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Abstract: Heavy haul transportation characterized by long trains enjoys the benefits of cost-
efficiency but suffers from high cost in combination process. Virtual coupling (VC) is a state-
of-art train control technology that can help resolving the dilemma. In this paper, we proposed
an integer programming model that schedules station operation plans, timetables and train
combination schemes of heavy haul trains (HHTs) with VC at the same time. A genetic algorithm
with a deep first search decode method is proposed to efficiently solve this problem on a large
scale. The simulation results show that our method can effectively improve the efficiency of
HHTs in real-world scenarios.
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1. INTRODUCTION

Heavy haul transportation is a widely adopted freight
transportation method, because of its outstanding capac-
ity for regional bulk cargo transport and merits of cost-
efficiency and punctuality Davydov et al. (2017); Zhou
et al. (2021). However, the usage of heavy haul trains
(HHTs) with extreme lengths bring difficulty to train com-
bination processes, as the combination plans are complex
and track resources of technical stations are limited Zhou
et al. (2021). So, in practice, stations operation plans (i.e.,
loading/unloading job plans), timetables and combination
schemes are typically created separately to reduce com-
plexity Zhou et al. (2021), which cannot guarantee the
quality of the plans.
Virtual coupling (VC) is an advanced technology for train
control system based on vehicle-to-vehicle communication
Wu et al. (2023), which makes it possible to establish
a long train by virtually combining many short unit
trains, with each unit train still running independently. VC
technology can significantly reduce the cost of combination
processes and the complexity of train combination plans,
making it possible to schedule the station operation plans,
timetables and train combination plans in an integrated
way, and obtain a scheduling solution closer to the global
optimum. So in this paper, the integrated scheduling
problem based VC will be discussed.
Most existing works related to VC focus on the control
methods Wu et al. (2023) and the operation logic Di Meo
et al. (2020) of VC. Only a few recent papers addressing
the scheduling problems for trains with VC technology. In
Chen et al. (2022), the authors consider both the dynamics
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of trains and passenger flow and propose a joint state-space
model integrated with VC to schedule trains in a metro
line. Chai et al. (2023) takes a further step and considers a
more complex metro network. Both Chen et al. (2022) and
Chai et al. (2023) assume that trains can only be combined
at the beginning of the trip. Wang and Su (2022) schedules
metro trains with VC on a Y-shaped circle line, to handle
the unbalanced passenger demand. Chen et al. (2024) also
investigates the train scheduling problem on Y-shaped
lines using VC, and they not only optimize the passenger
flow and total train delays, but also analyses the switching
sequence of turnouts considering safety. In Zhou et al.
(2023), the timetable rescheduling problem on high-speed
railway lines with VC is solved. All the works related to
scheduling mentioned above are related to passenger trains
scheduling, where station operations plans are neglected
and the numbers of trains considered are far smaller than
that in heavy haul transportation (typically hundreds of
trains). A recent work Ma et al. (2024) has considered
the timetable rescheduling problem of HHTs based on VC,
they also fail to consider the station operation plans and
the scale of their problem remains far smaller than that of
the HHT scheduling problem. Our previous work Wu et al.
(2024) provided a detailed integer programming model for
scheduling HHTs with VC, which can be applied to the
integrated problem in this paper, but it is not capable
of handling large-scale scheduling problem. Therefore, the
existing methods are not applicable if we want to schedule
the large-scale station operation plans, timetables and
train combination plans in an integrated way.
In this paper, we propose an integrated model that consid-
ers station operation plans, timetable and VC combination
schemes at the same time. With the objective function that
aims at improving the transportation efficiency, the model



is organized as an integer programming (IP) problem with
discrete time variables. Considering the large number of
trains in real scenarios and the complexity caused by the
nonlinear parts of the IP problem, we propose a genetic
algorithm (GA) algorithm with an deep first search (DFS)
decode method to solve it effectively.
The rest of the paper is organized as follows: section
2 describes the problem and formulates it into an IP
problem; section 3 provides the details of our proposed
GA methods; section 4 conducts simulation experiments
under the real-scenario settings to verity the effectiveness
and efficiency of our proposed method; in section 5, we
conclude the paper and provide some directions for further
research.

