
Benchmarking of Multi-agent Reinforcement
Learning Strategies for Optimizing Cutting

Plane Selection ⋆

Arjun M.1 Hariprasad Kodamana1,2,3,†

Manojkumar Ramteke1,2,†

1Department of Chemical Engineering, Indian Institute of Technology
Delhi

2Yardi School of Artificial Intelligence, Indian Institute of Technology
Delhi

3Indian Institute of Technology Delhi - Abu Dhabi, Khalifa City B,
UAE

Abstract:
Cutting planes refine the feasible region of relaxed Integer Programming (IP) problems, but
traditional methods relying on static heuristics often fail to generalize effectively. This study
investigates Multi-Agent Reinforcement Learning (MARL) frameworks – TD3-TD3, PPO-PPO,
and TD3-PPO – for dynamic, adaptive cut selection. MARL improves scalability and explo-
ration by distributing decision-making across specialized agents, outperforming conventional
techniques. The hybrid TD3-PPO configuration balances TD3’s sample-efficient learning with
PPO’s robust exploration. PPO-PPO demonstrates superior exploration and success rates in
a sensor network design problem relevant to process control, while TD3-TD3 offers greater
stability. The results highlight MARL’s potential for enhancing IP solvers and solving complex
optimization problems.

Keywords: Multi-Agent Reinforcement Learning, Integer Programming, Cutting Planes,
Optimization Algorithms, Sensor Network Design

1. INTRODUCTION

In mathematical programming, Linear Programming (LP)
is foundational for solving problems involving finding the
extremum of a linear objective function subject to linear
constraints. Its wide applicability has solidified its role in
fields such as supply chain logistics, financial planning,
and industrial process control. However, many real-world
problems will involve integer decision variables, leading to
Integer Programming (IP) problems, where the solution
space is discrete, significantly increasing computational
complexity. This contrasts with LP problems, where the
solution space is continuous and thus more straightforward
to explore. The structure of an IP problem is given as:

z = min cTx

s.t. Ax ≤ b

x ≥ 0

x ∈ Zn

(1)

Here, x ∈ Rn represents the vector of decision variables,
c ∈ Rn denotes the cost vector, and n is the dimension
of the problem (Boyd and Vandenberghe (2004)). The
last constraint enforces the integrality of the decision
⋆ The authors sincerely acknowledge the funding received
from DST-SERB India with file number CRG/2022/003722.
† Corresponding Authors. Email: kodamana@iitd.ac.in,
mcramteke@chemical.iitd.ac.in

variables, thereby introducing combinatorial complexity,
as the number of feasible solutions grows exponentially
with problem size. Consequently, solving IP problems
requires techniques like branch-and-bound, branch-and-
cut, and cutting plane methods to effectively search the
complex solution space for optimal solutions.

Cutting planes, an essential component of modern IP
solvers, iteratively refine the LP relaxation’s feasible re-
gion by introducing additional constraints, known as cuts,
to exclude non-integer solutions while preserving feasible
integer solutions. This process begins by solving a relaxed
version of the IP problem, in which x can take fractional
values, forming the feasible region C(0) = {x | Ax ≤ b, x ≥
0}. The optimal solution of this relaxation, x

(0)
LP, has an

objective value z
(0)
LP . Since C(0) includes the original IP

problem’s feasible region, z
(0)
LP ≤ zIP. If x

(0)
LP is integer-

valued, it is optimal for the original IP problem. Otherwise,
if x

(0)
LP /∈ Zn, the cutting plane method adds a new con-

straint, αTx ≤ β, that is satisfied by all integer solutions
but violated by x

(0)
LP, thereby excluding it from the feasible

region. This new constraint updates the feasible region to
C(1) = C(0)∩{x | αTx ≤ β}, and the LP relaxation is solved
again to obtain a new solution x

(1)
LP and its objective value

z
(1)
LP . At each iteration k, the feasible region is refined by

adding cuts, C(k+1) = C(k) ∩ {x | αTk x ≤ βk}, leading to a
new solution x

(k+1)
LP and objective value z

(k+1)
LP . This itera-



tive refinement continues until an optimal integer solution
x
(opt)
LP ∈ Zn is found, satisfying all original IP constraints

and representing the optimal solution for the problem.

