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Abstract: Ensuring safety and efficiency in industrial systems requires effective fault detection and 

diagnosis, which becomes increasingly challenging in high-dimensional and complex environments. 

Traditional multivariate statistical process monitoring methods, such as those based on Principal 

Component Analysis and Partial Least Squares, often fall short in their ability to diagnose localized faults 

due to their lack of causal modeling. This paper introduces a Causal Network-based Decentralized 

Multivariate Statistical Process Control (CNd-MSPC) framework, which employs causal networks and 

community detection—specifically the Leiden algorithm—to segment large systems into functional 

communities and perform distributed monitoring. This structural partitioning preserves essential causal and 

topological information, enhancing the sensitivity for fault detection in high-dimensional systems by 

allowing focused analysis of specific sub-networks. Through extensive testing with a graph-based data 

simulator, we demonstrate that CNd-MSPC consistently outperforms centralized methods across various 

network sizes, achieving higher fault detection sensitivity for both process perturbations and sensor biases, 

especially in large networks. The decentralized approach retains high sensitivity, even when data from 

several communities are missing due to process disruptions.  
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1. INTRODUCTION 

Fault detection and diagnosis in industrial and engineering 

systems are essential to ensure operational safety, efficiency, 

and quality consistency. In large-scale industrial processes, 

many interdependent variables must be simultaneously 

monitored to quickly detect faults that could affect the process 

(Isermann, 2006; Reis & Gins, 2017). Causal networks 

provide valuable insights into such cause-and-effect 

relationships (Pearl, 2000; Peters et al., 2017); however, most 

conventional statistical process monitoring (SPM) methods, 

such as PCA and PLS-based approaches, are non-causal by 

design and tacitly overlook causality. This limitation reduces 

their ability to detect localized faults and impairs fault 

diagnosis due to the well-known “smearing-out” effect of 

correlation-based methods (Kourti & MacGregor, 1996; Van 

den Kerkhof et al., 2013). 

As the systems’ dimensionality and complexity increases, both 

causal and non-causal SPM methods face challenges in 

maintaining accuracy and sensitivity to detect localized faults 

(Joe Qin, 2003; Rato & Reis, 2014). While Multivariate 

Statistical Process Control (MSPC) methods are effective for 

smaller systems, they often fail to detect localized faults in 

large-scale processes because the impact of these faults on 

global monitoring metrics is diluted (Chiang et al., 2000). To 

address this limitation, decentralized approaches, such as 

Distributed PCA (DPCA) and Distributed Canonical 

Correlation Analysis (DCCA), have been explored to reduce 

the monitoring dimensionality (Ge & Song, 2013; Peng et al., 

2020). However, these methods overlook the physical 

topology and causal structure of the process. 

In contrast, community detection algorithms—such as 

Louvain, Girvan-Newman, and Leiden— provide network 

partitions based on modularity and connectivity principles, 

that better align with the physical interdependencies of the 

system (Harenberg et al., 2014; Javed et al., 2018). This 

structural partitioning preserves critical topological 

information, increases sensitivity to local perturbations within 

specific subnetworks, and provides a more robust and 

interpretable monitoring framework in high-dimensional, 

complex systems. Furthermore, combined with the Markov 

Blanket concept, this approach enables a fully decentralized 

monitoring framework that is suitable for both software and 

hardware implementations (Paredes et al., 2022). 

To address these challenges, this study assesses the impact of 

increased system dimensionality using a data simulator based 

on a graph generative framework, where both centralized and 

decentralized causal-based SPM methods are tested and 

evaluated for their fault detection sensitivity. The proposed 

approach, Causal Network-based Decentralized Multivariate 

Statistical Process Control (CNd-MSPC), begins by inferring 

the system's causal network and then partitioning it into 

functional communities using the Leiden algorithm. This 

division manages dimensionality by focusing monitoring 

efforts on specific sub-levels within the system. A likelihood 



 

 

     

 

metric is calculated for each community, and a global metric 

is composed from the community-level statistics. 

