
Training Neural ODEs Using Fully
Discretized Simultaneous Optimization ⋆

Mariia Shapovalova ∗ Calvin Tsay ∗

∗ Department of Computing, Imperial College London, London, UK
(e-mail: c.tsay@imperial.ac.uk).

Abstract: Neural Ordinary Differential Equations (Neural ODEs) represent continuous-time
dynamics with neural networks, offering advancements for modeling and control tasks. However,
training Neural ODEs requires solving differential equations at each epoch, leading to high
computational costs. This work investigates simultaneous optimization methods as a faster
training alternative. In particular, we employ a collocation-based, fully discretized formulation
and use IPOPT—a solver for large-scale nonlinear optimization—to simultaneously optimize
collocation coefficients and neural network parameters. Using the Van der Pol Oscillator as
a case study, we demonstrate faster convergence compared to traditional training methods.
Furthermore, we introduce a decomposition framework utilizing Alternating Direction Method
of Multipliers (ADMM) to effectively coordinate sub-models among data batches. Our results
show significant potential for (collocation-based) simultaneous Neural ODE training pipelines.

Keywords: Simultaneous dynamic optimization, nonlinear system identification, neural ODEs

1. INTRODUCTION

Data-driven dynamic models are increasingly prevalent in
chemical and process systems engineering, providing useful
alternatives to first-principles, physical models (Bhosekar
and Ierapetritou, 2018; Thebelt et al., 2022). In particular,
neural network-based models are popular surrogates in
scheduling and control applications owing to their flex-
ibility and representation power, e.g., as scale-bridging
models (Tsay and Baldea, 2019). Neural networks can have
various architectures and consist of learnable weights and
biases that are optimized during training by minimizing a
specified loss function. This is commonly achieved using
gradient-based algorithms, which iteratively update the
model parameters by taking steps in the negative direction
of the gradient of the loss function (Sarker, 2021).

Neural Ordinary Differential Equations (Neural ODEs)
(Chen et al., 2018) bridge neural networks with dynam-
ical systems modeling, leveraging existing knowledge of
ODEs. These models extend traditional networks to model
unknown continuous-time dynamics by parameterizing the
evolution of system states as a differential equation:

dx(t)

dt
= fθ(x(t), t), (1)

where x(t) represents the state at time t, and fθ is the
neural network parameterized by θ. Compared to more
standard recurrent or convolutional neural networks, neu-
ral ODEs are flexible and can incorporate arbitrary time
spacings. The framework has found numerous applica-
tions, including process control (Luo et al., 2023), reaction
modeling (Sorourifar et al., 2023), and parameter estima-
tion (Bradley and Boukouvala, 2021; Dua and Dua, 2012).

⋆ Support from a BASF/Royal Academy of Engineering Senior
Research Fellowship is gratefully acknowledged.

Despite their advantages, training Neural ODEs (or mak-
ing predictions) requires solving an initial value problem
(IVP) at each iteration using a numerical ODE solver.
Given the initial condition x(t0), the state at time T ≥ t0
is computed by solving the differential equation:

x(T ) = x(t0) +

∫ T

t0

fθ(x(t), t) dt

= ODESolve(x(t0), fθ, t0, T ),

(2)

where ODESolve is a numerical IVP solver, and t0, T
are the beginning and end of the integration interval,
respectively. Training is typically based on the accuracy
of the predictions x(T ), requiring the numerical solution
of (2) and backpropagation of gradients through the IVP
solver at every iteration. These requirements lead to long
training times of Neural ODEs (Lehtimäki et al., 2024).

