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Abstract: In biopharmaceutical manufacturing of monoclonal antibodies (mAbs), asparagine (N)-linked 
glycosylation profile of these proteins is a critical quality attribute. We introduce improved Glycosylation 
Flux Analysis (iGFA), enhancing our previous GFA by: (1) reformulating constraint-based modeling using 
enzymatic kinetics to obtain biologically interpretable factors; and (2) implementing the analysis using 
Python's Pyomo modeling language, which not only reduces computational costs significantly compared 
to the MATLAB-based GFA, but also makes the iGFA an open-source package. When applied to data from 
Chinese Hamster Ovary (CHO) cell culture production of mAb under varying pH conditions, the analysis 
revealed both common and distinct dynamic trends across different pH. We identified galactosylation as 
the most impacted glycosylation processing by pH. Further, the estimated enzyme-related factors correlated 
more strongly with gene expression levels than with nucleotide sugar availability, suggesting that 
glycosylation regulation is predominantly controlled at the transcriptional and/or translational level. 
Overall, the iGFA is a powerful tool for analyzing glycosylation dynamics in mAb production. 
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1. INTRODUCTION 

Recombinant monoclonal antibodies (mAbs), such as 
immunoglobulin G (IgG), represent an important class of 
molecules for the biopharmaceutical industry. The market 
value of mAbs drugs in 2023 was estimated to be USD 300 
billion, with projections indicating growth of >11% annually 
(Grand View Research [GVR], 2023). Mammalian cell culture 
systems using murine hybridoma or Chinese hamster ovary 
(CHO) cells are the most common cell platforms for producing 
these therapeutic antibodies to ensure human biocompatibility 
(Murakami, Matsumoto and Kanamori, 2019). Among the 
critical quality attributes in the production of therapeutic mAbs 
are the N-linked glycans—oligosaccharides attached to the 
asparagine residues in the fragment crystallizable region of 
these proteins. N-linked glycans influence several important 
properties of mAb drugs including their bioavailability, 
pharmacokinetics, cytotoxicity, and efficacy (Chen et al., 
2022). However, since glycosylation is a non-template driven 
process, there exists intrinsic heterogeneity in the glycan 
structures that are formed on mAbs (Wang, Zhu and Lu, 2020). 
Achieving the target distribution of glycans is of great 
importance in the biomanufacturing of recombinant mAbs. 

The protein glycosylation process starts in the endoplasmic 
reticulum (ER) and proceeds through the Golgi apparatus 
(Neelamegham and Liu, 2011). The process occurs via an 
intricate enzymatic reaction network that produces an 
assortment of glycans. Protein glycoforms differ from each 
other in their attached glycan structures. The distribution of 
these glycoforms is often referred to as the glycosylation 
profile. In the cell culture production of mAb, the N-linked 
glycosylation profile is affected by various culture process 

parameters such as pH, osmolality, and temperature. 
(Alhuthali, Kotidis and Kontoravdi, 2021; Kiehl et al., 2011; 
Pan et al., 2017). However, the mechanism by which these 
parameters modify N-linked glycans is not well understood. 
Understanding this mechanism is crucial for optimizing 
bioprocess conditions to achieve target glycan profiles. Recent 
studies have focused on developing mathematical models that 
simulate glycosylation pathways, providing insights into how 
changes in cell culture parameters affect glycan synthesis. 

Several approaches with varying complexity have been 
adopted for the mathematical modeling of glycosylation in IgG 
production. These approaches range from detailed kinetic 
modeling (Jimenez del Val, Nagy and Kontoravdi, 2011; 
Villiger et al., 2016), to Bayesian modelling (Zhang et al., 
2021), to constraint-based modeling (CBM) (Aggarwal et al., 
2021; Hutter et al., 2017; Hutter et al., 2018; Spahn et al., 
2016). Notably, constraint-based models rely only on the 
reaction network stoichiometry to evaluate intracellular 
reaction rates (fluxes), bypassing the need for kinetic 
parameters that are often unknown or difficult to determine. 
Our previously published Glycosylation Flux Analysis (GFA) 
method employs CBM to estimate dynamic glycosylation 
reaction rates from cellular secretion rates of IgG glycoforms 
(Hutter et al., 2017). The basic assumption in formulating 
GFA is that rates or fluxes vary with time because of two 
factors: dynamic changes in enzyme activity and in cell 
specific productivity. An extension of GFA, called 
compartmental GFA (cGFA), incorporates the segregation of 
the Golgi into cis, medial, and trans compartments (Aggarwal 
et al., 2021). While these methods have advanced the analysis 
of glycosylation processes during cell cultivation, their 
formulation is based on ad hoc assumptions about flux 



 
 

     

 

dynamics, resulting in estimated parameters that lack 
biological interpretability. 

