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Abstract: Accurate battery health prediction is crucial for prolonging battery life and ensuring
safety. Traditional methods relying on raw time-series data struggle with complex temporal
patterns and sensor noise. To address these limitations, we propose a novel approach that utilizes
image-transformed data to perform “knee classification” and State of Health (SOH) estimation
concurrently. This integrated approach detects aging events and continuously monitors SOH,
enabling preemptive interventions. We employ a Convolutional Neural Network (CNN) to si-
multaneously perform knee classification and SOH estimation, incorporating Gradient-weighted
Class Activation Mapping (Grad-CAM) to enhance interpretability by emphasizing critical
regions involved in the classification process. The proposed model achieves an 89% classification
accuracy, with higher recall than the time-series-based approach, particularly in identifying
the intermediate state. Additionally, the pre-trained CNN-based model attains an R2 value
of 0.977 in SOH prediction, demonstrating its effectiveness for battery condition monitoring.
These findings highlight the benefits of an integrated multi-task learning approach, addressing
the limitations of conventional time-series models.
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1. INTRODUCTION

Lithium-ion batteries (LIBs) are of paramount importance
in a multitude of applications, including electric vehi-
cles (EVs), electronic devices, and energy storage systems
(ESSs), due to their elevated energy density and extended
lifespan. Nevertheless, recurrent charge and discharge cy-
cles inevitably result in degradation, which is characterized
by capacity loss, augmented internal resistance, and di-
minished overall performance. These changes significantly
impact battery life and highlight the need for real-time
monitoring and accurate health prediction to ensure reli-
able and efficient maintenance.

The principal metrics for evaluating battery health are
State of Health (SOH) and Remaining Useful Life (RUL).
However, SOH and RUL each have limitations in detecting
preliminary signs of capacity loss. While SOH provides a
snapshot of the battery’s current state, it cannot forecast
the decay rate. RUL focuses on the remaining service life,
which can be insufficient for examining the root causes of
capacity fade.

To address this issue, the concepts of the “knee-point”
and “knee-onset” have been introduced as key indicators
of battery efficiency reduction. The knee-point refers to
the transition point where capacity begins to decrease
rapidly, representing a pivotal stage in the decay process
(Attia et al. (2022)). Conversely, the knee-onset marks the
initial point at which capacity fade becomes non-linear,
indicating when linear approximation can no longer ade-
quately describe degradation (Fermı́n-Cueto et al. (2020)).

Both points are closely associated with the aging progres-
sion, making their accurate estimation essential for robust
battery life prediction and management. In particular,
recognition of the knee-onset enables preventive measures
to mitigate damage or safety risks before significant degra-
dation occurs.

Recent studies have employed data-driven approaches to
predict health indicators. These methods leverage large
datasets to gain insights into battery functional state,
effectively replacing traditional physics-based models. For
instance, Greenbank and Howey (2021) adopted Gaus-
sian Process Regression (GPR) to improve model perfor-
mance in predicting rapid capacity degradation and end-
of-life. In a similar vein, Zhang et al. (2018) and Zhang
et al. (2023) utilized Long Short-Term Memory (LSTM)
for RUL and SOH prediction, respectively, thereby in-
corporating long-term dependencies in their respective
methodologies. Additionally, Sohn et al. (2022) introduced
a Convolutional Neural Network (CNN)-based knee-point
prediction model, while Ren et al. (2020) combined CNN
and LSTM to develop an RUL prediction model that incor-
porates both temporal characteristics and data patterns.

However, existing studies encounter limitations in model
performance when utilizing time-series data in its original
form, as this frequently fails to capture complex temporal
patterns and remains susceptible to sensor noise. More-
over, task-specific models often struggle to acquire gener-
alized data representations, thereby constraining their gen-
eralizability across diverse tasks or as pre-trained models
for more extensive applications.



