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Abstract: The development of new catalysts is typically carried out by performing extended experimental 

campaigns of dynamic experiments through high-throughput miniature reactors in which the sequence of 

the experiment is often managed based on the experience of the scientists and the developers. In these 

systems, the sequential nature of experiments introduces complex effects that may propagate to successive 

experimental batches at different conditions which are difficult to model and interpret. Big amounts of data 

are typically collected from experimental campaigns, which provide the opportunity to develop data-driven 

models that extract valuable information on the system. In this study, we propose a new machine-learning 

methodology that allows the in-depth understanding of the experiment dynamics, associated with both the 

experiment batch itself and the catalyst history (namely, the sequence of multiple experiments performed 

in different conditions of temperature, composition, etc.). In particular, multiway multivariate latent 

variables techniques are used to capture the dynamic within the single experimental batch and the high 

auto-and cross-correlation between variables, two-dimensional dynamic modelling is used to deal with the 

dynamics of the catalyst history and orthogonalization is used to remove information redundancy. The 

methodology is validated in the case study of the development of catalyst for ammonia production. We 

show that the model captures the correlation between variables which describe the reaction kinetics and 

thermodynamics within each experimental batch, as well as the influence of catalyst history, especially in 

terms of feed composition. Furthermore, the model captures the contributions of both the dynamics of the 

single experimental batches and the catalyst history, ensuring very good predictive performance on the 

ammonia productivity. 
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1. INTRODUCTION 

Discovering and optimizing new catalysts represents a 

significant challenge, requiring substantial investment in 

experimentation to collect data and analyze results. Catalyst 

development is typically conducted through expensive and 

time-consuming experimental campaigns which consist in the 

execution of series of multiple experimental batches in high-

throughput setups (Sundermann and Gerlach, 2016). One of 

the main goals of the experimental campaigns is to obtain 

valuable information to characterize catalyst properties such as 

productivity and resilience to contaminants. However, 

understanding experimentation outcomes is not 

straightforward and presents several challenges (Ortega et al., 

2021). The sequential nature of experimental campaigns 

exposes the catalyst to phenomena such as deactivation and 

regeneration, which highly impact the catalyst performance 

and cannot be easily modelled by traditional first-principles 

methodologies, such as kinetic models. In particular, it is 

difficult to characterize the dynamic features of the 

experimental campaigns, mainly due to: i) the dynamics of a 

single experimental batch, associated with the phenomena 

which are specific of each individual batch (e.g., the kinetics 

of the reaction), and ii) the catalyst history dynamics, resulting 

from the series of multiple stages subjected to phenomena such 

as poisoning, deactivation, regeneration etc.  

However, these extended experimental campaigns generate 

large volumes of data, often redundant, that retain valuable 

information on the system under study. The interpretation of 

these data is not straightforward because of their nature: they 

are multivariate, collinear, and frequently affected by outliers 

and missing values.  

In this work, we propose a machine-learning methodology to 

enhance the understanding of catalyst development in 

experimental campaigns. The proposed method includes well-

known literature methods. In particular, multi-way 

multivariate latent-variable techniques (MPLS) are utilized to 

deal with data from experimental batches while handling large 

sets of highly correlated variables. (MacGregor et al., 1994). 

Furthermore, a two-dimensional (2D) dynamic model (Lu et 

al., 2005) is adopted to study both the dynamic effects by 

integrating the catalyst history in the form of the sequence of 

experimental batches. Orthogonalization (O) is then used to 

remove data redundancy of the catalyst history dynamics. 

(Næs et al., 2021). Accordingly, the proposed methodology is 

a 2D-MO-PLS (bidimensional orthogonalize multiway partial 

least square) and concurrently assesses the independent and 



 

 

     

 

joint impact of two dynamics while dealing with large volumes 

of correlated and redundant data. The methodology is applied 

to the case study of development of catalysts to produce 

ammonia in the laboratory scale, thereby offering a novel 

perspective on enhancing process understanding and decision-

making. 

