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Abstract: We propose data-driven surrogate models to solve systems of time-dependent
differential equations coupled with noise. Using a feedforward neural network, we separately
learn the noise and solution, tackling approximations across regimes with bifurcations and
rare events. Focusing on irregular data generated by a stochastic noise model on a one-
dimensional spatial lattice coupled to a differential equation, we examine two profiles: the
periodic complex Ginzburg-Landau equation and a saddle bifurcation equation exhibiting rare
events. This coupling introduces conditional data, enabling solutions to reach new states while
posing challenges for accurately learning the underlying dynamics.
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1. INTRODUCTION

We explore classical differential equation solvers combined
with neural networks in order to produce long-time solu-
tions for time-dependent differential equations with noise.
This approach draws inspiration from research in various
physical applications, including catalysis Vlachos et al.
(1990), polymeric flows, and stochastic parameterizations
in tropical and open ocean convection Majda and Khouider
(2002) . These dynamical systems have been modeled
by the coupled equations we consider here. Furthermore,
these equations have been used to better understand phe-
nomena such as metastability, Katsoulakis et al. (2006) or
rare events Katsoulakis et al. (2005b), as well as averaged
behavior through mean field approximations Majda and
Khouider (2002).
A number of recent works Kidger et al. (2021); Li et al.
(2020); Ni et al. (2021); Yang et al. (2020) have studied the
use of machine learning approaches to solve Stochastic Dif-
ferential Equations (SDEs) or Partial Differential Equa-
tions (PDEs) with noise, showcasing promising results in
resolving solutions for various equation types, complex ge-
ometries, and diverse initial/boundary conditions. Some of
these approaches, like physics-informed generative adver-
sarial networks (PI-GAN) Yang et al. (2020), combine data
and mathematical techniques to reduce computational and
training costs. These methods however lack robustness
and have been shown to fail in certain parameter regimes
Krishnapriyan et al. (2021) or for long-time dynamics
Karumuri et al. (2020); Meng and Karniadakis (2020);
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Meng et al. (2020). Moreover, the complexity of the noise
in the equations should be limited (i.e. not heteroscedastic
Psaros et al. (2023)) to avoid introducing errors in the
approximated solutions. Similarly, if the system’s noise has
a large correlation length, the neural network may struggle
to learn the system dynamics Karumuri et al. (2020).
In this manuscript, we propose an approach that learns
the distribution of the random variable representing the
noise by combining a multi-Layer perceptron (MLP) with
a simple first-order numerical integration formula, such as
Euler’s method. We call this method E-MLP and showcase
its effectiveness for long-time solutions and irregularly
sampled data.

2. A PROTOTYPE COUPLED SYSTEM

In many real-world applications, phenomena occur at
multiple scales, where macroscopic behavior is influenced
by underlying microscopic processes. We propose a data-
driven approach to simulate a time-dependent coupled
system with two pieces, without requiring prior knowledge
of the system. The first piece is an ODE that serves as a
caricature of overlying gas-phase dynamics. The second
piece consists of a stochastic process {σt}t≥0 defined on
a spatial lattice L. This process, as an example, can be
thought of as modeling the adsorption and desorption of
particles on a surface (see also Fig. 1). Both of these pieces
are coupled and directly influence and change the overall
system behavior. The coupled system is written as,

d
dtX = 1

τ F (X, σ)
d
dtEf(X, σ) = ELf(X, σ),

(1)

where X is the state vector, σ is the microscopic stochas-
tic process defined on a spatial lattice L as in Fig. 1,
σ̄ = 1

N

∑
x∈L σ(x) is the spatial average of σ, τ is a

characteristic time, E represents the expected value, F is



a function defining the ODE dynamics (examples of which
are given below in (2) or (3)), f is a test function, and L is
the generator of the stochastic process σ. For more details
see Katsoulakis et al. (2006).
System (1) is based on noise originating from a jump
stochastic process typically found in applications within
micromagnetics Katsoulakis et al. (2005a), chemical reac-
tors Vlachos et al. (1990), or climate models Majda and
Khouider (2002). The noise in such a system, however, is
not necessarily Gaussian. Therefore, methodologies rely on
the assumption of Gaussian noise, such as the neural SDE
method Li et al. (2020) , are unsuitable for application in
this context.

Fig. 1. Here σ(x) denotes the value of the microscopic
stochastic process σ at location x defined on an one
dimensional spatial lattice L. An arrow up(down)
implies that a particle is present(absent) in that
location. Note that σ̄ = 1

N

∑
x∈L σ(x).