In all tested scenarios, CNd-MSPC demonstrates better 

performance in sensitivity for fault detection while improving 

fault diagnosis through the incorporation of causal 

information. This paper is structured as follows. Section 2 

presents the monitoring methods. Then, in Section 3 describes 

the data simulator and fault types used to evaluate high-

dimensional scenarios. Section 4 presents the results obtained. 

Finally, Section 5 provides a discussion and summarizes the 

main conclusions.  

2. LARGE-SCALE MONITORING METHODS 

This section presents the two causal-based Statistical Process 

Monitoring (SPM) methods used in this work: CNc-MSPC, a 

causal method that monitors the complete causal network, and 

CNd-MSPC, the proposed method that builds communities for 

dimensionality reduction and performs monitoring on each 

sub-network. These approaches were applied to high-

dimensional linear scenarios with Gaussian random root nodes 

and additive white noise. Fig. 1 shows the main stages of the 

statistical process monitoring procedures. 

 

Fig. 1. Representative diagram of main stages to process 

monitoring. 

2.1 CNc-MSPC 

This causal methodology begins by inferring the causal 

network structure of the data using causal discovery methods. 

Here, we assume the causal network structure to be known, 

allowing us to focus on the effects of system dimensionality 

on fault detection performance. 

In the initial stage, data are transformed using a structural 

causal model (SCM) that considers causal dependencies by 

regressing each variable Xi on its causal parents in the network, 

Pa(Xi). These yields 𝑋𝑖 = 𝑓(Pa(𝑋𝑖)) + 𝑒𝑖, where the 

conditional distribution of 𝑋𝑖|Pa(𝑋𝑖) is equivalent to the error 

term distribution 𝑒𝑖. 

For fault detection, a local likelihood index 𝐿𝑖
𝐿 is calculated for 

each observation k. Assuming a normal distribution, the log-

likelihood for an individual observation 𝐿𝑖
𝐿(𝑘) is defined as: 
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where 𝑒𝑖
(𝑘)

 is the error term of variable 𝑋𝑖 conditioned onto its 

parents, in the k-th observation, and 𝜇̂𝑒𝑖
 and 𝜎̂𝑒𝑖

are the sample 

mean and standard deviation of 𝑒𝑖calculated from a reference 

dataset corresponding to normal operating conditions (NOC). 

A global log-likelihood index 𝐿𝐺  for the k-th observation is 

then computed to monitor the stability of the entire network by 

considering the joint distribution of the entire causal network. 

Leveraging the chain rule, the joint (or global) likelihood can 

be expressed as the product of individual likelihoods across the 

network’s nodes. Therefore, applying logarithms, the global 

log-likelihood, 𝐿𝐺(𝑘), is defined in terms of the individual log-

likelihoods, as: 

 

𝐿𝐺(𝑘) = ∑ 𝐿𝑖
𝐿(𝑘)

𝑛𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠

𝑖=1

 (2) 

Control limits for fault detection are established using the LG 

obtained from a validation dataset. A kernel density estimation 

(KDE) was used to approximate the probability density 

function of these likelihood statistics (Silverman, 1986). The 

cumulative distribution function (CDF) of the fitted KDE is 

computed, and the Lower Control Limit (LCL) is identified by 

solving the following equation for a predefined Type I error 

rate, α: 

 
∫ 𝑓𝐾𝐷𝐸(𝐿𝐺)

LCL

−∞

 d𝐿𝐺 = 𝛼 (3) 

where, 𝑓𝐾𝐷𝐸(𝐿𝐺) is the estimated probability density function. 

Since high log-likelihood values indicate proximity to the 

reference distribution, only the Lower Control Limit (LCL) is 

needed for fault detection. This threshold is used for 

monitoring future observations, during Phase II (Fig. 1). 

In Yang et al. (2022), this methodology was comparatively 

assessed against the classical PCA-MSPC approach using both 

a simulated and an industrial dataset from semiconductor 

manufacturing, showing similar performance in fault detection 

while demonstrating improved effectiveness in fault diagnosis. 