Given the above, this work uses spectral numerical meth-
ods, specifically collocation, for the time integration of
differential equations in Neural ODE training. Spectral
methods offer several advantages: they are global as they
approximate over the entire domain, display exponential
convergence for smooth problems, and have better accu-
racy with a small number of points (Boyd, 2000). Spectral
methods remain less explored than sequential methods in
the context of Neural ODEs and have to date mostly been
limited to approximating derivative targets (Roesch et al.,
2021), or for non-simultaneous training (Quaglino et al.,
2020). The novelty of this paper is that we show collocation
can be employed in a simultaneous optimization approach,
i.e., the system dynamics are solved as equality constraints
rather than by iterative simulation, for fast and stable
Neural ODE training. Furthermore, we show that the
proposed method may produce more parsimonious models
and is amenable to batching via ADMM.



2. NEURAL ODES FOR TIME SERIES

Neural ODEs can be applied in various contexts, e.g., in
generative modeling or as implicit layers in larger models.
We focus on the basic, control-relevant setting of model-
ing time-series data comprising observations {yi, ti}N−1

i=0 ,
where yi ∈ Rd is the data vector at time ti, and T = tN−1

is the end of the time (and integration) interval. Our
objective is to learn a parametric ODE model that, when
integrated from an initial condition, results in a continuous
trajectory y(t) approximating the observed data:

y′(t) = fθ(y(t), t), y(t0) = y0, t ≥ t0, (3)

where y′(t) is the time derivative of the system state
y(t) and fθ is a neural network parameterized by θ. A
trained Neural ODE model may also predict beyond the
observed data interval [t0, T ], provided the ODE solution
remains valid and fθ satisfies conditions such as Lipschitz
continuity.

During training, the solution Ŷ is computed by numeri-
cally solving the IVP:

Ŷ = ODESolve (fθ,y0, t) ∈ RN×d, (4)

where t = {ti}N−1
i=0 is the vector of time points matching

the observations. The model parameters, θ, are learned by
minimizing a loss function that captures the discrepancy
between the predictions and observed data. The mean
squared error (MSE) loss function is a common choice for
continuous-output regression:

Lθ(Ŷ,Y) =
1

N

∥∥∥Ŷ −Y
∥∥∥2
F
, (5)

where Y ∈ RN×d is the matrix of observed values and
∥·∥F is the Frobenius norm. In summary, the goal of Neural
ODE training can be formulated as computing θ such that
(3) holds while minimizing (5).

2.1 Sequential ODE Solvers

In a typical Neural ODE training pipeline, we ensure (3)
holds by solving the ODE system in every iteration. In this
sequential approach, the solver computes Ŷ iteratively,
e.g., by time stepping, until the end of the interval is
reached at T . The simplest example is Euler’s method,
while more commonly used schemes are the Runge-Kutta
methods, used as default solvers in torchdiffeq within
PyTorch and Diffrax within JAX. We can generalize a
step of a sequential numerical scheme as:

y(t+ h) = y(t) + h · Φ(f,y(t), t, h),
where h is the step size, f is the derivative function, and Φ
denotes the (typically explicit) function that approximates
the change in y over the interval from t to t+ h.

While this framework enables using tailored simulation
methods for (3), using sequential ODE solvers for training
poses several challenges. First, numerical errors can accu-
mulate at each integration step, resulting in substantial
global errors. Although adaptive solvers help control these
errors, they add computational overhead and may still
behave unpredictably on unseen data. Second, in addition
to simulation CPU times, storing intermediate solutions
for backpropagation requires significant memory. Despite
the adjoint method (Chen et al., 2018) ensuring constant
memory cost, it can substantially prolong training time.

3. SPECTRAL METHODS

As an alternative to the above, spectral numerical methods
approximate the ODE solution as a linear combination of
basis functions, e.g., trigonometric or orthogonal polyno-
mials. The function coefficients are fitted over the integra-
tion domain, offering high accuracy and convergence rates
for smooth problems (Boyd, 2000).

3.1 Collocation with Lagrange Interpolation

Collocation is a class of spectral methods in which an
ODE is enforced at a set of discrete points, termed the
collocation grid, which we introduce as ξ = {ξi}N−1

i=0 in
[t0, T ]. Under this framework, the approximate solution is

ỹ(t) =

N−1∑
i=0

βiϕi(t),

where {ϕi(t)}N−1
i=0 represent the basis functions, {βi}N−1

i=0
are the coefficients to be determined, and t ∈ [t0, T ].