Classical cutting plane methods, such as Gomory cuts,
cover cuts, and lift-and-project cuts, have shown effec-
tiveness in solving various IP problems (Conforti et al.,
2014). However, these traditional methods often rely on
static heuristics that may not generalize well across diverse
problem instances. As problem complexity and variability
increase, heuristic-based methods face significant limita-
tions, prompting the exploration of dynamic, adaptive
approaches based on machine learning (ML) (Bengio et al.,
2021), and particularly, reinforcement learning (RL) (Sut-
ton and Barto, 2018).

RL, in particular, has gained prominence for its ability
to learn optimal policies through interaction with its
environment, making it effective in navigating complex
solution spaces as demonstrated in various fields, including
process systems engineering (Joshi et al., 2021, 2023;
Gupta et al., 2023, 2024). RL has also demonstrated
remarkable potential in solving combinatorial optimization
problems, as evidenced by its success in addressing tasks
such as the Traveling Salesman Problem (Bello et al., 2016)
and resource allocation problems (Bengio et al., 2021).

Recent RL applications in cut generation and selection,
such as adaptive Gomory cuts (Turner et al., 2022) and
neural cut selection (Paulus et al., 2022), have demon-
strated superior performance over traditional heuristic-
based methods in large-scale IP problems. However, these
studies primarily focus on single-agent frameworks, which
suffer from scalability limitations and restricted explo-
ration capabilities. Single-agent RL often struggles to navi-
gate the exponential growth of the action and state spaces
in large problems, limiting its ability to discover diverse
and effective cuts (Gupta et al., 2024). Multi-Agent Rein-
forcement Learning (MARL) has emerged as a promising
alternative to address these challenges. MARL extends RL
by incorporating multiple agents, each of which operates
autonomously while collaborating within a shared envi-
ronment. Studies comparing MARL to single-agent RL
(Busoniu et al., 2008) show that distributing decision-
making across specialized agents enhances exploration and
improves solution diversity. This multi-agent paradigm is
particularly advantageous for cut selection in IP problems,
as each agent can specialize in discovering and applying
specific types of cuts, such as Gomory or cover cuts. By
allowing agents to collaboratively explore different regions
of the solution space, MARL generates higher-quality cuts
and accelerates convergence, outperforming single-agent
RL in complex optimization tasks.

As IP problems grow in complexity, the transition from
single-agent RL to MARL becomes crucial. In this context,
this work focuses on Twin Delayed Deep Deterministic Pol-
icy Gradient (TD3) (Fujimoto et al., 2018) and Proximal
Policy Optimization (PPO) (Schulman et al., 2017) due
to their complementary characteristics. TD3, an off-policy
algorithm, excels in continuous action spaces and mitigates
overestimation bias using double Q-learning and delayed
policy updates. Its off-policy nature allows it to utilize past
experiences for efficient learning, making it particularly
effective in iterative optimization tasks. PPO, in contrast,

is an on-policy algorithm that constrains policy updates to
ensure stability, providing robust exploration in dynamic
environments. By combining TD3 and PPO within a
MARL framework, this study aims to balance exploration
and exploitation, leveraging PPO’s adaptability alongside
TD3’s sample efficiency to improve cut selection.

This paper conducts a benchmarking study on cut se-
lection using different MARL frameworks, focusing on
architecture with two RL agents, namely, TD3-TD3, PPO-
PPO, and TD3-PPO configurations. By applying these
RL algorithms in a multi-agent context, the study eval-
uates their effectiveness in selecting cutting planes for IP
problems. We evaluate the frameworks on a sensor net-
work design problem—a quintessential process control task
where IP models discrete sensor placement decisions under
observability and cost constraints (M and Magbool Jan,
2023). This comprehensively evaluates how each method
performs across different optimization scenarios.

The remainder of the article is structured as follows:
Section 2 outlines the problem statement and describes
the environmental setup. Section 3 details the proposed
MARL framework and its components. The experimental
results are discussed in Section 4, and the conclusions are
presented in Section 5.

2. PROBLEM STATEMENT AND ENVIRONMENT
SETUP

In this work, the primary goal is to refine the feasible
region of an IP iteratively by introducing cutting planes
that progressively tighten the relaxation, ultimately steer-
ing the solution toward an optimal integer outcome by
using MARL frameworks.

Environment and Problem Definition: The environment
is designed to model the IP problem, characterized by a
cost vector c ∈ Rn, a constraint matrix A ∈ Rm×n, and
a constraint bound vector b ∈ Rm. Initially, the relaxed
LP version of the IP is solved, producing an optimal
solution. This solution is then examined for integrality.
If the solution is not integral, the environment generates
cutting planes based on the current solution, which is
subsequently incorporated into the LP formulation to
tighten the feasible region.