We propose a novel battery health monitoring method
that uses image-transformed data for capacity degradation
analysis. The image representation of time-series data is
capable of encapsulating the necessary information on
degradation patterns while filtering out noise. The pro-
posed methodology employs a CNN structure, leveraging
its capability to effectively extract spatial features from
the transformed image data. Such characteristics enable
the identification of knee points and accurate estimation
of SOH. Additionally, the prediction outcomes are ana-
lyzed through Gradient-weighted Class Activation Map-
ping (Grad-CAM), which visually highlights influential
regions, providing a certain level of interpretability for
domain experts. Consequently, our approach contributes
to improved battery durability and safety management.

The structure of this paper is as follows: Section 2 de-
scribes the data analyses, model architecture, and over-
all framework. Section 3 presents and analyzes classifica-
tion and SOH estimation results based on the proposed
method. Finally, Section 4 concludes with insights from
the study and outlines directions for future research.

2. METHODS

2.1 Dataset

The dataset from Severson et al. (2019) was utilized in this
study. The dataset encompasses charge-discharge cycle
data for commercial lithium-ion batteries (LFP/graphite
cells, A123 Systems) subjected to fast-charging conditions.
It comprises 124 cells, each cycled until reaching 80% of its
rated capacity using either a one-stage or two-stage fast-
charging protocol. The average charge rates ranged from
3.6C to 6C, with all cells discharged at a rate of 4C. Each
cell has a rated capacity of 1.1 Ah and a nominal voltage
of 3.3 V, and voltage, current, temperature, and internal
resistance are recorded for each cycle.

2.2 Data Preprocessing

The input data consists of voltage (V), current (I),
and temperature (T) measurements obtained during the
charge-discharge process. Initially, Discrete Wavelet Trans-
form (DWT) was performed for noise reduction, as it
is well-suited for time-series data by enabling multi-
resolution analysis (Mallat (1989)). This method effec-
tively suppresses high-frequency noise while preserving
both local variations and global trends in the V, I, and T
signals. To address variations in data length and missing
time points, interpolation was applied to standardize each
cycle to 256 time steps.

The knee-point and knee-onset for each cell were calcu-
lated using the Bacon-Watts model and the double Bacon-
Watts model, as proposed in Fermı́n-Cueto et al. (2020).
The Bacon-Watts model is a method for approximating
capacity degradation with two linear functions, as given
in Eq. (1). In this model, the slopes of the linear segments
α1 and α2 and the transition point c1, indicating the knee-
point, were adjusted to align with the capacity fade curve.

Q = α0 + α1(c− c1) + α2(c− c1) tanh

{
c− c1
γ

}
+ Z

(1)

To determine the knee-onset location, the double Bacon-
Watts model with two transition points (c0 and c2) was
implemented, where c0 denotes the knee-onset, as defined
in Eq. (2).

Q = α0 + α1(c− c0) + α2(c− c0) tanh

{
c− c0
γ

}
+α3(c− c2) tanh

{
c− c2
γ

}
+ Z

(2)

These models enabled the determination of both the knee-
onset and knee-point while accounting for the degradation
pattern of each cell, ensuring a consistent optimization
approach across all cases. Based on these values, each cycle
was labeled for classification, a process defined as ”knee
classification.” Specifically, the data before the knee-onset
was labeled as 0, the interval between the knee-onset and
knee-point as 1 (specified as ”Between point”), and the
remainder after the knee-point as 2.

2.3 Recurrence Plot Transformation

V, I, and T time-series data were converted into images
to capture subtle variations during battery charging and
discharging cycles effectively. Representing the data as
images has been confirmed to enrich potential information
by visually revealing critical patterns, as demonstrated in
Garcia et al. (2022).

This study employed the Recurrence Plot (RP) method,
as outlined in Eckmann et al. (1995), due to its compu-
tational efficiency and its ability to capture the evolution
of patterns over time. The RP calculates similarity based
on the spatial distance between specific points in the data
trajectory, effectively characterizing the dynamic proper-
ties of the underlying patterns.