We employ the barycentric form of Lagrange polynomials
as basis functions due to its numerical stability and adapt-
ability to diverse functions, including non-periodic behav-
iors (Berrut and Trefethen, 2004). The use of Lagrange
polynomials also offers an implementation simplification
due to the interpolation property, which ensures that the
coefficients coincide with the true state values at the col-
location grid, such that βi = yi at each collocation point.
As a result, the approximated solution becomes:

ỹ(t) =

N−1∑
i=0

yiℓi(t), (6)

where {ℓi(t)}N−1
i=0 are the Lagrange basis functions and

{yi}N−1
i=0 are the unknown coefficients, which are also the

state values at each point ξi. We assume y to be unknown,
given the presence of noise in real-life systems. By treating
all yi as coefficients (Berrut and Trefethen, 2004) and
differentiating the interpolation formula (6), we obtain:

ỹ′(t) =

N−1∑
i=0

yiℓ
′
i(t). (7)

Substituting (6) and (7) into the Neural ODE (3) and
evaluating at each collocation point ξi yields:

N−1∑
j=0

yjℓ
′
j(ξi) = fθ

N−1∑
j=0

yjℓj(ξi), ξi

 , i = 0, . . . , N − 1.

(8)

This results in a system of nonlinear equations with respect
to the unknowns {yj}N−1

j=0 . The system can be expressed
in matrix form:

DY = Fθ(Y, ξ), (9)

where:

• D ∈ RN×N is the differentiation matrix with elements
Dij = ℓ′j(ξi).

• Y = [y0, . . . ,yN−1]
⊤ ∈ RN×d is the matrix of

unknown coefficients (true state values).
• Fθ(Y, ξ) = [fθ(ỹ(ξ0), ξ0), . . . , fθ(ỹ(ξN−1), ξN−1)]

⊤ ∈
RN×d contains the Neural ODE evaluated at each
collocation point.



Using the barycentric formula (Berrut and Trefethen,
2004), the differentiation matrix is defined as:

Dij =


wj

wi

1

ξi − ξj
, if i ̸= j,

−
N−1∑
k=0
k ̸=i

Dik, if i = j,

where the weight is computed as:

wi =
1

N−1∏
k=0 k ̸=i

(ξi − ξk)

.

The selection of the collocation grid significantly impacts
the accuracy of the method. To mitigate errors caused by
Runge’s phenomenon, Chebyshev nodes of the second kind
in [−1, 1] are often used:

ξi = cos

(
iπ

N − 1

)
, i = 0, . . . , N − 1. (10)

We refer the interested reader to Young (2019) for a
comprehensive discussion of collocation grids.

4. PROPOSED METHODOLOGY

So far, we have converted the continuous ODE problem
into a discrete algebraic system (9) by incorporating collo-
cation and Lagrange interpolation. Our goal is to minimize
the loss function (5) while enforcing that the collocation-
estimated derivatives, computed asDY, match the neural-
network-predicted derivatives Fθ(Y, ξ) at the collocation
points. The challenge arises because both the true values
of the state values Y and the parameters θ of the neural
network are unknown.

4.1 Simultaneous Approach

Our proposed approach is to incorporate the collocation
system (5) as equality constraints in a single nonlinear
optimization framework, where the objective function cap-
tures the discrepancy between the observed and optimized
states, e.g., the MSE. By solving for Y and θ simul-
taneously, we effectively train the neural network from
observed data while enforcing the collocation constraints.

The simultaneous approach in the context of collocation-
based dynamic optimization can be further explored in
the works by Tjoa and Biegler (1991); Kameswaran and
Biegler (2006), where it is applied to the problem of
parameter-estimation in differential equation systems.

