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Abstract: Surrogate models are becoming an important technique in process design, control, and 

optimization. These models are often developed at the process level, tailored to specific process 

configurations. Even when unit-level models are constructed, they rarely account for all units within a 

flowsheet. In this work, we use a unit-based surrogate model framework for an amine scrubbing process 

designed to remove CO2, H2S, and other sulfur species from gas streams. Unit-level Artificial Neural 

Network (ANN) surrogate models are created for each process unit. The developed unit-based models 

remain independent of process configuration and can be connected to recreate many possible arrangements 

of the amine scrubbing process. To demonstrate the versatility of our approach, we present two case studies. 

The first involves a typical amine scrubbing process configuration, while the second considers two absorber 

columns operating in parallel. This unit-based surrogate approach proves scalable and modular, enabling 

accurate predictions across diverse process configurations. By adopting this unit-based surrogate modeling 

framework, we can explore various process scenarios and simulate the amine scrubbing operations across 

multiple plant configurations. 
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1. INTRODUCTION 

Process models are an important methodology in process 

development, optimization (Biegler, 2014), and control 

(Kothare, 2006). Through the years, first principles models 

have evolved through improved domain knowledge and can 

model the real processes with high accuracy. However, this 

higher accuracy often comes with increased complexity and 

computational costs that prevents their implementation in real-

time applications. In such cases, data-driven surrogate models 

based on historical process data or simulations can help reduce 

the computational burden, while retaining satisfactory 

accuracy when predicting key process variables (KPIs) 

(McBride & Sundmacher, 2019). Surrogate models can assist 

in process design, helping to identify promising design regions 

and the main design trade-offs, but can also be used for real -

time control and optimization. In this work, the main 

motivation for developing surrogate models is to provide real-

time information about plant performance to Engineers and 

other personnel. This information will provide insights into the 

plant energy efficiency, production rates, profitability, as well 

as the ability to understand the impact of process 

changes/improvement activities.    

Developing process surrogates using simulation data is 

challenging, as it requires many simulations for model 

training. Furthermore, the design space of these simulations 

must be carefully selected to account for the several possible 

process conditions and regimes. Surrogate models for an 

amine scrubbing process are usually developed at the process 

level (Chung & Lee, 2020; Li et al., 2015; Sipöcz et al., 2011), 

although there are examples in the literature of surrogate 

models at the unit level (Henao & Maravelias, 2011), and even 

on the thermodynamic/ property level (Goldstein et al., 2022; 

Misener & Biegler, 2023). 

Process-level surrogates require simulations of process 

flowsheets containing all relevant units. Although the process 

fundamentals remain the same for all production plants, the 

process configuration might not be the same. In such cases, 

process-level surrogates must be trained specifically for the 

configuration of interest. On the other hand, developing unit-

based surrogates requires simulations of flowsheets containing 

only the unit of interest. These flowsheets are less resource-

intensive than full-process flowsheets. The usage of unit-based 

models as a way of replacing units in the flowsheet of a broader 

optimization framework has been documented in (Caballero & 

Grossmann, 2008; Quirante et al., 2015). This idea was further 

explored by (Lin et al., 2017), replacing almost all process 



 

 

 

 

units with surrogate models with the goal of optimizing 

reactive extraction and reactive adsorption. Although unit-

based surrogate models have many advantages, they also have 

drawbacks. For example, there is a risk for error propagation 

when the prediction of a model is the input to another model. 

In this case, a poor model can have a significant impact on the 

performance of other surrogate models as its predictions are 

used by subsequent models. Another drawback is that the 

overall complexity of the surrogate system is larger with unit-

based models. When one develops a surrogate for a process, 

one can simply model the key outputs of interest. However, 

when the model is developed per process unit, many more 

outputs need to be modelled as those can be important inputs 

to the next process unit. 