In this work, we present improved GFA (iGFA), which 
enhances the GFA in two important ways. Firstly, a 
rederivation of the CBM formulation using enzymatic kinetics 
enhances the interpretability of the estimated dynamic factors. 
Specifically, these factors are related to enzymatic processing 
capacity, intracellular mAb glycoform concentrations, and 
residence time in the Golgi. Secondly, in contrast to the 
MATLAB implementation of GFA and cGFA, the iGFA 
employs Python open-source Pyomo modeling language 
(Hart, Watson and Woodruff, 2011). The iGFA significantly 
outperforms the GFA in the computational cost for analysis. 
Here, we applied the iGFA to analyze N-linked glycosylation 
in CHO cell culture production of IgG and the effect of media 
pH on this process (Lee et al., 2021).  

2. METHODS 

2.1 Experimental Data Processing 

The iGFA uses time-series values of glycoform secretion 
fluxes as input. These fluxes are estimated from measurements 
of viable cell density (VCD), antibody titer 𝑇(𝑡), cell specific 
productivity 𝑄!"#$(𝑡), and glycoform fractions 𝑓% 	(𝑡)	by 
writing a mass balance for the mAb glycoform in the cell 
culture media. For brevity, we refer readers to the original 
GFA publication for the derivation of this balance equation 
(Hutter et al., 2017). The following equation gives the cell-
specific secretion rate of the i-th glycoform,  𝑣&,%( (𝑡): 

𝑣&,%( (𝑡) =
)
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To reduce the impact of noise when taking time derivatives, 
the measurement data were smoothed using the curve_fit 
function from the package Scipy. The numerical time 
differentiation was performed using the function diff from the 
package Sympy. 

2.2 Improved GFA (iGFA) formulation 

The iGFA, like the original GFA, employs a CBM of the 
glycosylation network. By assuming (pseudo-)steady state 
condition, the glycosylation fluxes are written as:  

𝑺𝒗𝑰(𝑡) − 𝒗𝑬(𝑡) = 𝟎            (2) 

where 𝑺 is the 𝑚× 𝑟 stoichiometric matrix for the 
glycosylation reactions with m glycoforms and r glycosylation 
reactions, 𝒗𝑰(𝑡) is the vector of (unknown) intracellular 
glycosylation fluxes, and 𝒗𝑬(𝑡) is the vector of secretion 
fluxes for the glycoforms. Since the number of unknown 
reaction fluxes r exceeds the number of (detectable) 
glycoforms m, the estimation of intracellular fluxes 𝒗𝑰(𝑡) 
given the values of 𝒗𝑬(𝑡) is underdetermined.  

The original GFA addressed the underdetermined issue by 
assuming that the intracellular glycosylation fluxes vary with 
time according to two multiplicative factors that are related to 
the specific enzyme associated with the reaction and the cell-
specific productivity. Instead of using this ad hoc formulation, 

the iGFA formulation begins with the Michaelis-Menten 
kinetics:  

𝑣7,8(𝑡) =
9"#$(.)+%,!(.)

:";+%,!(.)
𝑉(𝑡)            (3) 

where 𝑐7,% denotes the intracellular concentration of the i-th 
glycoform, 𝑣<=> denotes the maximum reaction rate that can 
be achieved at saturating glycoform substrate concentration 
(i.e., 𝑐7,% ≫ 𝐾<), 𝐾< is the Michaelis constant, and 𝑉 is the 
volume of the Golgi. The variable 𝑣<=> is related to enzyme 
concentration (expression), turnover number kcat of the 
enzyme, and nucleotide sugar co-factor. Here we consider a 
scenario where 𝑣<=>, 𝑐7,%, and 𝑉 depend on time t—that is, 
enzyme expression, enzyme activity, nucleotide sugar level, 
glycoform concentration, and Golgi volume may change 
during cell cultivation. In the scenario of 𝑐7,% ≪ 𝐾< (i.e., when 
the glycoform substrate is limiting), the Michaelis-Menten 
kinetics reduces to a linear relationship: 

𝑣7,8(𝑡) = 	
9"#$(.)+%,!(.)