2.2 CNd-MSPC 

The proposed decentralized CNd-MSPC, also begins by 

inferring the causal network. Afterwards, the variables are 

divided into communities using a community detection 

algorithm that analyses the topology and density of the 

network. Such grouping into strongly connected communities 

effectively improves the fault detection sensitivity to localized 

faults. For this study, the Leiden algorithm was applied, 

including an extra refinement step not shared by the Louvain 

method. This step enhances the community detection quality 

by ensuring that communities are not only well-defined but 

also well-connected, addressing the limitations of the Louvain 

method in detecting disconnected communities (Traag et al., 

2019). 

The Leiden algorithm aims to maximize modularity Q, defined 

as: 

 
𝑄 =

1

2m
∑ (𝑤𝑖𝑗 −

kikj

2m
) δ(ci, cj)

i,j
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where 𝑤𝑖𝑗 is the edge weight between nodes i and j, 𝑘𝑖 and  𝑘𝑗 

are their respective degrees, and 𝛿(𝑐𝑖 , 𝑐𝑗) is a community 

indicator function (1 if i an j belongs to the same community, 

i.e., 𝑐𝑖 = 𝑐𝑗, and 0 otherwise). It consists of three main steps: 

(1) local moving of nodes to optimize modularity locally, (2) 

refinement to ensure that all communities are connected, and 

(3) aggregation of communities into super-nodes, with 



 

 

     

 

iterative repetition to achieve optimal partitioning. The 

resulting disjoint communities were evaluated using metrics of 

cohesiveness, separability, density, and conductance (a 

measure of the communication flow between a community and 

its neighbourhood) to assess the choice of parameters.  

After the definition of the functional communities, a global 

log-likelihood metric (Equation 2) is built for each community 

(sub-level monitoring), denoted as 𝐿𝑐
𝐺  for c = 1, 2,…,ncommunities, 

where ncommunities is the number of communities. To aggregate 

the information from multiple communities we adopt an OR-

gate approach (a global warning is issued, as soon as at least 

one community-level out-of-control signal is produced). In 

this study, CNd-MSPC monitors each 𝐿𝑐
𝐺  independently, with 

control limits set at the community level, with a significance 

level corrected to control the overall false alarm rate due to the 

use of multiple monitoring statistics. To control the false alarm 

rate due to multiple monitoring statistics, the Šidák correction 

is applied, setting the significance level for each community as 

𝛼𝑐 = 1 − (1 − 𝛼)
1

𝑛𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑡𝑖𝑒𝑠
⁄ (Šidák, 1967). The global 

alarm of the CNd-MSPC is then triggered if at least one 

community has a monitoring statistic below its control limit 

(OR-gate). 

3. CASE STUDY 

To evaluate both centralized and decentralized causal-based 

monitoring approaches, a data simulator based on scale-free 

directed acyclic graphs (DAGs) was constructed. This 

simulator can generate both normal and faulty data, including 

two types of faults analogous to those encountered in industrial 

contexts: sensor faults and process drift. Being static and 

linear, the simulator is well-suited for assessing simpler 

scenarios and investigating issues related to network 

complexity, dimensionality, and robustness. The performance 

of the methods was tested using networks with 50, 100, and 

1000 nodes. 

3.1. Network data simulator 

The data simulator begins with the definition of a DAG 𝒢, 

comprising 𝒱 nodes representing the variables and ℰ edges 

representing the relations between them. It should be noted 

that 𝒱 can be divided into root nodes, if a node lacks parents, 

and non-root nodes, otherwise. The graph can be generated 

using various models, including potential-growth and forest 

fire models. However, to create a network structure that 

closely resembles real industrial scenarios, the Barabási-

Albert model was used to generate scale-free networks (Albert 

& Barabási, 2002). 