4.2 Implementation

To implement this methodology, we utilize the Interior
Point OPTimizer (IPOPT), which is well-suited for solv-
ing continuous, large-scale nonlinear optimization prob-
lems (Biegler and Zavala, 2009). For the software imple-
mentation, we call IPOPT through the open-source Pyomo
algebraic modeling language. Recent research (Ceccon
et al., 2022) demonstrates how neural networks can be
represented as constraints within the Pyomo framework.

We initialize two optimization variable groups within Py-
omo: state variables and neural network parameters.

• State Variables, Y∗, represent the system’s state
at collocation time points. To expedite training, the
state variables can also be initialized using smoothed
observed data. These variables aim to approximate
the true values Y from the observed values Yobs.

• Neural Network Parameters, θ, include the
weights and biases of the neural network.

The objective function captures the difference between
the observed data and the state variables approximated
by the collocation equations, instead of the output of
ODESolve as in (4). We express the objective function as
a combination of the MSE loss and regularization terms:

L(Y∗,Yobs) =
1

N
∥Y∗ −Yobs∥2F + λ∥θ∥22, (11)

where

• Y∗ ∈ RN×d is the matrix of estimated state variables
(the variables being optimized).

• Yobs ∈ RN×d is the matrix of observed values.
• θ is the vector of neural network parameters.
• ∥ · ∥2 and ∥ · ∥F are the Euclidean (L2) and Frobenius

norms respectively.
• λ is the regularization parameter.

We enforce consistency between the neural network and
the derivative of Y∗ at each collocation point ξi:

N−1∑
j=0

y∗
j l

′
j(ξi) = fθ(y

∗
i , ξi).

Here, ℓ′j(ξi) is the elementDij of the differentiation matrix,
so the left-hand side approximates the derivative of the
optimized state values. The right-hand side is the output
of the neural network.

4.3 Problem Formulation

We formulate the optimization problem as follows:

min
Y∗,θ

L(Y∗,Yobs),

Subject to:

Equality Constraints: DY∗ = Fθ(Y
∗, ξ),

Bounds: y∗L ≤ ỹ∗ ≤ y∗U , θL ≤ θ ≤ θR

where:

• L : is the loss function as described in (11).
• C : DY∗ = Fθ(Y

∗, ξ) is the matrix of equality
constraints.

• Y∗ and θ represent decision variables.
• y∗L, y

∗
U and θL, θU are the respective values for their

lower and upper bounds

After the model is solved to optimality, the neural network
can be used as the RHS of an ODE in a sequential or
collocation-based solver in the post-training context.

4.4 Alternating Direction Method of Multipliers (ADMM)

One potential disadvantage of the above simultaneous
framework is that the entire dataset must be handled in a



single optimization problem, while many training pipelines
divide data into batches to alleviate computational or
memory burden. We propose using the Alternating Di-
rection Method of Multipliers (ADMM) to enable multi-
batching by coordinating the training of separate submod-
els. For two ‘batches,’ the problem can be written as:

min
θ1,θ2

L1(θ1,Y1) + L2(θ2,Y2)

s.t. θ1 = θ2,

where Y1, Y2 are the batches of data, θ1, θ2 are vectors
containing parameters of each sub-model, and L1, L2 are
the loss functions. Notice the ‘linking’ constraints θ1 = θ2
enforce a consensus model between the two data batches.

ADMM decomposes the above problem without the link-
ing constraints by updating the optimization parameters
and a dual variable (Lagrange multiplier) in an iterative
manner (Boyd et al., 2010). Without the constraints,
the problem is effectively decomposed into independent
subproblems minθi Li(θi,Yi). The loss functions for the
subproblems are reformulated as follows:

LADMM,i = Li(θi,Xi)+
ρ

2

∥∥∥∥θi − θ̄(k) +
ui

ρ

∥∥∥∥2
2

, for i = 1, 2,

where θi are parameters of submodel i, θ̄(k) are the
consensus parameters at the k-th ADMM iteration, ρ is
a scalar penalty strength, and ui are the dual variables
associated with subproblem i. For two submodels, the
consensus weights in the k-th iteration are given by:

θ̄(k) =
θ
(k)
1 + θ

(k)
2

2

The dual variables for each submodel i are updated in each
iteration using:

u
(k+1)
i = u

(k)
i + ρ(θ

(k)
i − θ̄(k)).