2. PROBLEM FORMULATION

Fig. 1. Heavy haul railway line

The problem considered in this paper can be described
as: given the railway line information and the origin and
destination stations for the trains such as the example
given in Fig. 1, we need to make the following decisions: (i)
the selection of the segments (Y l

f/Y
u
f ) for loading and un-

loading operations and the specific periods (CL/U
f /S

L/U
f )

for these operations; (ii) when a train should arrive at
which station (tf,ℵ), i.e., timetables; (iii) at which stations
and among which trains the combination should occur
(ξf,f ′,ℵ), i.e., combination schemes. The scope of the de-
cisions should cover the entire process from when heavy
trains (i.e., trains with cargo) depart from the loading
stations (to the unloading stations) until corresponding
empty trains (i.e., trains without cargo) return from the
unloading stations (to the loading stations). The railway
line includes both single-track lines which allow trains
to run in both directions, and double-track lines where
each track is dedicated to one direction. Moreover, all
the decisions should follow constraints of train operations.
To simplify the problem, following assumptions are fol-
lowed: (i) the shunting time of trains in the stations is
included in the loading/unloading operation time; (ii) the
stations have sufficient tracks available for trains to wait
for loading/unloading operations; (iii) the train length and
acceleration/deceleration processes are neglected; (iv) the
position where a station connects to an interstation track
is referred to as a node (as shown in Fig. 1), and trains
passing through different nodes do not interfere with each
other, so our timetable scheduling will base on nodes. It is
worth noting that Fig. 1 just provides an example of a real
railway line, but the model for problem formulation and
the proposed method discussed in the following sections
do not rely on the specific structure of Fig. 1.
We note that station operations and train sequencing
planning share similarities with flexible job shop schedul-
ing problems (FJSSP) described in Chaudhry and Khan
(2016). Therefore, we adopts some of the FJSSP formula-
tions, and integrate them with existing constraints related

to scheduling trains with VC Wang and Su (2022); Wu
et al. (2024); Zhou et al. (2023) and constraints unique to
our problem to form the IP model of this paper.

2.1 Loading and Unloading Operations Constraints

A heavy train can only choose one and only loading and
unloading segment respectively, i.e.,∑

l∈Lf

Y l
f = 1, ∀f ∈ Fh (1)

∑
u∈Uf

Y u
f = 1, ∀f ∈ Fh (2)

where Fh is the set of heavy trains, Lf/Uf is the set
of loading/unloading segments train f can choose and
Y l
f/Y

u
f = 1(0) represents train f chooses (does not chose)

segment l as its loading/unloading segment.
The start time of the loading job must be non-negative,
and the unloading job must start after the heavy train
arrives at its unloading station, which can be respectively
represented as

SL
f ≥ 0, SU

f ≥ tf,Df
, ∀f ∈ Fh (3)

where SL
f /S

U
f is the time when the train f starts the

loading/unloading job, tf,Df
is the time when train f

arrives at its unloading node Df . The loading/unloading
duration is related to the choice of loading/unloading
segment, i.e.,

CL
f − SL

f =
∑
l∈Lf

Y l
f · t̃l, ∀f ∈ Fh (4)

CU
f − SU

f =
∑
u∈Uf

Y u
f · t̃u, ∀f ∈ Fh (5)

where CL
f /C

U
f is the time when train f completes the load-

ing/unloading job, and t̃l/t̃u is the time loading/unloading
segment l/u needs to finish the job.
When two trains choose the same loading/unloading seg-
ment, there is one and only one precedence order between
them, ∀f, f ′ ∈ Fh, f ̸= f ′

Pf,f ′,w + Pf ′,f,w ≥ Y w
f + Y w

f ′ − 1 (6)
Pf,f ′,w + Pf ′,f,w ≤ 1 (7)

∀w ∈ {l, u | l ∈ Lf ∩ Lf ′ , u ∈ Uf ∩ Uf ′}

where Pf,f ′,w = 1(0) represents train f starts its load-
ing/unloading job earlier (later) than train f ′ on segment
w. Moreover, two trains cannot occupy the same segment
simultaneously for work, which can be represented with
Pf,f ′,w as, ∀f, f ′ ∈ Fh, f ̸= f ′

CL
f ′ − CL

f +M · (3− Pf,f ′,l − Y l
f − Y l

f ′) ≥ t̃l (8)
CU

f ′ − CU
f +M · (3− Pf,f ′,u − Y u

f − Y u
f ′) ≥ t̃u (9)

∀l ∈ Lf ∩ Lf ′ , ∀u ∈ Uf ∩ Uf ′

where M is a large enough number.
Remark 1. The forms of (1)-(9) are based on commonly
used formulation of FJSSP Chaudhry and Khan (2016).