2. MATERIAL AND METHODS 

The proposed machine-learning methodology (shown in 

Figure 1) consists of 5 steps whose details are presented in the 

following Subsections: (1) data extraction and pretreatment; 

(2) extraction and synchronization of the catalyst history; (3) 

multi-way modelling of the data; (4) orthogonalization of the 

catalyst history; (5) two-dimensional modelling and MPLS 

model building.  

2.1 Extraction and pretreatment of data from experimental 

campaigns 

Data from 3-years of experimental campaigns to develop a 

new catalyst for the production of ammonia in a high-

throughput setup are considered in this study. Each campaign 

involves long-term experimentation over several days, during 

which a candidate catalyst is continuously subjected to 

different experimental conditions in different experimental 

batches. During the experimental campaigns the catalyst is 

exposed to different reagent gas compositions: Condition A 

and Condition B. The gas composition of the reagent materials 

affects the performance of the catalyst. For this reason, the 

transition between the two different feeds, separated by phases 

that restore the original catalyst performance, allows for the 

assessment of the catalyst's resilience and productivity under 

varying conditions. The compositions of the two feeds are not 

disclosed for confidentiality. 

Two types of data are collected during the experimental 

campaigns: process data and target variable. The target 

variable is the concentration of outlet gaseous ammonia and is 

measured by a micro gas chromatograph provided by Agilent 

Technologies Inc.. The GC analysis is taken with a defined 

sampling rate. Process data come from two identical tubular 

micro reactors in which catalyst converts nitrogen and 

hydrogen into ammonia. Each reactor is placed in an electrical 

furnace, which guarantees the proper heat conduction and a 

uniform distribution of the heat. Process variables are collected 

at a defined time interval and include: temperature, pressure, 

flowrates of the fed reagents, setpoints, etc.. Note that the 

duration of each experiment varies. Accordingly, a different 

number of time points is collected for each experiment.  

Both raw process and target data are then pretreated through: 

a. data cleaning: some of original experiments are affected by 

severe problems and are discarded. Target variable profiles 

are filtered to identify potential GC malfunctions. 

Furthermore, any recorded data from ancillary operations 

are also removed. A total of 𝑁 = 65 batches are 

considered;  

b. process data and target alignment: process and target data, 

which are sampled at different frequencies, are aligned to 

the same length (i.e., same number of time points) by linear 

interpolation between two consecutive data points;  

c. synchronization: experimental batches are synchronized 

based on the percentage of completion of each batch, in 

such a way as the total number of considered time points is 

𝑇 = 233, the average number of points for the 𝑁 available 

batches. The actual duration of each experiment is 

preserved and included as an additional process variable;  

 

 

Fig 1. Proposed model schematic: 2D-MO-PLS. 

d. data management: data are organized in three-dimensional 

arrays. 𝐗exp [𝑁 × 𝑉𝑋 × 𝑇] contains information of 𝑉𝑋 =

33 process variables for 𝑁 experiments in 𝑇 time points, 

while 𝐘 [𝑁 × 1 × 𝑇] collects the time profiles of ammonia 

concentration. 



 

 

     

 

2.2 Catalyst history extraction and synchronization 

The catalyst history is extracted from the process data 𝐗exp 

considering the smallest integer number of batches that covers 

at least 18 hours of the experimental campaign before the 

current batch begins. We determined heuristically that 

considering the last 18 hours of catalyst history is the most 

appropriate choice. This value provides a tradeoff between the 

capability of capturing the dynamics of the catalyst history and 

the amount of data that is considered. 

This information is collected in a matrix 𝐗hist [𝑁 × 𝑉𝐻 × 𝑇𝐻] 
of 𝑉𝐻 = 8 variables, a subset of 𝑉x that mostly capture the 

propagation of the drifts along the experiments synchronized 

in 𝑇𝐻 = 500 time points. This subset includes the Vₓ variables 

that are the most relevant to catalyst history dynamics (e.g., the 

effect of temperature on catalyst activity). This preliminary 

selection reduces redundancy by limiting the number of 

variables. However, since more than one experimental batch is 

included to study catalyst history dynamics and the entire time 

trajectory of the variables is considered, further redundancy 

removal by orthogonalization is needed. 