We consider and test our methods on two distinct ODE
functions F in (1). The first one is an ODE exhibiting
saddle-node bifurcation,

F (X,σ) = a(σ̄) + γ̃X2. (2)
Bifurcation refers to the splitting or branching of a system
into two or more distinct paths or directions.
The second ODE we consider is a spatially homoge-
neous complex Ginzburg-Landau (CGL) equation exhibit-
ing Hopf bifurcations when excited by noise. In this case
the noise is inserted in the ODE through σ̄ - the spatial
average of σ over the lattice L,

F (X, σ) =

[(
a(σ̄) + γ −ω

ω a(σ̄)− γ

)
− γ̃|X|2

]
X. (3)

Here a(σ̄) = .5− σ̄ where the value .5 is chosen to be in the
middle of the range of σ̄ ∈ [0, 1], γ = .9 and X = X + Y i
is two-dimensional. Parameter details can be found in
Appendix A. In (2) the system displays saddle behavior
depending on the sign of a(σ̄)/γ̃. In (3) the Jacobian of
the linearized system has eigenvalues λ = λ(σ̄) = a(σ̄) ±
i
√

ω2 − γ2 and we have either a stable node at (0, 0) for
a(σ̄) < 0 or a limit cycle. Each ODE example chosen above
displays different behavior depending on how the coupling
parameter σ̄, which is stochastic, changes. The ODE at
the top of (1) and the stochastic system at the bottom of
(1) are coupled by a linear, external field h(X) = cX+h0

and σ = 1
N

∑
x∈L σ(x) over a lattice L of N cells.

3. METHODS

Among the various approaches outlined in Section 1,
the Neural SDE method has shown superior outcomes
in capturing the dynamics of systems, however, have
difficulty resolving noise for longer time dynamics for
systems such as σ̄ in the system (1) or those in other

studies Psaros et al. (2023); Karumuri et al. (2020).
Additionally, the Neural SDE method assumes that the
noise in the data is Gaussian, which may not be suitable for
general data or the many applications described in Section
1 which are modeled by the system (1).

3.1 E-MLP method with Gaussian noise

We assume that the ODE system (1) can be represented
as a set of separable SDEs with unknown terms. Initially,
we assume Gaussian noise in σ̄, but this assumption is
later relaxed. MLPs are employed to approximate both
the system and the noise standard deviations, trained
on datasets for X and σ̄. The learned system will be
numerically validated using the Euler–Maruyama method.
We refer to this approach as E-MLP, and the model can
be expressed as follows:

dX = Nθ1(X, σ̄)dt, (4)
dσ̄ = Nθ2(X, σ̄)dt+ η(X, σ̄)dW. (5)

The neural network Nθ1 used to approximate F (X, σ̄) is a
feedforward neural network with three hidden layers, each
containing 50 neurons and using the hyperbolic tangent
activation function. Similarly, Nθ2 is structured identically
to approximate the dynamics of σ̄. Here W is the Wiener
process, and η(X, σ̄) denotes the unknown conditional
standard deviation.
We begin by approximating network Nθ(X, σ̄) with pa-
rameters θ. The ground truth for Nθ1(X, σ̄) is constructed
using Xi+1−Xi

ti+1−ti
since it is supposed to approximate the

derivative of X. However, this idea is not as effective for
Nθ2(·) due to the high noise in σ̄. To reduce the noise,
we apply a smoothing technique by increasing the step
size k for the numerical derivative and use σ̄i+k−σ̄i

ti+k−ti
as

the ground truth. This produces a coarse-grained version
of the stochastic microscopic dynamics involved in the
bottom part of system (1), which will be approximated
here through Nθ2(X, σ̄). The loss function for either case
is can be measured by,

Ln =
1

N

N∑
i=0

||Nθ(Xi, σ̄i)− yi||2, (6)

where by yi we denote either Xi+1−Xi

ti+1−ti
or σ̄i+k−σ̄i

ti+k−ti
de-

pending on whether we are learning X or σ̄ respectively.
We also note that in the case that the mean-field model
is available (i.e. assuming a large number of interacting
particles we can effectively treat their contribution as a
single entity, u = Eσ̄ instead of the more noisy σ̄ -
see Appendix A for details), we can then add an extra
contribution to the loss Ln,