2.2 Timetable Constraints

Heavy trains must depart from their loading stations only
after the loading jobs are completed, and empty trains
must depart from corresponding unloading stations only
after the unloading jobs are completed. These constraints
can be represented as

tf,Of
≥ CL

f , ∀f ∈ Fh (10)
tf,Of

≥ CU
f ′ −M · (1− rf,f ′), f ∈ Fe, f

′ ∈ Fh (11)
where Of is the original node of train f , Fe is the set of
empty trains, rf,f ′ means whether train f and f ′ share the
same rolling stock, i.e., whether heavy train f ′ becomes
empty train f after its unloading job. A minimum time
is required for a train to travel between two nodes due to
speed limitations, i.e., Wang and Su (2022)

tf,sf,k+1
− tf,sf,k ≥ FT (sf,k, sf,k+1) (12)

∀f ∈ F, ∀sf,k, sf,k+1 ∈ Vf

where sf,k is the kth node that train f run through,
FT (i, j) is the minimum time for trains to run from node
i to j, F = Fe ∪Fh and Vf is the set of nodes train f runs
through.
To discuss the relationships between different trains in the
timetable, we first need to determine the sequence in which
trains run through each node, which can be represented by
the following set of constraints, ∀f, f ′ ∈ F, f ̸= f ′

nsf,k∑
m=1

Xf,sf,k,m = 1, ∀sf,k ∈ Vf (13)∑
f,ℵ∈Vf

Xf,ℵ,m ≤ 1, ∀ℵ ∈ V,m = 1, · · · , nℵ (14)

Xf,sf,k+1,m = Xf,sf,k,m, ∀(sf,k, sf,k+1) ∈ Ef (15)

pf,f ′,ℵ =

nℵ−1∑
m=1

(
Xf,ℵ,m ·

nℵ∑
l=m+1

Xf ′,ℵ,l

)
(16)

∀ℵ ∈ Vf ∩ Vf ′

where Xf,ℵ,m = 1(0) means train f is (not) the mth train
to pass through node ℵ, nℵ is the number of trains that run
through node ℵ, Ef is the set of interstation tracks train f
runs through, V = ∪f∈FVf and pf,f ′,ℵ = 1(0) represents
train f runs through node ℵ earlier (later) than f ′.
Equation (13) ensures that each train is uniquely assigned
to one sequential position of a node. Equation (14) means
each sequential position of a node can be assigned to at
most one train. Equation (15) means that trains cannot
overtake each other on the interstation tracks. Equation
(16) establishes the relationship between Xf,ℵ,m, Xf ′,ℵ,l
and pf,f ′,ℵ.
Remark 2. The formulations of (13) and (14) is inspired
by the sequencing representations in FJSSP Roshanaei
et al. (2013).

Considering the safety requirement, there is a minimum
headway between two trains, which is related to the VC
mode and can be written as Wu et al. (2024)

tf ′,ℵ − tf,ℵ + (1− pf,f ′,ℵ) ·M ≥ ξf,f ′,ℵ · tV C + (1−
ξf,f ′,ℵ) · tNV C , ∀f, f ′ ∈ F, f ̸= f ′, ∀ℵ ∈ Vf ′ ∩ Vf (17)

where ξf,f ′,ℵ = 1(0) represents train f and f ′ are (not)
virtually combined on node ℵ, and headways are tV C and
tNV C in the two modes (tV C < tNV C). And pf,f ′,ℵ = 1(0)
represents train f arrives at node ℵ earlier (later) than
train f ′.