:"
𝑉(𝑡)           (4) 

Therefore, the intracellular fluxes at a given timepoint t can be 
evaluated from the values from a reference timepoint 𝑡"?1 
according to: 

𝑣7,8(𝑡) = 	
9"#$(.)

9"#$0.'()4
+%,!(.)
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𝑣7,89𝑡"?1:          (5)  

The secretion flux of the i-th glycoform can further be written 
in terms of the intracellular concentrations 𝑐7,% and the 
volumetric flow rate through the Golgi 𝑞 as follows: 

𝑣&,% 	(𝑡) = 𝑞(𝑡)𝐶7,%(𝑡)            (6) 

By substituting Eq. (6) to Eq. (5), we obtain: 

𝑣7,8(𝑡) = 	
9"#$(.)

9"#$0.'()4
9*,!(.)

9*,!0.'()4

+(-)
/(-)
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𝑣𝐼,𝑗
𝑟𝑒𝑓                  (7) 

Therefore, the time-dependent intracellular glycosylation 
fluxes can be evaluated using the following equation: 

𝑣7,8(𝑡) = 𝛼(𝑡)𝛽(𝑡)𝛾(𝑡)𝑣7,89𝑡"?1:           (8) 

where 

𝛼(𝑡) = 9"#$(.)
9"#$0.'()4

             (9) 

𝛽(𝑡) = 9*,!(.)
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                (10) 

𝛾(𝑡) =
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where 𝑡" denote the residence time of IgG in the Golgi.  

In the formulation above, 𝛼 captures the dynamic changes in 
enzymatic processing capacity (i.e. enzyme expression and 
activity) and nucleotide sugar availability. Glycosylation 



 
 

     

 

reactions that are catalysed by the same enzyme share the same 
𝛼 factor. Meanwhile, the factor 𝛽 captures the dynamic 
changes in the glycoform concentrations, and thus all reactions 
that have the same glycoform substrate share the same 𝛽. 
Lastly, the factor 𝛾 captures the dynamic changes in protein 
residence time in the Golgi. All glycoforms share the same 𝛾.  

The evaluation of intracellular glycosylation fluxes in the 
iGFA reduces to obtaining the intracellular glycosylation 
fluxes at the reference time of choice and the time-dependent 
factors: 𝛼—one for every enzyme, 𝛽—one for every reactant 
glycoform in the network, and 𝛾. These unknowns are 
estimated using the following constrained optimization: 

𝑚𝑖𝑛
'!()),+"()),,()),-#,%

&'(
∑ &'𝑄./01(𝑡)	 − 	 ∑ 𝑣2,3(𝑡)4

356 .
7 +)∈9

∑ 0𝑣2,:; (𝑡) − 𝑣2,:(𝑡)1
74

:56 +∑ 2𝛽<(𝑡) −
-),*())

-),*=)&'(>
4
7

<∈?@AB 5       (12) 

such that 

∑ 𝑆%,8𝑣7,8(𝑡) − 𝑣&,%(𝑡) = 0"
8@)           (13) 

∑ ∑ 9𝛼A(𝑡) − 1:
B

A∈&DE + (𝛾(𝑡) − 1)B.∈: ≤ 𝜆        (14) 

0 ≤ 𝛼A ≤ 𝛼A<=>            (15) 

0 ≤ 𝛽% ≤ 𝛽%<=>           (16) 

0 ≤ 𝛾 ≤ 𝛾<=>           (17) 

where K denotes the set of time points, Subs denoting the set 
of glycoforms that act as substrates to glycosylation reactions, 
and Enz denotes the set of enzymes. The loss function includes 
deviations of (i) the total sum of secretion fluxes from the cell 
specific productivity, (ii) glycoform secretion fluxes 
calculated using Eq. (2) from those evaluated using 
measurements as described in Eq. (1), and (iii) the factor 𝛽 
from the ratio of secretion fluxes.  

The regression problem in Eq. (12) contains 𝑟 + 𝑁&DE(𝑁: −
1) + (𝑁: − 1) + 𝑁FGHI(𝑁: − 1) unknowns, where 𝑁&DE, 
𝑁FGHI and 𝑁: are the number of enzymes, substrate 
glycoforms, and time points (i.e. the cardinality of the sets Enz, 
Subs and K), respectively. In comparison to the GFA, the iGFA 
has additional unknowns that cause the estimation to become 
underdetermined — having more unknowns than data points. 
To avoid overfitting, 𝛼A(𝑡) and 𝛾(𝑡) are regularized to stay 
near 1 using the regularization in Eq. (14). Here, L2-norm 
regularization aligns with biological assumption that changes 
associated with enzyme activities and residence times remain 
small. In this formulation, 𝜆 serves as a user-defined 
hyperparameter that dictates the strictness of the L2-norm 
regularization; a smaller 𝜆 value enforces 𝛼A(𝑡) and 𝛾(𝑡) to be 
closer to 1, albeit at the potential cost of model fit.  