2.3 Multi-way modelling 

The multi-way arrays 𝐗exp, 𝐗hist and 𝐘  are batch-wise 

unfolded (Nomikos, 1996) by horizontally concatenating data 

at different time points to generate the two-dimensional matrix 

that account for data dynamic nature and correlation structure 

among variables over different time points. The resulting 

matrixes 𝐗exp[𝑁 × 𝑉𝑋 ∙ 𝑇], 𝐗hist [𝑁 × 𝑉𝐻 ∙ 𝑇𝐻] and 𝐘 [𝑁 × 1 ∙

𝑇] are then auto-scaled, namely, centered to zero mean and 

scaled to unit variance. Note that, since the dynamic 

information for multiple past batches is retained along 𝑇𝐻 , 

𝐗hist accounts for the dynamic correlation structure over 

different past batches. 

2.4 Orthogonalization  

Given the matrixes 𝐗exp and 𝐗hist, a PCA model (Wold et al., 

1987) is calibrated on 𝐗exp. PCA is used to project 

experiments onto a reduced space that retains only the main 

driving forces of the experiments, namely those which are 

associated to reaction kinetics, thermodynamics and mass 

balances:  

𝐗exp = 𝐒𝐂⊺ + 𝐑 (1) 

The principal phenomena occurring in the experimental 

batches 𝐗exp are summarized by the scores 𝐒 [𝑁 × 𝐴] of the 

PCA model in a reduced space of 𝐴 orthogonal principal 

components (PCs), whose director cosines are 𝐂 [𝐴 × 𝑉𝑋], 
where subscript ⊺ denotes the transpose, and 𝐑 [𝑁 × 𝑉𝑋] are 

the residuals.  

The 𝐒 scores are then used to discard redundant information in 

𝐗hist with respect to 𝐗exp through orthogonalization: 

𝐗hist
⊥ = 𝐗hist − 𝐗hist 𝐒( 𝐒⊺𝐒)−𝟏𝐒⊺𝐗hist

⊺  (2) 

Indeed, the catalyst history is constituted by a series of 

experiments whose variables display analogous correlation 

structures to those of the 𝐗exp variables due to kinetics, 

thermodynamics and mass balance. The exclusion of the part 

of information in 𝐗hist which is collinear to 𝐒 improves the 

robustness of the model, avoiding at the same time data 

redundancy. In this case study PCA provides an 

orthogonalization which is very similar to the one provided by 

a PLS (usually the adopted approach for orthogonalization; 

Næs et al., 2021), but permits identifying explicitly and 

removes the variability in 𝐗hist which is already present in 

𝐗exp independently from the prediction of Y. 

2.5 Two-dimensional (2D) modelling and MPLS model 

building 

A predictive model to estimate the time profile of the ammonia 

concentration at the reactor outlet is built considering both the 

experimental batches data and the previous history of the 

catalyst. To this purpose, 𝐗exp, which contains dynamic 

information for each experiment, and 𝐗hist
⊥ , which contains 

catalyst history not included in 𝐗exp, are used as predictors in 

MPLS (Nomikos, 1996). In particular, 𝐗 = [𝐗hist
⊥ |𝐗exp] is the 

predictor matrix, while 𝐘 is the predicted one. The resulting 

model captures the auto- and cross-correlations between in 

experimental batches and catalyst history dynamics, predicting 

the response time profile through: 

𝐗 = 𝐓𝐏⊺ + 𝐄 (3) 

𝐘 = 𝐓𝐐⊺ + 𝐅 (4) 

𝐓 = 𝐗𝐖(𝐏⊺𝐖)−𝟏 (5) 

where 𝐓 [𝑁 × 𝐿] is the score matrix, 𝐏 [(𝑉𝐻 ∙ 𝑇𝐻 + 𝑉𝑋 ∙ 𝑇) ×
𝐿] and 𝐐 [𝑇 × 𝐿] are the loading matrices, 𝐄 [𝑁 × [(𝑉𝐻 ∙ 𝑇𝐻 +
𝑉𝑋 ∙ 𝑇)] and 𝐅 [𝑇 × 𝑉𝑌] are the residual matrices, and 

𝐖 [[(𝑉𝐻 ∙ 𝑇𝐻 + 𝑉𝑋 ∙ 𝑇) × 𝐿] is the weight matrix. 𝐿 is the 

number of orthogonal latent variables (LVs) retained in the 

model. In 2D-MO-PLS weights reveals the correlations 

between the time profiles of process variables, catalyst history 

and the ammonia profiles.  