2.3 Virtual Coupling Constraints

Due to the requirement of VC technology, several related
constraints should be satisfied. First, VC relation can only
be established between two trains running in the same
direction

ξf,f ′,ℵ ≤ 1− | xf,ℵ − xf ′,ℵ | (18)
∀f, f ′ ∈ F, f ̸= f ′,ℵ ∈ Vf ∩ Vf ′

where xf,ℵ = 1(0) represents train f heads in the up
(down) direction when passing through node ℵ. Second,
the headway between two virtually combined trains can-
not be too big considering the minimum communication
distance constraint Zhou et al. (2023)

(ξf,f ′,ℵ − 1) ·M + tf ′,ℵ − tf,ℵ ≤ TMAX
V C (19)

∀f, f ′ ∈ F, f ̸= f ′, ∀ℵ ∈ Vf ′ ∩ Vf

where TMAX
V C is the maximum headway between two

virtually combined trains. Third, the number of trains in a
VC group (the number of consecutively virtually combined
trains) cannot exceed Nc, i.e.,

Nc−1∑
i=0

cm+i,ℵ ≤ Nc − 1 (20)

∀ℵ ∈ V,m = 1, 2, · · · , nℵ −Nc

where cm,ℵ = 1(0) means the mth train that runs through
node ℵ is (is not) virtually combined with them+1th train.
Finally, the relation between variable cm,ℵ and ξf,f ′,ℵ is
established through the following constraint

ξf,f ′,ℵ =

nℵ−1∑
m=1

(Xf,ℵ,m ·Xf ′,ℵ,m+1 · cm,ℵ) (21)

∀f, f ′ ∈ F, f ̸= f ′, ∀ℵ ∈ Vf ∩ Vf ′

Remark 3. In subsection 2.2 and 2.3, constraints (10) (11)
(15) (16) (18) (20) (21) are unique to our problem.

2.4 Objective Function

For heavy haul transportation, improving cargo trans-
portation speed and train turnover efficiency is an impor-
tant objective. Therefore, our objective function is defined
as follows

minOBJ =
∑
f∈Fe

tf,Df
(22)

Obviously, this objective function minimizes the sum of the
times for all trains to return to their origin stations. When
the cargo volume is fixed, minimizing OBJ is equivalent
to maximizing transportation efficiency. In the following
text, −OBJ is also used as the fitness function in the GA
method, i.e., larger fitness value is better.



3. SOLUTION METHOD BASED ON GA

The integer programming model proposed in section 2 has
an NP-hard nature, with solution complexity increasing
exponentially as the problem size grows. Therefore, the
large-scale practical scheduling problem of heavy haul
trains with VC (involving hundreds of trains and contain-
ing up to 1M decision variables) cannot be solved directly
with commercial solvers, e.g., GUROBI solver. Inspired by
the flexible job shop scheduling problem Chaudhry and
Khan (2016), we notice that the heavy trains traveling
to the destination stations for unloading and the empty
trains returning to the origin stations can be seen as two
operations, while the selection of loading and unloading
segments can be seen as the choice of processing machines
in a job shop. So in this section, we adopt the GA method
widely used in FJSSP, and propose an efficient decode
strategy tailored to our problem, i.e., DFS decode method,
to solve the problem effectively. The main GA iteration
process is the normal GA workflow with elite reservation
strategy. Readers can refer to the related works Amjad
et al. (2018) for details.

3.1 Encode, Crossover and Mutate

To encode the decision variables, we construct a train
sequence chromosome (Cseq) and a loading/unloading seg-
ment dispatch chromosome (Cdis), both with a length of
|Fh ∪ Fe|. For the former, the ID of each train appears
twice: the first appearance represents its scheduling order
in the heavy train state, and the second time represents its
scheduling order in the empty train state. For the latter,
the 2i−1th and 2ith element of the chromosome represent
the loading and unloading segment dispatch for the ith
heavy train, respectively. We implement crossover opera-
tion of the two parts of chromosomes separately to ensure
the feasiblility of child chromosomes. For Cseq, improved
precedence operation crossover (IPOX) is utilized, while
for Cdis, we use multipoint preservative crossover (MPX).
Interested readers may refer to Amjad et al. (2018) for
further details. Similarly, different mutation techniques
are employed for two chromosomes. For Cseq, we randomly
chose a position and a gene in the chromosome, then
move the selected gene to the chosen position. For Cdis, we
random select an index, and replace the segment number
in the selected index by another segment number from the
same alternative segment set. The above operations are
repeated a given times during the mutation process. The
crossover and mutation processes occur with the probabil-
ity pc and pm respectively in each GA iteration.