There are several examples of developing surrogate models for 

amine scrubbing processes in the literature, with most of them 

being at process-level (Chung & Lee, 2020; Hsiao & Chang, 

2023a; Sipöcz et al., 2011). A few unit-based surrogate models 

have been proposed, for predicting column distribution 

coefficients as part of a wider optimization framework 

(Goldstein et al., 2022) or as a way of reducing the 

computational intensity of data acquisition when developing 

process-level surrogates (Hsiao & Chang, 2023b). In this 

work, we explore and demonstrate the modularity and 

scalability of unit-based models. We utilize unit-level 

Artificial Neural Network (ANN) models as building blocks, 

which are combined to recreate any process configuration on 

the amine scrubbing process, while also allowing for 

prediction of several intermediate material stream 

characteristics and process KPIs. 

The remainder of this paper is structured as follows: Section 2 

presents an overview of the process and the simulated dataset. 

The tools and strategies utilized for model development and 

connecting the unit-based models are presented in Section 3. 

Section 4 presents the main results for two different process 

configurations. Lastly, Section 5 contains the main 

conclusions of this work. 

2. PROCESS DESCRITPION AND DATASETS 

The sour gas amine scrubbing process is used for the removal 

of sulfur species and CO2 from a sour gas stream using amine 

solvents, allowing it to meet product specifications. It consists 

of 3 main units: a) An absorber column, where CO2 and sulfur 

species are removed from the sour gas stream, producing a 

treated gas stream (with very low concentrations of sulfur and 

CO2) and a rich amine stream with high concentrations of 

sulfur and CO2. b) a flash drum, where light hydrocarbons are 

removed from the rich amine stream and c) the regenerator 

column, where heat is used to remove large quantities of sulfur 

and CO2, regenerating the amine stream. The regenerator 

column produces two streams, an acid gas stream, and a “lean” 

amine stream. The latter is recycled back to the absorber. A 

heat exchanger (HX) is also used between the columns for 

energy integration. A simplified process flowsheet of a typical 

configuration is presented in Figure 1. Nevertheless, there are 

cases where multiple similar units are used (i.e., 2 absorbers in 

parallel). One example of such a configuration is presented in 

Figure 2. These two process configurations will be used to 

demonstrate the effectiveness and scalability of the unit-based 

surrogate models proposed in this work. 

 

Fig. 1. Simplified flowsheet of the typical configuration of 

the sour gas amine scrubbing process. 

 

Fig. 2. Simplified flowsheet of the extended (2 absorber) 

configuration of the sour gas amine scrubbing process. 

An in-house process simulation software is used for generating 

data for surrogate model training. Due to the modular scope of 

this work, each individual unit i.e., the absorber column, the 

flash drum and the regenerator column are simulated 

individually for a range of process inputs. A space filling Latin 

Hypercube Sampling was utilized to generate the input levels 

that were then simulated in the in-house simulator. An 

overview of the three distinct datasets collected for model 

development are presented in Table 1. This dataset is split into 

a training set containing 90% of the data for model 

development, and a test set with the remaining 10% to assess 

the model performance. 

Table 1. Overview of the three datasets for model 

development. 

Process unit 
Number of 

response variables 

Number 

of inputs 

Number of 

simulations 

Absorber 13 29 7600 

Flash Drum 7 15 5886 

Regenerator 4 20 2943 

 

 



 

 

 

 

3. SURROGATE MODELING 

3.1 Artificial Neural Networks 

In this work, Artificial Neural Networks (ANNs) were utilized 

as the surrogate models to replace our detailed in-house 

simulator. In ANNs, neurons are organized into layers and the 

signal flows from the input layer towards the outputs layer. 

Each layer output is computed by passing the input signals 

though a non-linear function called the activation function. 

Additionally, every neuron has certain parameters (i.e., 

weights and biases) associated with it that are optimized or 

fitted based on available data during the model training phase. 