The iGFA is implemented in the Pyomo modeling language 
(version 6.7.3) (Hart, Watson and Woodruff, 2011). Pyomo is 
a Python-based, open-source structured modelling language 

for formulating, solving, and analyzing optimization 
problems. The optimization associated with the iGFA as 
described above is solved using the Interior Point Optimizer 
(IPOPT) (version 3.14.16), an open-source solver for solving 
large-scale non-linear constrained optimization problems 
(Wachter and Biegler, 2006).   

2.3 N-linked glycosylation reaction network curation 

For the case study (Lee et al., 2021), N-linked glycosylation 
reaction network in CHO cells was manually curated. The 
initial reaction network was obtained by including glycoforms 
that were detected in the experiment and those that may act as 
intermediate molecules. Subsequently, the reaction network 
was pruned to produce a minimal number of reactions, keeping 
the glycoforms in the network connected. Fig. 1 depicts the 
curated network, comprising 13 glycoforms with 15 
intracellular reactions. In total, seven glycoenzymes are 
accounted for in the network: ManI (Mannosidase), GnT 
I/II/IV (Glucosaminyltransferase), FucT (Fucosyltransferase), 
GalT (Galactosyltransferase), and SiaT (Sialyltransferase). 

3. RESULTS 

3.1 Computational performance comparison: iGFA vs. GFA 

The iGFA formulation was implemented using the open-
source Pyomo modeling language in Python (Hart, Watson 
and Woodruff, 2011). The constrained optimization problem 
was solved the IPOPT coupled with a multistart strategy. To 
compare the computational performance of iGFA with the 
MATLAB-based GFA, we applied both methods to the CHO 
cultivation data in the original GFA publication (Hutter et al., 
2017). To ensure a fair evaluation of the two methods, we ran 
the iGFA with the β factors fixed at 1, while fitting the factor 
γ to the specific productivity ratio QJKLM(N)/QJKLM(N234). These 
modifications translate the secretion flux formulation of the 
iGFA to be the same as that of the GFA. Both methods were 
ran using a multi-start strategy with n=100 random starting 
points. The fit quality was evaluated using the Sum of Squares 
of the Residuals (SSR). Here, the iGFA offered >15-fold 
reduction in computational times over the GFA, completing 
100 multi-start optimizations in a total time of 786 seconds 
(~13 minutes) versus GFA’s total time of 12,154 seconds 

Figure 1. N-linked glycosylation reaction network. 
Glycoforms are shown by their glycan structures. Arrows 
depict glycosylation reactions where their colors refer to the 
glycoenzymes. The main glycoform G0F is circled.	



 
 

     

 

(~202 minutes) (Intel® Xeon® E-22146G 3.50 GHz with 
16GB RAM). The SSR values were comparable (iGFA: 0.40 
vs. GFA: 0.24), and the difference may have been caused by 
the L2-norm regularization enforced in the iGFA formulation.   

3.2 pH effects on N-linked glycosylation fluxes in CHO 
cultivation of IgG production 

Cell culture pH is known to affect N-linked glycosylation 
during mAb production. Lower pH has been shown to lead to 
higher galactosylated and sialylated glycoform fractions and a 
decrease in cell growth and antibody production 
(Aghamohseni et al., 2014). However, pH effects on 
galactosylation appear to be cell line dependent, where some 
cell lines exhibit increased galactosylation with increased cell 
culture pH (Muthing et al., 2003; Jiang, Chen and Xu, 2018; 
Lee et al., 2021) and others showing the opposite effect 
galactosylation and sialylation rates (Ivarsson et al., 2014). 
Base additions during fed-batch cell cultivation can induce pH 
excursions that correlate with an increase in lactate production, 
osmolality, and antibody galactosylation, and a decrease in 
specific productivity (Jiang, Chen and Xu, 2018).  