3.2 DFS Decode Method

Inspired by the experience in FJSSP, compared with the
passive decode method, where the sequence of trains in the
timetable corresponds directly to the order represented in
Cseq, the active decode method, where the timetable of a
given train is set to the earliest feasible time stamp, is more
effective. However, when constructing the timetable, there
are more complex constraints between trains and greedily
choosing the earliest idle time stamps can often lead to an
infeasible solution. For example, in Fig. 2, the time interval
b and c contain feasible time stamps for the currently

Fig. 2. Schematic of the DFS decode method

Fig. 3. DFS decode method algorithm

considered train and will be chosen if the traditional active
decode method used in FJSSP is adopted, but choosing b
and c will lead to an infeasible solution as d and e do
not contain feasible time stamps and other time intervals
cannot be chosen because overtaking is not allowed in
interstation segment (ℵ+ 1,ℵ+ 2).
Noticing that the choice of the time interval is valid only
if selecting this time interval can result in a complete
timetable of the currently scheduled train, we propose a
DFS decode method to recover the timetable and load-
ing/unloading time scheduling results from any given valid
Cseq and Cdis, as shown in Fig. 3.
The core of the DFS decode method is the DFS method
to find the feasible timetable for the currently considered
train fc in step 6 and is listed out in detail in step 15-34
in Fig. 3. DFS recursively searches each node train fc runs



through, i.e., sfc,k, find the feasible time interval set (step
17) and time stamp set (step 19) of the node, and choose
the earliest time stamp in the feasible time stamp set (step
21) to add to the timetable of the fc (step 28). The search
process stops as soon as the first complete timetable of
fc is gotten. In the example in Fig. 2, the order in which
DFS visits the time intervals is a-b-c-d-e-f-g-h-i-j, the final
timetable of fc is in the time intervals b-h-i-j, and the
time intervals l-m-n-o will not be visited as the complete
timetable has been gotten. A feasible timetable can always
be found as the last time interval of each node has an
infinite duration. Moreover, in step 4 and step 10, the
loading and unloading times of the train fc are arranged
in the earliest feasible time interval of the loading and
unloading segments selected by Cdis.

4. EXPERIMENTAL RESULTS

In this section, we test our method under a real railway line
scenario which contains 3 loading stations and 5 unloading
stations is studied (as shown in Fig. 1). The speed limit of
trains in the line is 80 km/h, tV C = 3 min, tNV C = 6 min,
TMAX
V C = 5 min, Nc = 10 and the detailed information

of loading/unloading segment working times is listed in
Table 1, where m*n means there are n segments with the
working time of m minutes. In subsection 4.1, we validate
the effectiveness of the method on small-scale problems,
and in subsections 4.2, we evaluate the efficiency of our
method on large-scale problems. We conduct experiments
on the personal computer with i9-13900k CPU and 64GB
DDR4 RAM, and all the algorithms are implemented with
MATLAB 2024a or GUROBI v11.0.3.

Table 1. Station information
Station Type Segment working time (min)

1 Unloading 240*3/2880*3/780
2 Unloading 300*4
3 Loading 3000*5
4 Loading 180*10/160/150*3/140/120*3
5 Loading 240*2
6 Unloading 730/654/297
7 Unloading 375
8 Unloading 90*13

4.1 Effectiveness of the Method

In this subsection, we verify the quality of the solutions
obtained by our method through some small-scale prob-
lems. Specifically, we compare the solution quality as well
as the solving speed of our method with those of GUROBI
solver. In these experiments, the solving time of GUROBI
is limited to 3600 s, and the parameters of our method are
population size NP = 100, iteration number NI = 200,
elite individual number Ntop = 20, pc = 0.8, pm = 0.2
(in the following text, unless otherwise specified, these pa-
rameters remain unchanged). The results are shown in Ta-
ble 2 (SCE=scenario,NT=train number, GUR=GUROBI,
RE=results, RT=runtimes (s)), where the scenario m×n
means m loading stations and n unloading stations are
considered and the better results are marked in bold. In
each problem, we conduct 10 times of experiments with our
method and show the mean value of these experiments.
On one hand, the mean results achieved by our method are
no worse than those of GUROBI in most experiments and