State Space: The state space S in this environment is
characterized by the current solution vector alongside the
objective value of the LP problem. At any iteration t, the
state is composed of the current solution values x

(t)
LP and

the corresponding objective value z
(t)
LP. Mathematically,

the state at iteration t is defined as:
st = {x(t)

LP, z
(t)
LP}. (2)

This state serves as the input for both RL agents, which
use it to decide on the next action. If the solution is
integral, the process terminates; otherwise, the environ-
ment transitions to a new state based on the updated LP
solution after applying a cut.

Action Space: The action space A in this environment
consists of all possible cutting planes (e.g., Gomory cuts)
that can be added to the LP formulation in the next
iteration. Each action at represents a specific cut defined



by a vector αi ∈ Rn and a scalar βi ∈ R, forming an
inequality constraint αTi x ≤ βi. Thus, an action can be
expressed as:

at = {αTi x ≤ βi}. (3)
The RL agents select an action from this space to modify
the current LP formulation, aiming to drive the solution
closer to integrality.

Reward Function: The reward function guides the RL
agent in selecting effective cuts while penalizing excessive
or ineffective cuts. It combines objective improvement
and a penalty for the number of cuts introduced. The
immediate reward at iteration t is defined as:

rt = (z
(0)
LP − z

(t)
LP)− nc × f, (4)

where z
(0)
LP is the initial objective value, z(t)LP is the current

value, nc is the number of cuts introduced, and f is a
hyper-parameter controlling the penalty magnitude. This
structure balances exploration and refinement by reward-
ing substantial objective improvement while discouraging
unnecessary cuts. The use of z(0)LP (instead of incremental
gains like z

(t−1)
LP − z

(t)
LP ) encourages cumulative progress

rather than incremental gains, avoiding local optima.

Transitions: The transition dynamics in this environ-
ment follow a straightforward iterative process. Starting
from an initial state st, the agent selects an action at,
which corresponds to adding a specific cut αTi x ≤ βi to the
LP. This results in a new LP formulation, which is then
solved to yield an updated solution vector x

(t+1)
LP and a

new objective value z
(t+1)
LP . Consequently, the environment

transitions to a new state st+1 = {x(t+1)
LP , z

(t+1)
LP }. This

iterative process continues, with the agent refining its
strategy for selecting effective cuts through learning.

Figure 1 presents a flowchart illustrating a typical MARL
flowchart. With the problem environment defined, we next
describe the MARL frameworks used to generate effective
cutting planes.

3. PROPOSED MARL FRAMEWORK FOR CUTTING
PLANE SELECTION

In this study, we propose a MARL framework that com-
bines the strengths of the TD3 and PPO algorithms.
The framework is designed to improve the efficiency of
generating and selecting cutting planes in IP problems by
leveraging the exploration-exploitation trade-offs inherent
to both algorithms. Below, we detail the configurations
of the TD3-TD3, PPO-PPO, and TD3-PPO frameworks,
including specific equations and notations for each agent.

3.1 TD3-TD3 Framework

The TD3-TD3 framework employs two agents, denoted
TD31 and TD32, each implementing the TD3 algorithm.
TD3 is an off-policy actor-critic method tailored for con-
tinuous action spaces, which mitigates overestimation bias
through double Q-learning and delayed policy updates.
Given a state st at time step t, the actor network of agent
TD3i (where i = 1, 2) outputs an action aTD3

t,i = πθi(st),
where θi denotes the parameters of the actor network for
agent TD3i. After execution, the action aTD3

t,i yields a

new state st+1 and reward rt. The critic networks esti-
mate the Q-value for each state-action pair (st, a

TD3
t,i ) as

Qϕi,1
(st, a

TD3
t,i ) and Qϕi,2

(st, a
TD3
t,i ), where ϕi,1 and ϕi,2 are

the parameters of the critic networks for agent TD3i. The
target Q-value Q̂i(st, a

TD3
t,i ) is computed as:

Q̂i(st, a
TD3
t,i ) =rt + γmin(Qϕi,1

(st+1, a
TD3
t+1,i),

Qϕi,2(st+1, a
TD3
t+1,i),

(5)

where γ is the discount factor, and aTD3
t+1,i = πθi(st+1) + ϵ

includes exploration noise ϵ ∼ N (0, σ).