The model can be run for a fixed number of iterations or
until convergence, which is defined by the magnitude of
the primal residual, which we compute as:

r
(k)
primal =

2∑
i=1

∥θ(k)
i − θ̄(k)∥2.

This ADMM framework allows us to train larger models by
decomposing the problem into smaller subproblems, but
can also improve the model generalization by learning from
multiple trajectories simultaneously.

5. EXPERIMENTAL RESULTS

We compare the proposed collocation-based approach for
training Neural ODEs to two benchmark sequential imple-
mentations: JAX (Diffrax) and PyTorch (torchdiffeq). Be-
fore training, we apply the following preprocessing steps:

• Spacing: We interpolate the training data to the
chosen collocation grid, ensuring the data align with
collocation points. The collocation grids are scaled
according to the time range of the observed data.

• Noise: We simulate measurement noise by adding
zero-centered Gaussian noise with σ = 0.1.

• Initialization: We utilize Xavier initialization for
the neural network weights (Glorot and Bengio,

2010). For the simultaneous approach, the state vari-
ables Y∗ are initialized to the values of locally
weighted polynomial regression (Cleveland and De-
vlin, 1988).

5.1 Case Study: Van der Pol Oscillator

The forced Van der Pol Oscillator is a 2-D ODE system
that can be represented as two coupled first-order equa-
tions:{

u′ = v, u0 = 0

v′ = µ(1− u2)v − u+A cos(ωt), v0 = 1,

where u is the displacement, v is the velocity, ω is the
angular frequency, µ is the damping parameter, and A is
the external periodic force. For our experiments, we set
the initial conditions as u0 = 0 and v0 = 1. The remaining
parameters are chosen as µ = 1, A = 1 and ω = 1.

Training and Inference Procedure After training with
our proposed collocation-based framework, the learned
Neural ODE is used in a standard ODE solver (JAX
Diffrax) for forward simulation. Figure 1 illustrates the
prediction on both training and test ranges, showing
that the collocation-trained Neural ODE captures the
underlying dynamics effectively.

Fig. 1. Predictions of a model trained with collocation-
based method (Pyomo) for the Van der Pol Oscil-
lator. 200 training points and 200 testing points.

Pre-Training Strategies While we found that collocation-
based training generally converged to good solutions, the
sequential approach often resulted in premature local op-
tima, perhaps owing to the feasible path approach. We
therefore consider strategies for initial pre-training on
a subset of the data (20%). As shown in Table 1, we
use the notation Model[Pre-training] to denote differ-
ent framework combinations, where Model is the strat-
egy for the main training phase, and Pre-training is
the strategy for the pre-training phase. The label No
indicates that no pre-training was used. The standard
method for pre-training uses the same model for both
phases (JAX[JAX] or PyTorch[PyTorch]). We also explore
a hybrid approach, where our Pyomo (collocation-based)
model is used before continuing training with the bench-
mark models (JAX[Pyomo] or PyTorch[Pyomo]).



Table 1. Comparison of training frameworks.
Smaller- and regular-size networks have lay-
ers of [2, 8, 2] and [2, 32, 2] nodes, respectively.
Results averaged over 10 runs. Note the test
MSEs are not available to the optimizers,
which merely seek to minimize training MSE.