Table 2. Results of small-scale problems

SCE NT GUR RE GUR RT Our RE Our RT
1×1 10 13023 3600.09 12531.00 25.54
1×1 15 19435 3600.29 19048.10 34.26
2×2 10 10502 3600.05 10506.60 48.36
2×2 15 - 3600.03 16894.60 70.69
3×3 10 16602 465.42 16602.80 40.25
3×3 15 57972 3600.09 25680.20 61.48
3×5 10 16291 99.26 16291.00 38.05
3×5 15 24037 3600.06 24026.60 61.16

are only slightly inferior to the results of GUROBI in a
few cases. This observation indicates that the formulation
of the chromosome and the heuristics used in the decoding
process do not result in significant loss of optimality, and
the effectiveness of the proposed method is thus verified.
On the other hand, the runtimes of our method do not
experience significant variation with changes in problem
size and is notably faster than that of GUROBI in all cases.
Moreover, GUROBI’s solving time can increase rapidly
with problem size, and in scenario 2×2 with 15 trains,
it even fails to obtain a feasible solution.

4.2 Efficiency of the Method

To demonstrate the efficiency of our method, we compare
it with first come first serve (FCFS), pure GA (PGA) and
tabu search (TS). The encode methods of PGA and TS
are the same as our method, and both use passive decode
method to recover the final results. The parameters of
PGA are consistent with those of our method, while for
TS, its iteration number is 200, number of neighbors is 20
and tabu length is 10. The objective values and runtimes
(in the bracket) of each method for different problem sizes
are shown in Table 3 (the following experiments consider
all the stations), where each value is the average of 10
experiments, and the best results are highlighted in bold.

Table 3. Solutions and runtimes of different
methods under varying problem scales

Method 30
trains

60
trains

90
trains

120
trains

150
trains

FCFS 91635
(0.01)

206817
(0.02)

269004
(0.04)

399410
(0.06)

626930
(0.08)

PGA 42183
(29.9)

115340
(54.9)

188127
(94.9)

296911
(131.1)

489826
(160.8)

TS 42279
(38.9)

107535
(81.3)

173234
(149.3)

269630
(214.0)

446023
(276.6)

Ours 36675
(139.9)

84717
(269.7)

137814
(403.3)

201100
(500.0)

284534
(601.8)

For one thing, the optimization results of our method are
significantly better than all other comparison methods,
especially when the car flow is more complex. For an-
other, the computational time of our method is longer
than that of PGA and TS methods, because the com-
putational complexity for constructing the timetable of
a train with our DFS method is O(|Sall|) where |Sall|
is the number of time intervals in the current timetable,
while the corresponding computational complexity of the
passive decode method is O(1). However, as shown in
Fig. 4 where a/b means NP /NI in the GA settings, under
all the parameter settings, the computational times of our
method increase linearly with the train number (without



Fig. 4. Mean runtimes of our method under different
parameters and train numbers

Fig. 5. Comparison of fitness curve during optimization
encountering the curse of dimensionality), and in exper-
iments with practical-scale problems, the time required
by our method is still acceptable. Moreover, as shown in
Fig. 5, the useage of DFS decode method can lead to a
faster and more stable convergence compared to PGA.
So the benefits in convergence results can compensate for
acceptable additional computing time.

5. CONCLUSION

In this paper, we schedule station operations, timetables
and combination schemes of HHTs based on VC in an
integrated way. We provided an IP model for the prob-
lem, and efficiently solved it with GA featured with a
DFS decode method. In simulation experiments with real-
world scenario settings, the effectiveness of our method
is validated through comparison with results of GUROBI
solver, and our method also demonstrates superior opti-
mization outcomes compared to commonly used intelligent
optimization methods and heuristics. However, we greedily
combined trains when VC constraints are satisfied, and it
may lead to reduction of the solution quality. In the future,
more search-based methods can be introduced to further
enhance decision-making related to VC.
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