Lm = λ
1

N

N∑
i=0

||Nθ2(Xi, σ̄i)− fm(Xi, σ̄i)||2,

where fm(·) is the mean-field function of σ̄ (see derivation
(A.2) or (A.3) in the Appendix A) and λ is a weight
hyper-parameter. Thus far, we have established how to
approximate X and σ̄. In order to proceed, we now also
approximate the standard deviation η(·) for σ̄. To do so we
now discretize the (X, σ̄) space with a uniform grid and
also make use of Nθ2(Xi, σ̄i) while rewriting (5) as,

σ̄i+1 − σ̄i −Nθ2(Xi, σ̄i)(ti+1 − ti)√
ti+1 − ti

= Λ(Xi, σ̄i). (7)



Here, Λ(Xi, σ̄i) = η(Xi, σ̄i)ϵ, where ϵ is standard Gaus-
sian noise. We approximate η(Xi, σ̄i) by sampling from
that grid. A practical implementation and sampling details
for this grid can be seen in Section 4. Following similar
ideas as above and using, once again, the mean square
error loss function, we approximate η(Xi, σ̄i) with another
neural network, Hϕ(Xi, σ̄i), that is parameterized by ϕ.
The complete simulation therefore of the coupled system
(1) can be computed by Euler approximation, following
classical ideas from SDEs solvers,

Xi+1 = Xi +Nθ1(Xi, σ̄i)dt,

σ̄i+1 = σ̄i +Nθ2(Xi, σ̄i)dt+Hϕ(Xi, σ̄i)
√
dtϵ.

(8)

Thus, for given initial conditions X0, σ̄0, we can now
estimate X and σ̄ once we train networks Nθ1(·), Nθ2(·)
and Hϕ(·) from available data.

3.2 E-MLP method with empirical noise

One of the assumptions in the derivation of the method
above is that σ̄ in (5) has a Gaussian noise distribution.
However, this assumption may not hold for all types of
data in general, even though the L2-norm loss function
(6) assumes Gaussian noise. This discrepancy arises from
the jump stochastic process, particularly in the Saddle
system (see the ”staircase” structure in Fig. 4), whereas
in the CGL system, the jump process is less pronounced
(see Fig.3). To relax the assumption of Gaussian noise, we
introduced a neural network Kφ(X, σ̄, ν) that models the
empirical cumulative distribution function (CDF) of the
noise. By using inversion sampling, we can generate noise
samples from the learned CDF during simulation, allowing
us to capture non-Gaussian noise structures inherent in
the data. Specifically, we propose to incorporate an MLP,
Kφ(·), which indirectly estimates the distribution of the
noise based on the provided data. The network learns the
distribution of Λ(Xi, σ̄i) from Equation (7), parameterized
by φ, and subsequently generates random variables from
that distribution.
Specifically, we let dij represent the empirical distribution
from Λ(Xi, σ̄i) in (7), with Kφ(·) approximating dij . We
sample uniformly in [0, 1] across n equidistant points νj for
j = 1, ..., n, using inversion sampling of these points in dij
as the ground truth for Kφ(Xi, σ̄i, νj). Hence, the condi-
tional noise can be practically generated by inversion sam-
pling from Kφ(Xi, σ̄i, ν), where ν is a standard uniform
random variable. Finally, following similar arguments, the
proposed generalized MLP-based Euler approximation can
be written as follows,

Xi+1 = Xi +Nθ1(Xi, σ̄i)dt,

σ̄i+1 = σ̄i +Nθ2(Xi, σ̄i)dt+Kφ(Xi, σ̄i, ν)dt
α,

(9)

where ν is a standard uniform random variable and α
is a constant parameter that can be efficiently estimated
through a multifractal detrended fluctuation analysis as is
typically done to estimate the Hurst exponent in fractional
Brownian motion Rydin Gorjão et al. (2022).

4. RESULTS

In this section, we present the results of our experi-
ments using the proposed E-MLP method on examples