Model [Pre-training] MSE Train MSE Test Time (s)

Shorter Training Duration: Regular-Size Network

Pyomo [No] 0.0225 0.6139 7.144
JAX [JAX] 0.0553 1.0395 7.322

Smaller-Size Network

Pyomo [No] 0.0374 0.9792 2.043
JAX [JAX] 0.1003 1.2908 8.705

Longer Training Duration: Regular-Size Network

JAX [No] 2.7192 129.63 27.61
JAX [JAX] 0.0312 1.0954 23.85

JAX [Pyomo] 0.0098 0.4891 23.18
PyTorch [PyTorch] 0.4152 1.6728 25.14
PyTorch [Pyomo] 0.0111 0.4204 28.59

5.2 Performance Evaluation

Shorter Training Duration The collocation-based model
exhibits fast convergence (approximately 7 seconds to
train the regular-size network). We compare this with
the accuracy achieved by the JAX model within the
same training timeframe. As demonstrated in the Shorter
Training Duration (top) section of Table 1, the Pyomo
model achieves lower MSE during this time.

Smaller-Size Network We also observe that collocation-
based training can produce models that achieve better
performance with smaller network sizes, as shown in the
Smaller-Size Network (middle) section of Table 1. De-
spite letting the JAX model train for longer using the
smaller-size network configuration, it does not reach the
performance level of the Pyomo model. This suggests that
the improved optimization framework results in better
training of the limited model parameters, leading to lower
training and testing MSEs.

Longer Training Duration While training models with
JAX and PyTorch for longer periods of time enhances
their performance, we find they do not surpass the model
trained with the collocation framework unless they are
pre-trained with the latter, as detailed in Longer Training
Duration (bottom) section of Table 1. Figures 2 and 3
show that the collocation-based training framework results
in the fastest convergence in terms of both training and
testing MSEs.

Hybrid Pre-Training We also demonstrate that the pro-
posed framework can be used to pre-train alongside ex-
isting methods. For example, after the collocation-based
training converges, we use its weights and biases to ini-
tialize a JAX model. Subsequently, the JAX model can
continue training and further improve the results, as seen
in Figure 4. The combination of the collocation-based
training followed by training using JAX achieves the lowest
training MSE scores, as seen in Table 1.

Batching Using ADMM Finally, we evaluate the per-
formance of the proposed methodology for multi-batching

Fig. 2. Training MSE for three training frameworks. Note
that the MSE values at intermediate training times
are obtained by interrupting IPOPT’s runtime and
may appear unstable.

Fig. 3. Testing MSE for three training frameworks.

Fig. 4. Training MSE of JAX model with pre-training.

using ADMM. Figure 5 shows that ADMM is able to
successfully coordinate the training of the two submodels,
each containing half of the training data. The final MSE
using the consensus weights of the ADMM-trained model



also surpasses the performance of a monolithic-trained
model. This improvement is perhaps related to folklore
observations that stochastic (batched) gradients may help
escape local optima. Ultimately, the ADMM framework
provides an avenue to train larger models more effectively.

Fig. 5. ADMM (150 + 150 training points) vs Single
Model (300 training points) Performance

6. CONCLUSIONS

In this work, we propose a collocation-based methodology
using spectral methods for training Neural ODEs. By ap-
proximating the solution with Lagrange polynomials and
enforcing differential equation constraints at collocation
points, we recast the ODE problem as a system of algebraic
constraints suitable for simultaneous optimization using
IPOPT. Our experimental results on the Van der Pol
Oscillator demonstrate that the proposed method achieves
fast convergence and may enable more compact models
compared to traditional sequential training approaches
(e.g., implemented in JAX and PyTorch).

REFERENCES

Berrut, J.P. and Trefethen, L.N. (2004). Barycentric
Lagrange interpolation. SIAM Review, 46(3), 501–517.

Bhosekar, A. and Ierapetritou, M. (2018). Advances in
surrogate based modeling, feasibility analysis, and opti-
mization: A review. Computers & Chemical Engineer-
ing, 108, 250–267.

Biegler, L. and Zavala, V. (2009). Large-scale nonlinear
programming using IPOPT: An integrating framework
for enterprise-wide dynamic optimization. Computers &
Chemical Engineering, 33(3), 575–582.