3. RESULTS AND DISCUSSION 

3.1 2D-MO-PLS model calibration 

In this work both PCA and MPLS are built by nonlinear 

iterative partial least squares (NIPALS; Geladi and Kowalski, 

1986).  

The PCA model calibrated on 𝐗exp retains 2 PCs that explain 

53% of 𝐗exp variability, thus obtaining the 𝐒 scores used to 

orthogonalize 𝐗hist.  

The MPLS model is built between 𝐗 and 𝐘 and retains 2 LVs 

that explain 43.5% of 𝐗 and 59.4% of 𝐘 variability. 

The number of PCs in PCA and LVs in PLS are jointly selected 

by a Monte Carlo cross-validation on 5000-iteration which 



 

 

     

 

consists in a random partitioning of the available datasets in 

calibration and validation (90% and 10%, respectively) to 

maximize model prediction performance (Wold, 1978) in 

terms of determination coefficient in validation 𝑄2. 

3.2. Study of the correlation of temperature and poisoning in 

the experimental batches and catalyst history 

The weight plot of the 2D-MO-PLS model reveals the 

correlations between the ammonia time profile which, is 

positively correlated with higher values of the weights along 

both LV1 and LV2 for all time points, and experimental batch 

dynamics and catalyst history. This indicates that higher 

weight values are associated with an increase in ammonia 

concentration. 

Temperature and Condition B are of particular relevance in 

this case study, as they are recognized as factors that can 

substantially impact experimental outcomes. Temperature 

controls the thermodynamic and kinetic phenomena occurring 

during the reaction, while Condition B gas composition is 

monitored to test catalyst resilience.  

Temperature (Figure 2a) is positively correlated with ammonia 

along LV1. The strength of this correlation is more pronounced 

in the central part of actual experiment, where higher 

temperatures enhance the kinetics. Nevertheless, this 

correlation is weakened at the end of the experiment, as the 

system approaches the thermodynamic limit. The influence of 

past temperature readings is low; however, temperature from 

the previous experiment appears to promote catalyst 

restoration, while that from the most recent experiment seems 

to contribute to catalyst deactivation. Condition B in the 

current experiment (Figure 2b) is negatively correlated with 

both temperature and ammonia concentration along LV1 as its 

presence reduces ammonia productivity. The contribution of 

historical weights remains predominantly negative. The 

strength of this negative correlation increases in the most 

recent part of the catalyst history, thereby highlighting the 

considerable influence of Condition B in previous experiment 

on the outcome of the current experiment. 

A joint reading of LV2 weights of temperature and Condition 

B allows understanding that this LV captures the combined 

effect gas composition with temperature. Indeed, for the 

experiment’s dynamics both weights of temperature and 

Condition B are always negative, indicating a negative 

correlation with ammonia concentration. An analogous pattern 

is also observed in the latter phase of the catalyst history. This 

correlation indicates that experiments performed with 

Condition B gas composition in previous experimental 

batches, without the restoration of original catalyst activities, 

has a significant negative impact on the performance of the 

current experiment. The model ability to capture this 

phenomenon highlights its effectiveness in the experimental 

campaign understanding. 

 
(a) 

 
(b) 

Fig 2. Weights of 2D-MO-PLS for: (a) reactor temperature; 

and (b) gas composition  

3.3. Experimental campaign improved understanding 

through 2D-MO-PLS 

The 2D-MO-PLS scores encompass the total variable 

correlation, including both variation in time and variability 

between batches. In conjunction with weights, they enable the 

understanding of the relationships between the behavior of 

each experimental batch (i.e., the conditions in which it is 

carried out), the history of the catalyst, and the ammonia time 

profile.  

 

Fig 3. Experimental campaign improved understanding 

through 2D-MO-PLS score space.  

