the API content is 10% or 15%, as the
main-compression force increases, the hardness initially
increases and then decreases in both processes. As shown
in Figure 4, the predicted values for these samples are
higher than the actual values. This suggests that, although
a similar trend is observed in the SD data, this knowledge
has not been transferred from SD to TD due to the scarcity

of such samples in D
(t)
train.

A possible issue in transfer learning is that if SD and TD
are not similar, transfer learning can fail and even lead to
negative transfer (Rosenstein et al., 2005), where using SD
data deteriorates prediction performance. In the present
results, transfer learning for hardness from BDC to CDC
did not cause negative transfer; however, it is necessary to
verify whether it works for other CQAs. Moreover, as dis-
cussed above, even if both domains are similar, knowledge
will not be transferred unless the data properly reflects
their similarity. Therefore, it is essential to establish an



Fig. 6. The relationship between the main-compresssion force and hardness in CDC (left) and BDC (right) processes.

experimental design that supports appropriate data ac-
quisition in TD.

4. CONCLUSIONS

This study has highlighted the potential of applying het-
erogeneous transfer learning (TL) to facilitate the transi-
tion from batch to continuous manufacturing in the phar-
maceutical industry. The frustratingly easy heterogeneous
domain adaptation (FEHDA) approach was applied to
leverage data from the batch direct compression (BDC)
process in predicting critical quality attributes (CQAs) for
the continuous direct compression (CDC) process. Models
were built using partial least squares regression (PLSR),
Gaussian process regression (GPR), and random forest re-
gression (RFR). The models outperformed models trained
solely on CDC data, even in the regions with limited or
no BDC data. The best result was achieved with the RFR
model, which showed a reduction in RMSE by 9.36 N. Nev-
ertheless, we also identified regions where prediction accu-
racy plateaued despite increased sample size. The potential
reason is that because the samples in these regions do
not have enough similar samples in training data from the
target domain, the knowledge from the source domain was
not transferred effectively. Further investigation is required
to understand this underlying limitation. Moreover, our
future research will focus on applying the models derived
from this approach to optimize experimental design.
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