exhibiting CGL (2) and Saddle (3) bifurcation profiles.
To demonstrate the advantages of E-MLP, we compare its
performance against several time series prediction mod-
els, including Vector Autoregression, LSTM, and Neural
SDE. For the CGL example, we used two time series: one
for training (91,665 points) and one for testing (91,732
points). For the Saddle example, we conducted experi-
ments with both low and high noise datasets, using 20
time series for training and 80 time series for testing, each
with approximately 90,000 points. We utilized long time
series to provide the neural network with sufficient data
to learn the distribution of noise, which varies depending
on conditions involving X and σ̄.
To ensure a fair comparison between the methods, we
kept network settings similar across experiments. We used
the tanh activation function and a batch size of 1024.
The weights for the neural networks were initialized using
Kaiming initialization He et al. (2015), and we used the
Adam optimizer during training with β1 = 0.9 and β2 =
0.999. The network Nθ(·) has 3 hidden layers of width
50, while both Hϕ(·) and Kφ(·) have 7 hidden layers of
width 256. The Neural SDE and LSTM models have 8
layers of 256 neurons in hidden layers. We used vector
autoregression (vector AR) with order p = 600 for both the
CGL and Saddle cases, determined through grid search.
We trained the networks Nθ(·), Hϕ(·), and Kφ(·) with
1.5 × 104, 1.5 × 104, and 2 × 105 epochs, respectively,
randomly selecting 1024 points from the dataset in each
epoch. We used Ln as the loss function for both the CGL
example (2) and the Saddle example (3) with low noise.
For the Saddle case with high noise, we used Ln + Lm as
the loss function since we have an analytic description for
the respective mean-field solution (A.2). The source code
is available at https://github.com/lindliu/Hybrid.
First, given that X is noise-free, we approximated X
using the specified σ̄ to determine k. For the CGL (Sad-
dle) case, we used a 3-dimensional (2-dimensional) in-
put vector [Xi, σ̄i] to train the network Nθ(·). This net-
work approximates the numerical derivative vector space
[Xi+1−Xi

ti+1−ti
, σ̄i+k−σ̄i

ti+k−ti
]. We divided our test data into 1000

randomly selected series, each containing 600 time points.
The average MSE for X and X

′
over these 1000 time

series is presented in Table 1. The E-MLP method with
a step size k of 10, 5, and 10 respectively for each of the
three datasets tested achieved the best results.

Table 1. MSE error for X and X ′ for given σ̄.

E-MLP(k=5) E-MLP(k=10) E-MLP(k=20)

CGL X 6.03e-3 1.67e-3 4.24e-3
X

′ 5.74e-4 8.57e-5 6.35e-4
Saddle

(low noise)
X 2.57e-7 2.18e-6 2.05e-6
X

′ 4.77e-6 1.90e-5 1.77e-5
Saddle

(high noise)
X 4.98e-5 3.28e-6 7.23e-6
X

′ 4.11e-4 2.91e-4 2.96e-4

Secondly, using the estimated k for each specific dataset,
we trained two models, Hϕ(·) and Kφ(·), to learn the
standard deviation of the Gaussian distribution and the
empirical cumulative distribution function (ECDF), re-
spectively. To approximate the ECDF, we used a mesh



grid for the [X, σ̄] space with 30 columns and 20 rows,
while ν consisted of 50 equidistant samples.
Figure 2 shows several simulated solutions produced by the
E-MLP method compared to the data. The simulations for
the Saddle case involve long-time predictions, with a time
interval of 0.01, leading to as many as 10,000 time points.

Fig. 2. Synthetic data X, σ̄ (blue line) versus several
E-MLP simulations with empirical noise (other
colors). Top row: CGL case, simulations generated
with k = 10 and α = 0.21. Middle row: Saddle with
low noise case, simulations generated with k = 5 and
α = 0.427. Bottom row: Saddle with high noise case,
simulations generated with k = 10 and α = 0.425.
The E-MLP method can reproduce a rare event,
identified numerically when X < −1.

5. DISCUSSION

To facilitate a comprehensive comparison across various
baseline methods, we randomly selected 1000 time series
from the test dataset, each consisting of 600 time points,
to serve as the real target. For each method, we sim-
ulated 1000 instances using identical initial values. The
distance between the simulated results and the target was
calculated using the maximum mean discrepancy metric
Gretton et al. (2012). The methods were also applied to
an additional dynamical system, the Lorenz system from
Li et al. (2020) (see Appendix B), as presented in Table 2.
Most of the baseline methods perform well for periodic-
type systems such as CGL. However, for non-periodic
systems, these methods accumulate errors quickly. This
could be due to methods such as LSTM and vector
autoregression (Vector AR) not being specifically designed
to treat randomness, in contrast to the proposed E-MLP
method. Similar results are observed for the latent Neural
SDE method, which also fails to learn the distribution of
the noise from such long time series. This is evident in the
Lorenz system results shown in Table 2. Additionally, the
E-MLP method had a faster average training time than
the other methods tested.
From Table 2, we observe that the Lorenz and CGL sys-
tems perform better with E-MLP using Gaussian noise,
whereas the Saddle system with high noise levels prefers
E-MLP with empirical noise. To investigate the reasons
behind this behavior, we examined the distribution of noise
more closely. For the CGL bifurcation case (Fig. 3), the

distribution of the noise in the data can be represented as
part of a Gaussian distribution, which changes as [X, σ̄]
changes. In contrast, for the Saddle case, the distribution
is not truly Gaussian (Fig. 4) and displays an underlying
”staircase” structure. These ”steps” originate from the
dynamics of the stochastic jump process and are charac-
teristic of data from classic models in micromagnetics and
chemical processes. The E-MLP method with empirical
noise was able to capture these challenging structures
within the noise distribution.