ANNs have many hyper-parameters that need to be tuned for 

optimal performance. In this work, we use a Bayesian 

optimization approach (Snoek et al., 2012) implemented in the 

keras-tuner python library (O’Malley et al., 2019) to optimize 

the cross-validation error. Bayesian optimization is an efficient 

approach for hyper-parameter tunning since it uses a 

probabilistic model to sequentially identify the best next set of 

hyper-parameters. By comparison, randomly searching for the 

best hyper-parameter or testing the full set of parameter 

combinations can be computationally expensive. The main 

hyper-parameters tuned for the ANNs were the number of 

hidden layers, the number of neurons per layer, and the type of 

activation functions. 

Using intuition and experts’ knowledge regarding the amine 

scrubber process, the original input features were also 

combined to create new features that are expected to be 

predictive of the response variables (i.e., feature engineering). 

For example, the ratio of different types of amines in the lean 

amine stream (see Figure 1) will play a key role in the 

absorption process. Thus, we created new features containing 

all those ratios. The sour gas to amine flow ratio was also 

included in the model. Feature selection approaches were also 

tested to identify irrelevant predictors and remove them from 

the model. In this case, we used a tree-based method, Xgboost 

(Chen & Guestrin, 2016) , to rank features and remove those 

with an importance lower than 1%. The goal of this step was 

not to select important features but to remove those that are 

irrelevant. Thus, we used a conservative threshold and allow 

the ANN model the flexibility to use or not the remaining 

features. Additionally, variable transformations (e.g., 

logarithmic) were tested to assess their impact on model 

performance. The combinations of model architecture and 

transformations with the lowest root mean squared error 

(RMSE) were selected. 

It is important to note that each output variable from each unit 

(see Table 1) is modelled independently. As an example, 13 

ANNs models were built for the absorber, one per output 

variable. This simplifies the model development stage since 

developing one ANN to predict all 13 outputs would be 

challenging as they have different physical units and would 

need to be weighted accordingly.  

3.2 Connecting process units into a flowsheet 

After the developing the ANN models for each unit, they need 

to be connected to represent a process. This would be an easy 

task in the absence of the recycle streams (see Fig 1 and 2), 

and one could simply run the models of each unit sequentially. 

However, the recycle stream from the regenerator column to 

the absorber column turns this problem into a constrained 

optimization problem. To formulate and solve this problem, 

the Pyomo (Bynum et al., 2021) and OMLT (Ceccon et al., 

2022) python packages are used.  

Pyomo is an open-source software package developed in 

Python that provides a wide range of optimization capabilities. 

It allows users to formulate, solve, and analyse optimization 

models. Moreover, Pyomo also provides efficient auto-

differentiation of nonlinear functions, which is an important 

advantage given the non-linear activation functions used by 

the developed ANN models. One other important feature of 

Pyomo is its block abstraction. This block component 

organizes constraints and variable groups. Many systems, like 

process flowsheets, have a hierarchical structure composed of 

repeated, conceptually related components. Pyomo lets 

modelers define and connect these fundamental building 

blocks in an object-oriented way. 

OMLT (Ceccon et al., 2022) takes advantage of these block 

abstractions to encapsulate each surrogate model into the 

Pyomo framework so gradient-based optimization can be done 

conveniently with ANN models. OMLT encodes the structure 

and weights of the ANN models into a set of equality and 

inequality constraints, which can be readily used in the Pyomo 

optimization environment using different ANN formulations. 

The choice of formulation depends on the nature of the 

network activation functions. Nevertheless, several neural 

network formulations are available, both for smooth 

(Schweidtmann & Mitsos, 2019), and non-smooth (Yang et al., 

2021) activation functions. In this work, the Reduced Space 

Formulation proposed by (Schweidtmann & Mitsos, 2019) is 

used for ANN models using smooth activation functions (i.e., 

sigmoid). This choice is expected to provide better 

performance than the Full Space Formulation. The formulation 

involving complementarity constraints presented in (Yang et 

al., 2021) is used for networks using the Relu activation 

function.  This selection guarantees that the resulting 

optimization problem is non-linear, rather than a mixed-

integer and non-linear optimization, which would be more 

difficult to solve. In summary, these formulations re-write and 

approximate the equations of an ANN, making them more 

tractable and easier to solve. The interested reader is referred 

to the literature for some formulation examples 

(Schweidtmann & Mitsos, 2019). 