The score space maps similar experiments as close points 

identifying batches that exhibit analogous structures of 



 

 

     

 

dynamic correlation in the process variables of the 

experimental batch and the history of its catalyst.  

In Figure 3, experiments performed with Condition B 

(squares) and with Condition A (triangles) are projected onto 

the 2D-MO-PLS score space. Experiments are colored 

depending on the value of the normalized ammonia 

productivity. The score plot shows that the productivity 

variability is described along the diagonal of the first and third 

quadrant. Indeed, high values of LV1 and LV2 correlate with 

increased ammonia production.  

These experiments are separated along LV1 based on the 

distinction between Condition A and B, with experiments 

characterized by Condition B located in the left space of the 

score space, thus exhibiting lower productivity. Some 

experiments performed with Condition A are located on the 

left part of the score space and overlap with those performed 

with Condition B. This suggests that their performances are 

comparable to those observed under different reagent gas 

compositions, indicating that even if the current experiment is 

performed with Condition A composition, conditions exist 

which led to reduced productivity. 

In the score plot, both batch dynamics and catalyst history are 

visualized at the same time, making the determination of 

whether the position of each experiment is primarily driven by 

the impact of the current experiment or influenced by its 

history a challenge. To address this problem, the components 

of scores 𝐓 are separated in the part concerning the dynamics 

of the experiment 𝐓exp and part concerning the catalyst history 

𝐓hist. This are calculated inverting equation (3) using 𝐏hist
⊺  and 

𝐏exp
⊺  derived from loadings 𝐏⊺ = [𝐏hist

⊺ |𝐏exp
⊺ ]. 

In Figure 4, the aliquots of the two different types of dynamics 

are shown separately to provide a clear overview of the 

behavior of the experimental batch depending on the catalyst 

history. The y-axis represents the contribution of the score of 

the current experimental batch 𝐭exp along the first latent 

variable (namely, the first column of 𝐓exp), which primarily 

captures the dynamics within a single experiment. The x-axis 

is associated with the catalyst history along the second latent 

variable 𝐭hist (namely, the second column of 𝐓hist), which 

mainly describes the effect of reagent gas composition. Each 

experimental batch is represented as a point in this space, with 

the color of the point indicating the final ammonia productivity 

(yellow indicating high productivity, while purple low 

productivity).  

The vertical direction differentiates experiments based on the 

different reagent gas composition, with high scores 

corresponding to experiment performed with Condition A. The 

horizontal direction separates experiments based on the impact 

of their historical contribution; low x-values are associated 

with experiments whose productivity is reduced due to the 

presence of Condition B in previous experiments. In this 

region we also find experiments performed under Condition A 

regime with reduced productivity, influenced by the history of 

the catalyst which was previously exposed to experiment 

performed under Condition B regime. This explains the 

presence of the overlapping region observed in Figure 3. 

Finally, a few experiments with Condition B composition 

appear on the right side of the score space. These experiments 

have high productivity (indicated by lighter colors) compared 

to other samples with similar y-values. This difference is 

attributed to their history which included effective phases that 

restore the original catalyst performances regeneration, 

mitigating accordingly the effects of experiment performed 

with Condition B in catalyst history. 

 

Fig 4. Experimental campaigns understanding by separation of 

the dynamic effects within an experimental batch and the 

history of its catalyst from the scores of 2D-MO-PLS.  

3.4 Estimation of outlet ammonia profile 

The proposed 2D-MO-PLS is compared to a MPLS built 

between 𝐗exp and 𝐘, calibrated with 2 LVs. Table 1 shows the 

estimation accuracy of the proposed methodology in terms of: 

determination coefficients in calibration 𝑅𝑌
2 and in validation 

𝑄2 and average absolute estimation error 𝜀 =
1

𝑇
∑ (

1

𝑉
∑ |𝑦𝑇,𝑖 − 𝑦̂𝑇,𝑖|

𝑉
𝑖=1 )𝑇

𝑡=1  where 𝑉 = 5 are validation 

batches sampled from 𝑁 and 𝑦𝑡,𝑖 and 𝑦̂𝑡,𝑖 are model predicted 

and real ammonia measurements taken at time sample 𝑡. 