Fig. 3. E-MLP method learning the distribution of
noise for CGL system. (Left) Scatter plot of all
training data for the CGL case. (Right) Distributions
of noise at two points (”case 1” and ”case 2”) based
on the data from the left figure.

Fig. 4. E-MLP method learning the distribution of
noise for Saddle system. (Left) Scatter plot of all
training data for the Saddle case under high noise.
(Right) Comparisons of the distributions of noise at
a point near a ”rare event” and a point near an
”ordinary event” based on the left figure.

Figure 2 illustrates that the E-MLP method can learn
the dynamics of both the CGL and the Saddle system,
even in the case of rare events (i.e., finite-time blowup
due to noise excitation). Notably, it is the only method
among those tested that is able to learn rare events. To
further demonstrate this phenomenon, we simulated 100
time series using (a) E-MLP with Gaussian noise (8) and
(b) E-MLP with empirical noise (9). We found that it is
sufficient for the model to see as few as 20 time series
to learn and regenerate similar rare events. Specifically,
the earth mover distance Rubner et al. (2000) of the
rare event time between the ECDF and system (a) or
(b) over 100 datasets is 6.24 and 2.86, respectively. This
result reinforces the superiority of the E-MLP method with
empirical noise for the high-noise Saddle system.



Table 2. The maximum mean discrepancy metric; mean ± standard deviation for 20 simulations.
Here ae− x implies a× 10−x.

Training
time(min)

Lorenz CGL Saddle(high noise)
X σ̄ X σ̄ X σ̄

Vector AR 0.3 1.0 1.0 3.1e-2 2.2e-2 1.0e-1 3.8e-2
LSTM 3.5 1.0e-1 6.4e-2 7.7e-1 6.3e-1 7.1e-1 1.1e-1

Neural SDE 35.2 2.5e-2±1.6e-3 2.0e-2±1.0e-3 9.6e-1±1.2e-3 9.4e-1±2.6e-3 8.6e-1±2.1e-3 9.2e-1±3.3e-3
E-MLP with Hϕ(·) 1.5 1.4e-3±1.7e-5 1.2e-3±3.8e-6 2.7e-2±4.9e-3 3.3e-2±5.0e-4 2.0e-2±5.6e-3 2.2e-2±1.5e-3

E-MLP with Kφ(·) 11.7 1.4e-3±1.5e-5 1.2e-3±5.5e-6 2.6e-2±5.3e-3 3.5e-2±8.6e-4 2.5e-2±2.1e-3 7.7e-3±5.7e-4

Our results indicate that the E-MLP method effectively
captures the dynamics of both periodic and non-periodic
systems, even in the presence of rare events. Compared to
baseline methods, E-MLP demonstrates superior accuracy
and computational efficiency. One notable strength is its
ability to model non-Gaussian noise distributions, which
is essential for systems where the noise cannot be assumed
to be Gaussian. However, the method requires finely
sampled data to accurately estimate derivatives and noise
distributions. This could limit its applicability in scenarios
where such data is unavailable. Future work will focus on
extending the method to handle coarser data sampling and
exploring its application to high-dimensional systems.

6. CONCLUSIONS

We examined machine learning methods to handle micro-
or sub-grid scale noise in dynamical systems interacting
over long-time domains. The proposed E-MLP method
uses neural networks to independently learn both the
differential equation solution, X, and the noise, σ̄, while
utilizing the Euler–Maruyama solver to capture temporal
dynamics. Essentially therefore E-MLP represents the
ODEs from Section 2 as a system of separable SDEs
with unknown terms which are parametrized by neural
networks. These neural networks are in turn trained from
the available data. All methods were tested on three
differential equations. The E-MLP method was shown to
outperform other comparable methods, such as LSTM,
vector autoregression, or Neural SDE, in terms of accuracy
and/or computational cost. One of the limitations of
the proposed approach however is that it requires input
data which must be sampled at a fine temporal scale
in order to keep errors sufficiently small. As a result,
the E-MLP approach would not be suitable for high-
dimensional data due to the exponential increase in the
required training data. In subsequent investigations, the
E-MLP technique holds promise for further enhancement
in generalization capabilities through the incorporation
of a Gaussian noise model during the pre-training phase.
Additionally, we intend to delve into the examination of
the error propagated by the numerical approximation of
the time derivative X ′