Connection of the inputs/outputs of units is achieved through 

constraints. Additionally, constraints are particularly useful 

when mixing streams, and one can impose a set of constraints 

reflecting the mass balance equations. The ability to mix 

streams like so is key to ensuring the scalability of this 

approach from a base case (1 absorber, 1 flash, 1 regenerator) 

to a larger number of units. Finally, the Ipopt (Wächter & 

Biegler, 2006) solver is used for the solution of the 

optimization problem. The problem simplifies to an 

optimization problem with zero degrees of freedom. The 



 

 

 

 

solver, therefore, searches for a viable solution that satisfies all 

constraints. 

One should note that integrating all the surrogate models will 

increase the chance for the individual models to extrapolate to 

conditions not observed in the training set, which can even lead 

to model infeasibilities. Thus, additional constraints are 

included to guarantee that the predicted output of each model 

is within the range observed in the training dataset. These 

constraints are included in Pyomo. Although these are not 

guarantees of no model extrapolation, they are a preliminary 

check on the validity of the results. Another test is to compare 

the predictions of the connected surrogate models to process 

simulations (containing all the units) for different scenarios, as 

will be presented in the results section. Still, further research 

is needed to automatically identify models that are not 

performing as expected and understand how their errors 

propagate through the surrogate system. 

4. RESULTS 

4.1 ANN model performance 

Several ANN models were trained for each unit. Hyper-

parameter tunning and different scaling approaches for the 

inputs and outputs were assessed during model training, and 

the best combinations were selected. The full list of model 

architectures and performance is not presented for simplicity, 

but model performances were generally high. All the 

coefficients of determination (R2) are higher than 0.8, and most 

models had an R2 higher than 0.95. The top three highest R2 

were above 0.99 and were related to flows, particularly the rich 

amine flow leaving the absorber. The smallest three R2 were 

0.8, 0.89, and 0.91, and are related to concentrations in 

different streams. Overall, the flash drum models showed the 

best performance, followed by the absorber column models. 

The regenerator models demonstrate the worse performance 

out of the three groups of models; however, their performance 

was still satisfactory. Figure 3 presents the test set parity plot 

for the H2S in the rich amine stream after the absorber in scaled 

units. It should be noted that the higher the complexity of an 

ANN model, the higher the computational resources required 

both for training and prediction. Given the fact that these 

models will be evaluated simultaneously in the Pyomo-OMLT 

framework, where the flowsheet is solved iteratively, one 

should always consider the effect of ANN complexity on the 

full flowsheet case, even if, individually, these models have 

fast prediction times. 

4.2 Performance of interconnected unit-based models 

The converged optimization results for the typical process 

configuration are presented in Figure 4, where one can see that 

most models have a good performance with relative errors 

below 10%. Still, there is some spread of errors, which 

indicates that some models could be improved, potentially 

improving the overall surrogate system. This could be 

achieved by fine-tuning the current models with further hyper-

parameter training, expanding the training dataset with 

additional simulations, etc. Still, the focus of this work falls 

not on only the individual model performance but on the 

predictive performance of the flowsheet containing modular 

units. It is the modularity of the units that allows recreating 

flowsheets for any configuration of an amine scrubbing 

process, as discussed below next. 

 

Fig. 3. Test set parity plot for H2S in the rich amine stream 

leaving the absorber (scaled units). 