Boyd, J.P. (2000). Chebyshev and Fourier Spectral Meth-
ods. Dover Publications, Mineola, NY, 2 edition.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2010). Distributed optimization and statistical learning
via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3, 1–122.

Bradley, W. and Boukouvala, F. (2021). Two-stage ap-
proach to parameter estimation of differential equations
using neural ODEs. Industrial & Engineering Chemistry
Research, 60(45), 16330–16344.

Ceccon, F., Jalving, J., Haddad, J., Thebelt, A., Tsay, C.,
Laird, C.D., and Misener, R. (2022). OMLT: Optimiza-
tion & machine learning toolkit. Journal of Machine
Learning Research, 23, 349.

Chen, R.T.Q., Rubanova, Y., Bettencourt, J., and Duve-
naud, D.K. (2018). Neural ordinary differential equa-
tions. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems, vol-
ume 31, 6572–6583.

Cleveland, W.S. and Devlin, S.J. (1988). Locally weighted
regression: An approach to regression analysis by local
fitting. Journal of the American Statistical Association,
83(403), 596–610.

Dua, V. and Dua, P. (2012). A simultaneous approach for
parameter estimation of a system of ordinary differential
equations, using artificial neural network approxima-
tion. Industrial & Engineering Chemistry Research,
51(4), 1809–1814.

Glorot, X. and Bengio, Y. (2010). Understanding the
difficulty of training deep feedforward neural networks.
In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics (AISTATS), vol-
ume 9, 249–256.

Kameswaran, S. and Biegler, L.T. (2006). Simultaneous
dynamic optimization strategies: Recent advances and
challenges. Computers & Chemical Engineering, 30(10),
1560–1575.

Lehtimäki, M., Paunonen, L., and Linne, M.L. (2024).
Accelerating neural ODEs using model order reduction.
IEEE Transactions on Neural Networks and Learning
Systems, 35(1), 519–531.

Luo, J., Abdullah, F., and Christofides, P.D. (2023). Model
predictive control of nonlinear processes using neural
ordinary differential equation models. Computers &
Chemical Engineering, 178, 108367.

Quaglino, A., Gallieri, M., Masci, J., and Koutńık, J.
(2020). SNODE: Spectral discretization of neural ODEs
for system identification. In Proceedings of the 8th
International Conference on Learning Representations
(ICLR).

Roesch, E., Rackauckas, C., and Stumpf, M.P.H. (2021).
Collocation based training of neural ordinary differential
equations. Statistical Applications in Genetics and
Molecular Biology, 20(2), 37–49.

Sarker, I.H. (2021). Deep learning: A comprehensive
overview on techniques, taxonomy, applications and
research directions. SN Computer Science, 2(6), 420.

Sorourifar, F., Peng, Y., Castillo, I., Bui, L., Venegas,
J., and Paulson, J.A. (2023). Physics-enhanced neural
ordinary differential equations: Application to industrial
chemical reaction systems. Industrial & Engineering
Chemistry Research, 62(38), 15563–15577.

Thebelt, A., Wiebe, J., Kronqvist, J., Tsay, C., and Mis-
ener, R. (2022). Maximizing information from chemical
engineering data sets: Applications to machine learning.
Chemical Engineering Science, 252, 117469.

Tjoa, I.B. and Biegler, L.T. (1991). Simultaneous solution
and optimization strategies for parameter estimation
of differential-algebraic equation systems. Industrial &
Engineering Chemistry Research, 30(2), 376–385.

Tsay, C. and Baldea, M. (2019). 110th anniversary: using
data to bridge the time and length scales of process
systems. Industrial & Engineering Chemistry Research,
58(36), 16696–16708.

Young, L.C. (2019). Orthogonal collocation revisited.
Computer Methods in Applied Mechanics and Engineer-
ing, 345, 1033–1076.