i+1 = Xi+1−Xi

ti+1−ti
, with a specific focus

on its impact on the numerical stability of the method.
We envision a comprehensive analysis encompassing both
theoretical and numerical perspectives.
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Appendix A. THE MICROSCOPIC ARRHENIUS
DYNAMICS AND RESPECTIVE CLOSURES

Fig. A.1. Saddle ODE example and extended time
runs. Monte Carlo (blue) and averaging principle
solution (red) for system (1). Parameters used in
system (1): b = 1, γ̃ = −.05, τ = 1 and βJ0 = .01.
Note the rare event jump which eventually drives the
system to a finite time blow-up (right). Monte Carlo
correctly captures this behavior of the solution while
the stochastic averaging closure fails.

For completeness, we provide additional information on
the stochastic dynamics behind the noise model in the
prototype coupled system (1). Further details on this type
of system are available in Katsoulakis et al. (2006).

We consider a microscopic stochastic model defined on
a periodic lattice of size N which we denote by L =
{1, 2, . . . , N}. At each lattice site x ∈ L, an order pa-
rameter σ, is allowed to take the values 0 or 1. In ac-
cordance with the classical Ising model, we refer to the
order parameter as spin. We assume that sites cannot be
occupied by more than one particle. A spin configuration
σ is an element of the configuration space Σ = {0, 1}L and
we write σ = {σ(x) : x ∈ L} denoting by σ(x) the spin
at x. The stochastic process {σt}t≥0 is a continuous time
jump Markov process on L∞(Σ, R) for any test function
f ∈ L∞(Σ, R) with generator, Kipnis and Landim (1999),

Lf(σ) =
∑
x∈L

c(x, σ)[f(σx)− f(σ)], (A.1)

where,
σx(y) =

{
1− σ(x), if y = x
σ(y), if y ̸= x,

signifies the configuration after a flip at x. Note that c(x, σ)
denotes the rate of a spin flip at x for the configuration σ
(see Vlachos et al. (1990); Katsoulakis et al. (2004)).
In order to better understand behavior of possible solu-
tions it can be helpful to provide below closures Kat-
soulakis et al. (2006) of systems such as (1). We only
present the final equations below and refer to Katsoulakis
et al. (2004) for the details. The mean-field closure for
system (1) is,{

d
dtY = 1

τG(Y , ū)
d
dtu = 1− u− ue−β(J∗u−h(Y )),

(A.2)

where ū(t) =
∫ 1

0
u(y, t) dy, for t ∈ [0, T ], y ∈ [0, 1] and a

long-ranged potential J (a simple uniform potential can be
used here). The respective stochastic averaging principle
closure for system (1) is given by,
d

dt
x̄ =

b

τ
[z − uβ,N (h(x̄)] +

γ̃

τ
x̄2 where ūβ,N = Eσ̄. (A.3)

The solution of this stochastic averaging principle closure
is shown in Fig. A.1 together with the exact solution
from the Monte Carlo simulation of the coupled system
(1) under the saddle ODE case (2). For short times, the
values obtained by the stochastic averaging closure are in
agreement with those from the Monte Carlo simulation, as
can be seen in the left part of Fig. A.1. For a long enough
time however a rare event jump occurs in the coupled
system (1) which can not be followed by the stochastic
averaging (A.3) (or the mean-field solution (A.2)). This
rare event is responsible for the blow-up at finite times as
Fig. A.1 also shows.

Appendix B. LORENZ SYSTEMS

We generate data from a Lorenz system,
dX1 = γ(X2 −X1)dt,

dX2 = (X1(ρ− σ̄)−X2)dt,

dσ̄ = (X1X2 − βσ̄)dt+ κdW,

(B.1)

where γ = 10, ρ = 28, β = 8/3, and κ = 1/2. The
initial point (X1(0), X2(0), σ̄(0)) sampled from the stan-
dard Gaussian distribution as the ground-truth model. We
generate 8,192 time series, sampled at 0.025 intervals from
time 0 to 1, and add Gaussian noise with zero mean and
a standard deviation of 0.01.