Lee et al. carried out a comprehensive multiomics 
investigation of the effects of pH on N-linked glycans of IgG 
in CHO cell cultures (Lee et al., 2021). Briefly, fed-batch 
cultures of GS-CHO were performed to express a proprietary 
IgG. Cell cultures were grown at 3 alternate pH conditions – 
6.7 (low), 6.9 (medium), and 7.1 (high). The temperature 
during the culture was set at 36.5ºC with dissolved oxygen 
controlled at 40%. Daily samples were taken during the 
experiment to monitor cell viability, antibody titer, VCD, 
osmolality, and extracellular metabolite and salt 
concentrations. In addition, samples were collected on 
working day (WD) 1, 5, 8, 10, 12 and 14 for transcriptomics, 
metabolomics, proteomics and glycosylation profile analysis. 
We evaluated glycoform secretion fluxes for the time points: 
day 5, 8, 10, and 13, based on the availability of the cell 
specific productivity data.  

Based on the glycoforms detected in the Lee et al. study, we 
curated the relevant N-linked glycosylation reaction network 
for our iGFA analysis (see Fig. 1 and Methods). We evaluated 
glycoform secretion fluxes using the time-series 
measurements of VCD, cell specific productivity, IgG titer, 
and glycoform fractions (see Methods). In the iGFA, we used 
day 5 as the reference time point and estimated the intracellular 
glycosylation fluxes for each pH condition separately. We	
conducted	a	grid	search	within	 the	range	of	0	 to	200	 	 to	
identify	the	optimal	λ	value	(λ	=	100)	that	gave	the	lowest	
loss	 function.	We also employed a multistart strategy with 
randomized initialization of unknown parameters (n = 500). 
Among the feasible solutions, we selected the one with the 
lowest objective value. As shown in Fig. 2, the iGFA was able 
to produce flux values that fit the glycoform secretion values 
well in all pH conditions.   

Fig. 3 depicts the results of the iGFA for the data from Lee et 
al. study. Fig 3a shows the estimated intracellular 
glycosylation fluxes and their dynamics in the three pH 
conditions. The estimated factors 𝛼 and 𝛽 are shown in Fig. 
3c-d, respectively. As expected from the loss function of the 

iGFA, specifically the last term in Eq. (12), the trend of 𝛽(𝑡) 
follows closely the dynamics of the corresponding glycoform 
secretion fluxes. From Fig. 3a, we observed a consistent 
pattern across different pH conditions where the upstream 
glycosylation reactions related to the trimming of high 
mannose glycans (reactions R1-R3) increase with the cell 
cultivation time, but downstream reactions including 
galactosylation and sialylation that produce more complex 
glycan structures (reactions R10-R15) decrease with time. We 
noted that this trend correlates with a decrease in the factor 𝛾 
(see Fig. 3b) that is shared among all glycosylation reactions. 
Here, a drop in 𝛾 indicates a lower residence time and 
correspondingly a shorter glycosylation processing time in the 
Golgi compartment. The shorter processing time thus implies 
a shift toward higher proportions of simpler glycoforms—
there is less time for mAb products in the Golgi to generate 

Figure 2. Fitting glycoform secretion fluxes in iGFA. Symbols 
shows secretion fluxes from time-series measurements. Lines 
show secretion fluxes computed in the iGFA. 

Figure 3. Results of iGFA (a) Estimated intracellular 
glycosylation fluxes over time points (day 5, 8, 10, 13) in 
different pH conditions. (b-d) Estimated factors 𝜶, 𝜷, and 𝜸. 

(a)

(c)

(b)

(d)



 
 

     

 

more complex glycoforms from simpler glycoforms. This 
trend is consistent with increased expression of proteins and 
metabolites involved in ER and Golgi vesicular transport with 
the cell cultivation time, indicating higher protein trafficking 
(see Supplementary Figure 6 in (Lee et al., 2021)).  

In addition, we noted a shift in the glycosylation reactions that 
generate the main IgG glycoform G0F. As depicted in Fig. 1, 
there are two routes to produce G0F from G0-GlcNAc, one 
through G0 (R4 and R6) and another through G0F-GlcNAc 
(R5 and R7). Specifically, glycosylation fluxes through G0 
increases with higher pH, while the fluxes through G0F-
GlcNAc decrease correspondingly. However, further research 
is needed to determine the biological mechanism behind this 
flux shift with pH. 