To examine the data sampling process, we consider Equations 

5-9, from the algorithm presented in Table 1. The data 

simulator is built on several assumptions. The root nodes are 

assumed to follow a normal distribution, as indicated by 

Equation 5. Each link is assigned a coefficient obtained by 

sampling a Student's t-distribution with DF degrees of freedom 

(Equation 6). Additionally, an intercept is selected for each 

non-root node (Equation 7). The samples for each non-root 

node are generated using a causal approach, where each parent 

value of Xi is multiplied by the respective coefficient, plus the 

intercept (Equation 8). Data generation for the non-root nodes 

requires following a linear topological ordering of the graph 

nodes such that for every edge (𝓋𝑥 , 𝓋𝑦), from node 𝓋𝑥 to 𝓋𝑦, 

𝓋𝑥 comes before 𝓋𝑦 in the ordering, starting from the root 

nodes and proceeding along the DAG. Once the matrix X is 

constructed, measurement white noise is added to all variables 

using the Signal-to-Noise Ratio in decibels (Equation 9), 

enhancing the realism of the simulator. 

 𝑋𝑖
root ~𝒩(𝜇i, 𝜎i

2), i=1,...,nvariables (5) 

 𝛽𝑖𝑗~𝑡𝐷𝐹,  i=1,...,nvariables,  j=1,...,nPa(Xi) (6) 

 𝛽0𝑖

𝑛𝑜𝑛−𝑟𝑜𝑜𝑡 ∈ ℤ ⋃ ℝ (7) 

 𝑋𝑖
non−root = 𝛽0𝑖

𝑛𝑜𝑛−𝑟𝑜𝑜𝑡 + ∑ 𝛽𝑖𝑗𝑋𝑗

𝑗∈Pa(𝑋𝑖)

    (8) 

 
SNRdB = 10 log (

var(𝑋𝑖)

var(ℯi)
) (9) 

 

Table 1. Algorithm for data simulation. 

Algorithm 1. Data Simulator 

INPUT: Graph (𝒢); Distribution parameters for root nodes 

(𝜇i, 𝜎i
2); Degrees of freedom for Student’s t-distribution 

(DF); Intercept for non-root nodes (intercepti
non-root); 

Coefficients (βij) Topological order of 𝒢 (TopOrder(𝒢)); 

Signal-to-Noise Ratio in decibel (SNRdB); Number of 

observations (nsamples) 

For Xi in TopOrder(𝒢) do 

     If Xi in root nodes do 

• Pick nsamples from the normal distribution 

     Else 

• Use the parent values and the intercept to 

generate the sample values 

End 

For Xi in nvariables do 

• Calculate the variance of the noise 

• Pick nsamples from the noise distribution 

~𝒩(0, √𝑣𝑎𝑟(ℯi))  

• Add the measurement noise to the sample 

values 

End 

OUTPUT: The generated dataset, 𝐗𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠×𝑛𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠  

3.2 Types of faults simulated 

In this simulator, two types of faults were implemented to 

introduce changes in the network, simulating common 

industrial upsets: process perturbation (or drifting) and sensor 

bias. These faults can result from electrical or mechanical 

incidents, aging components, varying material suppliers, 

inconsistent operations, or many other possible root causes. 

We classify the faults into two main groups: process faults, 



 

 

     

 

which induce real changes in the process out of the NOC 

regions, and sensor faults, which lead to biased measurements 

due to faulty sensors. The faults were modelled with detailed 

mathematical formulations, as shown in Table 2. 

Table 2. Type of faults and their implementation in the data 

simulator. 

Type of 

fault 
Meaning Modified factor 

Process 

perturbation 

A step change in a 

root node, 

representing, e.g., 

excessive variation in 

raw materials or 

operational 

disturbances 

𝜇𝑖 = 𝜇𝑁𝑂𝐶,𝑖 + 𝑘𝜎𝑖 

Sensor bias 

Abnormal sensor 

readings caused by 

faulty sensors. 

𝑋𝑖  =  𝑋𝑖 + 𝑘𝜎ℯi
 

The parameter k represents the fault magnitude, controlling its 

severity. Process perturbations affect key variables and 

propagate through the network, while sensor bias introduces 

errors in measurements. These faults provide a practical 

testbed for evaluating the robustness of monitoring methods. 