The loss for the actor network in agent TD3i is defined as:

Lactor,i = −Es∼B [Qϕi,1
(s, πθi(s))], (6)

and the critic network loss is minimized by:

Lcritic = E(s,a,r,s′)∼B [
(
Qϕi,j

(s, a)− Q̂i(s, a)
)2

, (7)

where B is the replay buffer shared between TD31 and
TD32. In the TD3-TD3 framework, both agents share a
centralized replay buffer, allowing them to learn from each
other’s experiences. This shared buffer contains tuples of
(st, at, rt, st+1) collected during the interaction with the
environment. The agents independently select actions, and
the best action is chosen based on its Q-value, which
ensures that the most promising cutting planes are selected
for inclusion in the IP problem.

3.2 PPO-PPO Framework

The PPO-PPO framework consists of two agents, PPO1

and PPO2, applying the on-policy actor-critic PPO algo-
rithm. PPO constrains policy updates to prevent excessive
divergence from prior policies, stabilizing training while
encouraging exploration. Each PPO agent computes an
action aPPOt by sampling from the probability distribution
πPPOθ (at|st), where θ represents the parameters of the ac-
tor network. The advantage function, At = Q(st, a

PPO
t )−

V (st), where V (st) is the state value, guides policy up-
dates.

The PPO objective function for each agent is given by:

LPPO(θ) = Et [min (rt(θ)At, clip (rt(θ), 1− ϵ, 1 + ϵ)At)] ,
(8)

where rt(θ) =
πθ(at|st)
πθold (at|st)

is the probability ratio between
the new and old policies, and ϵ is the clipping parameter.

The value function update minimizes:

Lcritic = Et
[
(Vψ(st)−Rt)

2
]
, (9)

where Vψ represents the predicted state value, and Rt is
the cumulative reward at time t. Similar to the TD3-TD3
framework, the PPO agents share a centralized buffer that
stores trajectories, allowing both agents to leverage each
other’s experiences. This shared buffer enables the agents



Environment (IP Problem)

Agent 1 (TD3/PPO)

Agent 2 (TD3/PPO)

Critic Network (Shared)

State st = {x(t)
LP , z

(t)
LP }

State st = {x(t)
LP , z

(t)
LP }

Action at1 = {αT
1 x ≤ β1}

Action at2 = {αT
2 x ≤ β2}

Update Environment with Best Action

Reward rt = (z
(0)
LP − z

(t)
LP )− nc × f

Fig. 1. Flowchart of MARL framework for IP solutions using shared experiences from two agents (TD3/PPO) to optimize
cut selection

to optimize their policies based on a more diverse set
of trajectories, leading to better performance in selecting
effective cutting planes.

3.3 TD3-PPO Hybrid Framework

The TD3-PPO framework leverages the complementary
strengths of TD3’s stability in continuous action spaces
and PPO’s robust exploration in dynamic environments.
By combining these two agents, the framework balances
exploitation and exploration, critical for optimizing cut
selection in IP problems that involve mixed discrete-
continuous decision spaces.

TD3 operates off-policy, updating its policy using past
experiences stored in a shared replay buffer, while PPO
works on-policy, sampling recent trajectories tied closely to
its current policy iteration. Replay sampling is limited to
recent trajectories to maintain PPO’s on-policy integrity
and prevent policy divergence. This coordination allows
PPO to benefit from TD3’s exploratory experiences while
still selecting diverse, effective cuts. Simultaneously, TD3
refines its policies using both historical and recent data,
ensuring stable exploitation. This synergistic interaction
improves adaptability in dynamic optimization scenarios
as both agents collaboratively explore and refine optimal
cutting planes, enhancing learning efficiency and acceler-
ating convergence.

To select the optimal action at iteration t, a Q-value
comparison mechanism evaluates the actions proposed by
both agents:

a∗t =

{
aTD3
t if Qϕ1

(st, a
TD3
t ) ≥ Vψ(st),

aPPOt otherwise,
(10)

where Qϕ1 is the TD3 critic’s Q-value, and Vψ is PPO’s
state-value estimate. This mechanism prioritizes TD3’s
stable exploitation while allowing PPO’s exploration when
advantageous. The shared buffer enables mutual learning:
high-reward actions identified by TD3 are stored and later
inform PPO’s policy updates, while PPO’s exploration en-
riches TD3’s decision-making. This collaborative learning
accelerates convergence and improves the diversity and ef-
fectiveness of the generated cuts, addressing the challenges
of IP optimization.