The results for the process configuration with 2 parallel 

absorbers are presented in Figure 5. Apart from the 

input/output constraints necessary for the previous case, any 

configuration involving units in parallel also requires 

constraints that mix process streams. These constraints are 

based on mass balance equations, and they include all the 

outputs of parallel units that will become inputs to a 

downstream unit. Another difference between the previous 

case and the extended case is the increased computational 

resources required for the solution. This is a direct effect of the 

increased number of models and, thus, increased number of 

constraints and variables included in the optimization problem. 

Specifically, the optimization problem for configuration 1 

(Figure 1) have 2729 variables and constraints whereas the 

problem for configuration 2 (Figure 2) contains of 5183 

variables and constraints. In terms of computational effort, this 

configuration takes ~4min to run in the in-house simulator, 

whereas the surrogate models converge in ~40s. Besides the 

flexibility of the surrogates to adapt to multiple process 

configuration, they are also significantly faster at run time.  

For this extended flowsheet, our implementation provides 

good predictions. Again, most relative errors are below 10%, 

and only one output is above 10% for absorber 2. It is 

interesting to note that absorbers 1 and 2 show a different 

profile for the relative errors, which is expected since they are 

simulated at different conditions. This example is a clear 

demonstration of the power of this modular approach. Its 

scalability can accommodate any process configuration, with 

the only downside being the increased computational cost as 

well as the size of the optimization problem that comes with 

the increased complexity. Although it is possible that an 

extreme number of units (e.g., 5 absorbers, 5 flash, and 5 

regenerator units) could make the problem computationally 

intractable, the existence of such real-world process 

configurations is highly improbable. This method is generally 



 

 

 

 

scalable and efficient, offering reliable estimates for different 

amine scrubbing process KPIs. 

 

Fig. 4. Relative error for the test case with the following 

configuration: 1 absorber, 1 flash, and 1 regenerator. 

 

Fig. 5. Relative error for the test case with the following 

configuration: 2 absorbers, 1 flash, and 1 regenerator. 

5. CONCLUSIONS 

This work presented the development of a modular surrogate 

modelling approach for an amine scrubbing process. This 

modular approach involves unit-based ANN models trained 

with independent simulations for each unit. In other words, the 

absorber column models were trained using simulations 

containing only an absorber column unit. The same stands for 

the flash drum and regenerator column models. These ANN 

models can then be connected in the Pyomo/OMLT 

framework, allowing the reconstruction of any amine 

scrubbing process configuration regardless of the number of 

units used. 

The modular approach is demonstrated on two different 

process configurations. One consists of one absorber column, 

one flash drum, and one regenerator column and another 

configuration containing two absorber units in parallel, one 

flash, and one regenerator unit. In contrast to the first case, the 

second case involves additional constraints to reflect the mass 

balance equations used for mixing the outlet streams from the 

two absorbers. The second case also comes with a higher 

computational cost due to the increased number of ANN 

models present in the flowsheet. In both cases, the modular 

surrogate modelling approach demonstrates good predictive 

performance, which can still be improved with the 

amelioration of the corresponding individual unit-based 

models.  

The approach is strongly scalable and is expected to perform 

well in flowsheets containing more units. In the case of many 

units, attention is required when creating the mass balance 

constraints for the mixing or splitting of material streams. 

Furthermore, flowsheets involving high numbers of units 

come with a higher complexity due to the higher number of 

individual models involved. A higher number of individual 

models translates to more variables and constraints, resulting 

in a resource-intensive problem.  

To conclude, the proposed modular surrogate approach could 

be very advantageous for processes involving different types 

of units and especially when the process configuration differs 

from site to site. The approach’s scalability and modularity are 

its main strengths and can pave the way for other similar 

applications. 

As future work, we intend to test the robustness of the unit-

based surrogate system for other process configurations to 

have a more thorough understanding of its performance. 

Furthermore, individual surrogate models can be further 

improved. To achieve this, many approaches can be tested 

such as adaptive sampling, further hyper-parameter 

optimization, testing other methods besides ANNs, among 

others. These have the potential of improving the individual 

model performance, with an expected gain to the surrogate 

model system. 
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