Traditionally, recurrence is calculated using a binary
scheme based on a predefined threshold, simplifying all
recurrence measures to either 0 or 1. In contrast, the
proposed approach preserves the original recurrence val-
ues when they fall below the threshold. This refinement
enhances sensitivity to subtle variations in battery condi-
tions by maintaining temporal details, while concurrently
reducing noise through threshold-based filtering of larger
distances. The recurrence Ri,j between time points i and
j can be calculated as Eq. 3:

Ri,j =

{
∥xi − xj∥, if ∥xi − xj∥ ≤ ε

0, otherwise
(3)

where xi and xj mean 3-dimensional vectors composed of
V, I, and T at each time point.

Given that V and I are tightly coupled and T is integrally
linked despite its delayed response, these features exhibit
coordinated behavior during battery operation. Conse-
quently, we integrated them into a single grayscale image
rather than processing each channel separately, enabling
the CNN model to effectively capture their joint dynamics.

2.4 Model architecture

A CNN is highly effective for extracting visual features
by learning patterns in image data. The convolutional



layer is designed to capture local patterns, while the
max-pooling layer consolidates these patterns at a global
level to preserve key image information. Based on these
strengths, this study adopted CNN as the base model to
extract essential patterns from time-series images.

The CNN model architecture implemented in this study
is illustrated in Fig. 1, with the parameters for each layer
delineated in Table. 1. The model extracts high-level image
features incrementally through multiple convolutional and
pooling layers, concluding with knee class in the final fully
connected layer.

Fig. 1. CNN model architecture

Table 1. Model parameters

Layer Name Kernels Nodes Kernel size/Stride

Input - - -
Convolutional Layer 1 16 - 3/1
Max Pooling Layer 1 - - 2/2
Convolutional Layer 2 32 - 3/1
Max Pooling Layer 2 - - 2/2
Convolutional Layer 3 64 - 3/1
Max Pooling Layer 3 - - 2/2
Fully Connected Layer 1 - 256 -
Fully Connected Layer 2 - 3 -

In knee classification, the cross-entropy loss function was
applied to impose penalties on incorrect predictions and
enhance the model’s capacity to discern features.

Cross Entropy = − 1

N

N∑
i=1

C∑
c=1

pi,c log(qi,c) (4)

where N is the number of data points, C is the number
of classes, pi,c is a one-hot encoded vector that equals 1 if
the true class is c and 0 otherwise, and qi,c is the predicted
probability that the ith data point belongs to class c.

In addition, the SOH prediction task was executed using a
pre-trained model, for which Mean Squared Error (MSE)
loss was deployed to enhance the continuous value predic-
tion accuracy. Minimizing the MSE between predicted (ŷi)
and actual (yi) values ensures accurate estimation of SOH.

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (5)

2.5 Model explanation

We utilized Grad-CAM to interpret the behavior of the
CNN model. By leveraging gradient information from
the feature map in the final convolutional layer of CNN,
Grad-CAM can visualize crucial regions that contribute
significantly to the prediction of each class.

In Grad-CAM, each filter k is assigned a weight αc
k,

reflecting its contribution toward predicting class c. The
weight is determined based on the gradient of the class
prediction score yc with respect to the feature map Ak, as
follows:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

(6)

where Z denotes the total number of elements in the
feature map, and ∂yc

∂Ak
ij

quantifies the influence of the

feature map at location (i, j) on the prediction score for
class c.

The final Grad-CAM map Lc
Grad-CAM is then computed

using the following equation:

Lc
Grad-CAM = ReLU

(∑
k

αc
kA

k

)
(7)

The ReLU function filters out negative values, ensuring
that only the most critical areas highlighted by the model
are visualized. Through Grad-CAM analysis, we gain
insights into critical time steps and temporal patterns that
substantially influenced the model’s decisions.

2.6 Overall Framework

The overall battery health monitoring framework is il-
lustrated in Fig. 2. Initially, the battery cycle data (V,
I, T) were transformed into RP-based images to capture
temporal degradation patterns efficiently. The CNN model
was trained on these images to perform knee classification,
with labels derived from the Bacon-Watts and double
Bacon-Watts models. Subsequently, Grad-CAM analysis
was conducted to identify regions in the images that sig-
nificantly influenced the model predictions. Finally, the
pre-trained CNN was fine-tuned for SOH estimation to
demonstrate its generalized predictive capability.