3.3 Comparison of enzyme factors with gene expression and 
metabolite levels. 

Based on the formulation of the iGFA (see Section 2.2), the 
enzyme factor 𝛼 is an indicator of the processing capacity of 
specific glycoenzymes. This capacity is related to both 
glycoenzyme activity and associated nucleotide sugar 
availability. Fig. 3c shows that three enzymes, specifically 
fucosyltransferase (FucT), galactosyltransferase (GalT), and 
N-acetylglycosaminyltransferase II (GnT-II), have a 
decreasing trend with the cell cultivation. Meanwhile N-
acetylglycosaminyltransferase IV (GnT-IV) and to a lesser 
degree, sialyltransferase (SiaT) have the opposite trend. 
Among these enzymatic processing, pH exerted the strongest 
effect on galactosylation, in agreement with the original study 
reporting a slight decrease in galactosylated products with 
decreasing culture pH (Lee et al., 2021). 

We investigated more deeply the relationship between each 
enzyme factor 𝛼 with the measured expression levels of 
related genes and nucleotide sugars. Fig. 4 shows the 
correlations between 𝛼 and the expression of related gene(s) 
and associated nucleotide sugar. The correlations between the 
enzyme factors 𝛼 and their corresponding nucleotide sugar 
levels were generally lesser than those between the factors 𝛼 
and the gene expressions. This suggests that the regulation of 

enzymatic processing capacity in the N-linked glycosylation 
network is more likely to be regulated at the level of enzyme 
expression and activity. This observation is in agreement with 
our previous study that demonstrated the robustness of N-
linked glycosylation to changes in cellular nucleotide-sugar 
concentrations (Del Solar et al., 2020). 

Focusing further on the genes, we noted strong positive 
correlations between 𝛼 and gene expression for enzymatic 
processing with a small number of isozymes, for example 
fucosylation (FucT) and GlcNAclyation (GnTII and GnTIV). 
Meanwhile, for enzymatic processing with a larger number of 
isozymes, such as galactosylation and sialylation, the 
correlations between 𝛼 and the expression of these various 
genes are less clear—both positive and negative correlations 
are observed. Perhaps, the ambiguity of the correlations is 
expected since the enzymatic processing may rely on a subset 
of isozymes.  

4. CONCLUSION 

In this work, we present iGFA, an open-source, Python-based 
constraint-based modeling method for analyzing glycosylation 
processing in the cell culture production of therapeutic 
proteins. iGFA generates estimates of intracellular 
glycosylation fluxes using secretion fluxes of protein 
glycoforms computed from time-series measurements of 
viable cell density (VCD), cell-specific productivity, protein 
titer, and glycoform fractions. iGFA improves upon our 
previously published GFA by offering (1) significant 
computational efficiency with over an order of magnitude 
reduction in computational time, and (2) biologically 
interpretable parameters derived from Michaelis-Menten 
enzymatic kinetics. The application of iGFA to Lee et al.'s 
study on the effect of pH on N-linked glycosylation of IgG in 
CHO cell cultivation demonstrates the utility of iGFA in 
characterizing the dynamics of the N-linked glycosylation 
network and its changes with pH. Specifically, iGFA was able 
to characterize the decrease in Golgi residence time during cell 
cultivation. Furthermore, iGFA identified galactosylation as 
the glycosylation step most impacted by pH. Finally, 
correlation analysis of the iGFA results and multiomics 
measurements showed stronger support for the regulation of 
glycosylation at the transcriptional/translational level than at 
the metabolic level (nucleotide sugar). 

The iGFA can be applied to larger or other glycosylation 
processes (e.g., O-glycans). Note that the number of unknown 
model parameters increases linearly with the number of 
enzymes and glycoforms in the network, and parameter fitting 
may become computationally limiting for large networks. 
Another limitation is that although iGFA accounts for time-
dependent factors, it assumes that the underlying enzymatic 
mechanisms remain unchanged throughout the process	This 
assumption may not fully capture complex biological 
dynamics such as changes in enzyme conformation, allosteric 
regulation, or competitive inhibition that can alter reaction 
kinetics over time. Incorporating such dynamic behaviors 
would enhance iGFA's capabilities but would also increase 
model complexity. Also, uncertainty quantification for the 
estimated factors and glycosylation fluxes is not accounted for 
—a feature that will be added in the future. 

Figure 4. Correlations between the factors α and the gene 
expression and nucleotide sugar levels.  The columns refer to 
the factors α computed for different enzymes and pH 
conditions. The rows refer to the genes and nucleotide sugars 
associated with different N-linked glycosylation processing 
enzymes: fucosylation (FucT), galactosylation (GalT), 
GlcNAcylation (GnTII and GnTIV), and sialylation (SiaT). 

 



 
 

     

 

5. DATA AND CODE AVAILABILITY 

Source code and Python scripts for the iGFA and its 
application to Lee et al. study are available at the following 
website: https://github.com/CABSEL/iGFA.  
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