Furthermore, the ratio between the error 𝜀 and the variability 

of the calibration data 𝜎𝑌𝑇,𝑐𝑎𝑙
 is calculated 𝜀/𝜎𝑌𝑇,𝑐𝑎𝑙

.  

In general, the 2D-MO-PLS model does not demonstrate 

inferior predictive performance compared to a standard MPLS 

model. 𝑅𝑌
2 is comparable between the two models, both in 

calibration and in validation. Nevertheless, the 2D-MO-PLS 

exhibits slightly superior predictive performance with lower 

error.  

Table 1. Model performances of 2D-MO-PLS method compared 

to MPLS method.  

Model 
𝑹𝒀

𝟐  
[%] 

𝑸𝟐  
[%] 

𝜺 
[𝐯𝐨𝐥%] 

𝜺/𝝈𝒀𝑻,𝒄𝒂𝒍
 

[%] 

2D-MO-PLS 59.4 81.2 1.57 33.3 

MPLS 58.9 80.2 1.59 33.8 

 

The estimated profile (Figure 5) for two experimental batch 

reveals that for some experiments the predictions of the 2D-

MO-PLS are more accurate than those of the MPLS 

(𝑄2𝐷−𝑀𝑂−𝑃𝐿𝑆
2  25% higher than 𝑄𝑀𝑃𝐿𝑆

2 ) (Figure 5a). In this 



 

 

     

 

experiment the catalyst history reveals that previous 

experiments on the catalyst were performed with Condition B, 

resulting in a significant influence of the catalyst history. 

Conversely, Figure 5b demonstrates that, for an experiment 

previously exposed to Condition A, 2D-MO-PLS exhibits 

slightly low accuracy (𝑄2𝐷−𝑀𝑂−𝑃𝐿𝑆
2  12% lower than 𝑄𝑀𝑃𝐿𝑆

2 ) 

This demonstrates the ability of the 2D-MO-PLS in correcting 

predictions accounting for the influence of catalyst history.  

 

(a) 

 

(b) 

Fig 5. Estimation of ammonia productivity time profile using 

2D-MO-PLS (red line with squares) and MPLS (blue line with 

triangles) compared to the measurement (black dashed line). 

Experiment (a) is known to be affected by its catalyst history 

dynamics compared to experiment (b). The shaded area around 

the measured value identifies the measurement uncertainty 

(95%). For confidentiality reasons the y-axis scale is 

normalized between 0 and 1. 

However, the incorporation of catalyst history decreases the 

prediction accuracy with respect to MPLS when the history 

does not play a role in the actual batch. This is also due to the 

fact that 2D-MO-PLS introduces a significant increase in 

complexity (namely, ~ 1,000 extra predictors). Nevertheless, 

the predictive performance remains consistent, indicating that 

the model effectively captures valuable information from both 

experimental batch dynamics and catalyst history. 

4. CONCLUDING REMARKS 

In this paper, we proposed a 2D-MO-PLS model to improve 

the understanding of not-designed experimental campaigns, 

made of sequence of experimental batches, in the high-

throughput development of new catalysts. The method 

integrates 2D and multiway latent variables methodologies to 

capture two dynamic effects that influence the system: the 

dynamics of the experimental batch and the dynamics of the 

history of the catalyst in previous experiments. Moreover, the 

application of orthogonalization assists in the separation of 

these dynamic effects, while addressing the issue of 

information redundancy. Results demonstrate that the model 

captures very well both the dynamic effects of individual 

experimental batches and the catalyst history (namely, the 

influence from previous experiments). Although the model 

predictive performance does not significantly improve those of 

a standard MPLS, it successfully accounts for the propagation 

of historical phenomena, such as different inlet gas 

composition, providing deeper insights into process dynamics, 

especially in cases where the sequence of experiments plays a 

critical role.  

Future work will focus on enhancing the model performance 

through variable selections techniques, reducing model 

complexity by improving the orthogonalization methodology, 

and transfer of the methodology to different catalysts. 
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