3. RESULTS AND DISCUSSION

3.1 Data processing results

Fig. 3 illustrates the knee-onset and knee-point identified
from the capacity degradation curve of cell b1c24 in the
A123 dataset. The knee-onset appears around cycle 600,
where the curve’s curvature increases. The knee-point oc-
curs near cycle 750, marking the start of rapid capacity
fading. Three representative cycles were selected to cap-
ture distinct aging phases. Cycle 100 represents stable
conditions before the knee-onset, cycle 650 corresponds
to the transition phase between the knee-onset and knee-
point, and cycle 1000 reflects conditions following the knee-
point.



Fig. 2. Overall framework of time-series image-based battery health monitoring

Fig. 3. Identification of knee-onset and knee-point for the
sample cell b1c24 in the A123 dataset.

Fig. 4 presents RPs corresponding to these selected cycles.
The threshold for generating RPs was set to the top 1% of
recurrence values in each cycle. In Fig. 4(a), representing
conditions before the knee-onset, a regular diagonal struc-
ture is observed. Conversely, Fig. 4(b), representing the
phase after the knee-onset, shows a weakened diagonal pat-
tern, particularly around time steps 50 to 150. A notable
change in the diagonal structure occurs in Fig. 4(c), with
increased regions of high distance values in the early time
steps. These visual shifts in the RP indicate changes in the
operating state. Specifically, decreasing similarity between
time steps suggests a transition toward instability. Similar
RP patterns have been observed across cells under various
experimental conditions, demonstrating the potential for
generalized battery degradation analysis.

3.2 Knee classification results

The 124 cells were divided into 88 cells for training, 23
cells for validation, and 13 cells for testing. The model
was trained with the Adam optimizer with a learning rate
of 0.001 and a batch size of 128 for up to 100 epochs.
Early stopping was implemented, stopping training if the

validation loss showed no improvement for 5 consecutive
epochs.

The results of knee classification using RP images on
the test dataset are summarized in Table 2. The model
achieved an overall accuracy of 89%, with a weighted F1
score and a recall of 0.89.

Table 2. Result of knee classification model

Class Precision Recall F1 Score Support

Before knee-onset 0.95 0.93 0.94 6236
Between point 0.63 0.76 0.69 1713
After knee-point 0.92 0.97 0.94 2279
Accuracy 0.89 10228
Macro avg 0.84 0.87 0.85 10228
Weighted avg 0.90 0.89 0.89 10228

Fig. 5 (a) and (b) present the confusion matrices for the
RP image-based model and the raw time-series model,
respectively. To compare model performance, a 1D CNN
model was implemented using raw time-series data as
input. The RP image-based model achieved a recall of 0.76
for the intermediate state labeled “between point” (class
1), which occurs between knee-onset and knee-point. In
comparison, the model using raw time-series data showed
lower performance, with a recall of 0.63 for the same class.
In contrast, both models performed well in classifying
“before knee-onset” (class 0) and “after knee-point” (class
2).

The difference in classification performance between the
RP image-based model and the raw time-series model
arises from differences in feature extraction. The time-
series model relies on absolute values, making it highly
sensitive to changes in data distribution. Although normal-
ization is applied, discrepancies between training and test
data still influence predictions. When unseen data deviates
from the learned range, the model’s ability to generalize
diminishes.

In contrast, RP images capture the temporal dynamics
within each cycle, creating a structured representation
that remains consistent across different datasets. By fo-
cusing on relative changes rather than absolute values,



Fig. 4. Recurrence plot transformation of the cell b1c24 in the A123 dataset. (a) cycle 100. (b) cycle 650. (c) cycle 1000.

Fig. 5. Confusion matrices of knee classification

this approach reduces the impact of scaling variations. As
a result, the RP image-based model exhibits greater ro-
bustness, particularly in classifying the intermediate state
where data are more limited. These results imply that the
RP-based approach improves model stability and gener-
alization. By capturing consistent patterns within each
cycle, it reduces sensitivity to distribution shifts, enabling
reliable classification across various datasets.