3.3 Summary of the selected networks 

Three network configurations were selected to evaluate the 

monitoring methods, where these generated networks vary in 

size and complexity, and cover a representative range of 

industrial environments. Table 3 summarizes key 

characteristics of each network, such as the number of nodes, 

edges, root nodes, and other structural properties. 

Table 3. Characterization of the three networks under study. 

Network 

Information 
Network 1 Network 2 Network 3 

Number of 

nodes 
50 100 1000 

Number of 

edges 
131 212 3880 

Number of 

root nodes 
23 48 333 

Graph density 0.054 0.021 0.004 

Number of 

open triplets 
967 1624 56118 

Number of 

closed triplets 
94 62 570 

Number of 

communities 
5 8 27 

 

4. RESULTS 

In order to evaluate the performance of the monitoring 

methods, the three networks detailed in Table 3 were 

considered. For each network, a comparison was made 

between centralised and decentralised causal-based 

monitoring under two fault types: process perturbation and 

sensor bias. While examining the process perturbation fault, 

we focused on analysing the behaviour of each root node in the 

network, applying 10 different fault magnitudes. The range of 

magnitudes was fixed for all tests conducted on the various 

networks. To account for variability in the results, each 

magnitude was simulated with 100 replicates. The simulations 

were run with 1000 observations for each replicate, and the 

signal-to-noise ratio was set to 10 dB.  

Similarly, in the case of sensor bias, each fault magnitude was 

applied to every variable in the network, and the detection 

sensitivity was assessed in each case. 

Both methodologies were evaluated at a false alarm rate (FAR) 

of α = 0.01.  

To assess fault detection performance, we calculated the True 

Positive Rate (TPR) for each replicate, defined as the 

proportion of correctly detected faults (true positives) relative 

to the total number of faulty samples. This resulted in 100 TPR 

values per magnitude. To summarize all the results from the 

perturbations of all individual variables, and compare the two 

monitoring methods, we calculated the median TPR for each 

magnitude across all variables, building a single curve of 

median TPR versus magnitude; in other words, this curve 

summarizes the sensitivity for single faults in all the network 

nodes. The area under this curve (median TPR vs magnitude), 

henceforth designated as AUC, was then calculated for each 

faulty variable, as it provides a comprehensive measure of 

performance across different fault magnitudes. The AUC 

values were normalized using a max-min approach, where the 

maximum AUC corresponded to perfect detection (TPR = 

100% for all magnitudes) and the minimum was equivalent to 

the false positive rate (FPR) when no faults were introduced. 

4.1 Faul detection results 

The results obtained are shown in Fig. 2 (process perturbation 

fault) and Fig. 3 (sensor bias fault), which illustrate the 

distribution of the median AUC for all network variables over 

different network sizes and compare the two methods. Fault 

diagnosis was also conducted, with all faulty variables being 

conclusively identified. However, due to space constraints, 

these results are not presented. 

Fig. 2. The distribution of the median Area Under the Curve 



 

 

     

 

(AUC) for CNc-MSPC and CNd-MSPC methods across 

varying network sizes in the process perturbation fault. 

Fig. 3. The distribution of the median Area Under the Curve 

(AUC) for CNc-MSPC and CNd-MSPC methods across 

varying network sizes in the sensor bias fault. 

4.2 Ablation test 

One of the principal benefits of decentralised monitoring is its 

robustness in the event of information being lost due to 

abnormal situations or communication problems. To assess the 

influence of omitting information from multiple communities, 

we conducted an ablation test focusing on the 1000-node 

network, specifically analysing the variable X5 belonging to 

community 4. A sensor bias fault was applied to assess the 

TPR across 10 different magnitudes, following the replication 

procedure outlined in the previous subsection. Initially, the test 

was performed using the complete dataset from all 

communities. Subsequently, we repeated the experiment while 

suppressing information from one to four communities that did 

not contain the faulty variable. The impact of these ablations 

was evaluated by comparing the TPR curves for each scenario 

(Fig. 4). The results indicate that the decentralised monitoring 

maintains robust sensitivity, with minimal loss observed 

across all tested cases, even when data from multiple 

communities were suppressed. 