Despite this advantage, class 1 remains difficult to classify
due to data imbalance. The limited number of samples
reduces the model’s ability to learn distinct characteristics,
leading to lower recall.

3.3 Grad-CAM analyses

The visualization of the patterns recognized by the model
during the knee classification process, using Grad-CAM on
cycles from cell b1c24, is shown in Fig. 6.

Fig. 6 (a) presents the Grad-CAM results for cycle 100.
At this stage, activation is distributed throughout the
image, with relatively high intensity in the vicinity of
the diagonal. This observation indicates that the model
identifies the ’initial state’ based on minor boundary
variations and overall stability across different regions. In
the initial cycles, features are distributed uniformly, and
the model primarily relies on the stability of the overall
pattern as a classification criterion.

In Fig. 6 (b), the Grad-CAM results at the 650th cycle
are shown. At this stage, activation becomes more concen-
trated in specific local regions, while overall intensity tends
to decrease. This suggests a transitional phase where the
initial stable pattern gradually deteriorates after the knee-
onset, giving way to emerging degradation characteristics.

It is noteworthy that activation in the upper left and lower
right regions highlights features common to both class 0
and class 2, which may contribute to the model’s difficulty
in clearly distinguishing this cycle.

As illustrated in Fig.6 (c), the Grad-CAM results at the
1000th cycle exhibit prominent activation in the upper left
and lower right regions, with faint activation along the
diagonal. This suggests that as degradation progresses,
irregular and weak patterns become more dominant on
the RP, replacing distinct boundaries. A similar trend is
observed in Fig. 4 (c), where the recurrence boundaries
appear significantly less defined compared to the initial
stage, indicating that this change is also reflected in the
Grad-CAM activation patterns.

The results of the Grad-CAM analysis provide a visual rep-
resentation of the features learned by the model that can
be used to identify the progression of battery degradation.
In the early phase, the uniformity of the overall pattern is
the predominant classification criterion. In the subsequent
stage, subtle changes associated with degradation become
more prominent. In the later stage, the model relies on less
distinct and weaker features for classification, as opposed
to clear patterns. This implies that Grad-CAM can help
explain how the model learns and leverages characteristic
patterns of battery degradation.

3.4 SOH prediction results

To evaluate whether the framework developed in this work
has learned more generalized properties of battery status,
SOH prediction is performed using a pre-trained CNN.
The convolutional layer from the CNN model trained for
knee classification is utilized, and fully connected layers are
added for regression. The layers consist of two components
with the same number of nodes as the classifier.

The SOH prediction result is illustrated in Fig.7. This
shows that the model achieved high accuracy on the test
set, with an R2 value of 0.9768. The finding indicates that
the convolutional layers did not learn solely for a single
task but rather captured crucial capacity degradation in-
formation from time-series image data. The suggested ap-
proach demonstrates the potential for integrated battery
condition assessment, facilitating the execution of multiple
tasks.



Fig. 6. Grad-CAM analysis for the b1c24 cell. (a) cycle 100 (class 0). (b) cycle 650 (class 1). (c) cycle 1000 (class 2).

Fig. 7. SOH prediction result. train R2: 0.9976, test R2:
0.9768

4. CONCLUSION

In this study, we propose we propose a framework for
monitoring battery status based on time-series image anal-
ysis. To accurately assess the operational state, we convert
battery cycle data into images using the RP method.
These images are then used to train a CNN model for
knee classification, facilitating the preemptive detection
of deterioration. A comparison with a time-series model
highlights the potential of this approach for improved
generalization.Grad-CAM analysis provides further in-
sights into the aging mechanism by visualizing key regions
that influence predictions. Additionally, SOH prediction
using the pre-trained CNN model achieves high accuracy,
demonstrating the applicability of this method beyond
classification tasks. The results demonstrate the effective-
ness of image transformation in battery health assessment
and suggest the need to explore different transformation
techniques. Future research will integrate self-supervised
learning to enhance state prediction and improve the
adaptability of the model under different conditions.
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