Fig. 4. The True Positive Rate (% TPR) as a function of fault 

magnitude for variable X5 in a 1000-node network, evaluated 

under sensor bias fault. TPR values are based on 100 

replicates, with results shown for scenarios excluding 0 to 4 

communities’ information. 

 

5.  DISCUSSION AND CONCLUSIONS 

This study assesses the impact of increasing system 

dimensionality and complexity on fault detection sensitivity 

using a causal-based monitoring approach, which overcomes 

the limitations of traditional correlation-based methods, like 

PCA-MSPC, by explicitly modelling and incorporating cause-

and-effect relationships. This is particularly advantageous in 

large industrial systems, enabling more accurate diagnosis.  

The data were generated using a large-scale network static 

linear simulator, tailored for this study. Networks were 

configured as scale-free to mimic the characteristics of 

industrial processes, where certain nodes, known as hubs, 

exhibit a high degree of connectivity. Multiple replications for 

each fault scenario ensured the results’ representativeness. 

Two fault types were simulated: process faults, by altering raw 

material setpoints, and sensor faults, introduced as localised 

bias errors. The propagation of process faults throughout the 

network contrasted with the localised nature of sensor faults, 

making direct comparison between these faults challenging 

due to their distinct propagation and detection characteristics. 

Nonetheless, process faults showed a steeper decline in 

detection sensitivity as the network size increased, whereas 

sensor fault detection degraded more gradually. 

Fault detection sensitivity was assessed using the true positive 

rate (TPR) and the area under the curve (AUC), summarising 

each variable's performance across varying fault magnitudes. 

Results indicated that increasing the network size negatively 

impacted sensitivity, especially for process faults (Fig. 2 and 

Fig. 3). 

A critical aspect of the study was the comparison between 

causal-based centralised and decentralised monitoring 

strategies. The Leiden community detection algorithm was 

employed to divide the network into communities, with 

monitoring then applied at the local level within each sub-

network. The parameters of the Leiden algorithm were 

optimized based on the following criteria for each network: 

cohesiveness, separability, modularity, density, and 

conductance. Community detection leverages the natural 

structure of the network, ensuring that each sub-network 

remains cohesive and captures local dependencies, whereas 

traditional decentralized methods often disregard the 

topological structure. This more natural division improves 

fault detection sensitivity by isolating disturbances within 

more manageable communities.  

The decentralised strategy proved particularly effective for 

large networks. For instance, in a network with 1,000 nodes 

subjected to process perturbations, the decentralised approach 

achieved AUC values comparable to those obtained using a 

centralised strategy in a smaller network of 100 nodes. This 

demonstrates how the community-based approach 

compensates for the sensitivity loss typically seen in 

centralised strategies as network size increases. By managing 

dimensionality through community-based statistics, the 

decentralised method improved fault detection while 



 

 

     

 

maintaining a false alarm rate near 1%. The reduced 

dimensionality not only enhances fault detection but also 

mitigates the computational burden associated with 

monitoring large-scale systems. 

Moreover, ablation tests showed that excluding data from up 

to four communities did not affect the sensitivity of fault 

detection (Fig. 4). This underscores the robustness of the 

decentralised method, particularly in real-world industrial 

settings where data loss or communication failures are 

frequent challenges. 

In conclusion, increasing the system dimensionality negatively 

impacts fault detection sensitivity. However, the decentralised 

approach effectively mitigates this issue. Future work will 

focus on refining the network division based on fault types and 

topological metrics, as well as comparing this approach with 

traditional decentralized monitoring methods in real-world 

scenarios, such as the Tennessee Eastman Process benchmark. 

By tailoring the monitoring strategy to the specific 

characteristics of each fault type, we aim to further enhance 

fault detection sensitivity in large-scale, complex networks. 
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