4. RESULTS AND DISCUSSIONS

This section discusses the comparative performance of
three MARL frameworks used to generate cutting planes.
The analysis focuses on evaluating the cumulative rewards
and success rates for both cover cuts and single cuts across
various problem scenarios. The provided results are based
on the convergence and effectiveness of each approach in
the sensor network design problem. Training of the RL
agents was performed on a workstation equipped with
an NVIDIA RTX 3080 GPU. The implementation was
developed in Python 3.12.1, utilizing the PyTorch library
for neural network training and the PuLP package for
solving LP problems.

4.1 Sensor Network Design Problem

In a practical application, the MARL framework was
tested on a sensor network design problem involving a flow
network, as shown in Figure 2 (M and Magbool Jan, 2023).
The objective was to minimize cost, subject to constraints
on observability, a cost cap, and a minimum number of
sensors. The problem was formulated as an IP problem,
and the RL algorithms were used to find optimal solutions.

P2 P3 P4

P5P1
F1

F3 F4

F5

F7

F6

F8

F2

Fig. 2. Representative flow network

Figures 3 and 4 illustrate the cumulative reward progres-
sion for each framework (TD3-TD3, PPO-PPO, and TD3-



Fig. 3. Cumulative rewards comparison of single Gomory
cuts in the sensor network design problem across 500
episodes

Fig. 4. Cumulative rewards comparison of cover cuts in the
sensor network design problem across 500 episodes

PPO) when applied to the sensor network design problem
using both single and cover cuts. As seen in Figure 3, all
three frameworks show a steady increase in cumulative
rewards, indicating that learning is progressing. PPO-
PPO consistently achieves the highest cumulative rewards,
followed by TD3-PPO and TD3-TD3. The superior perfor-
mance of PPO-PPO indicates a stronger ability to explore
the solution space, selecting more effective single cuts that
improve the feasible region more efficiently. TD3-PPO per-
forms reasonably well, demonstrating a balanced approach
between exploration and exploitation, while TD3-TD3 lags
slightly behind in this scenario.

In Figure 4, PPO-PPO once again outperforms the other
frameworks, showing the highest cumulative rewards.
TD3-TD3 and TD3-PPO both follow a similar trajectory,
with TD3-TD3 performing slightly better than TD3-PPO.
These results suggest that PPO-PPO utilizes cover cuts
to tighten the feasible region in the sensor network design
problem more effectively.

The success rates for all frameworks in the sensor network
design problem are shown in Figures 5 and 6. As seen
in Figure 5, PPO-PPO achieves the highest success rate

Fig. 5. Success rate comparison of single Gomory cuts in
the sensor network design problem across 500 episodes

Fig. 6. Success rate comparison of cover cuts in the sensor
network design problem across 500 episodes

for single cuts, stabilizing around 0.45, followed by TD3-
PPO slightly above 0.4, and TD3-TD3 around 0.2. This
indicates that PPO-PPO is the most effective at con-
sistently selecting valid cuts, with TD3-PPO performing
reasonably well. Although the success rates are below
50%, this is expected due to the complexity of selecting
effective cuts in IP problems. Despite this, the cumulative
reward trends show steady improvement in overall solution
quality, suggesting that the framework effectively identifies
and prioritizes useful cuts over time.

Figure 6 shows the cover-cut success rates. PPO-PPO
shows the best balance of speed and effectiveness, achiev-
ing the highest success rates of 90%. TD3-TD3, though
slower, is highly stable, while TD3-PPO offers a middle-
ground solution. These results indicate that PPO-PPO
is more effective at consistently selecting successful cover
cuts in the sensor network design problem, with TD3-PPO
and TD3-TD3 performing slightly below but very close in
this case.

Table 1 compares the run times and success rates of TD3-
TD3, PPO-PPO, and TD3-PPO frameworks for single
Gomory and lifted cover cuts in a flow network problem.



PPO-PPO consistently showed the fastest performance,
with a run time of 57.5 seconds for single Gomory cuts
and 36.2 seconds for lifted cover cuts. TD3-TD3 had
the longest times across both problems, while TD3-PPO
offered a middle ground. Overall, PPO-PPO demonstrated
superior efficiency, with TD3-PPO being a balanced option
and TD3-TD3 slower across scenarios.

Table 1. Summary of run times (in seconds)
and success rate of different MARL frame-
works in representative flow network problem

for single and cover cut experiments

TD3-TD3 PPO-PPO TD3-PPO

Cut type/Agent Runtime Success
rate

Runtime Success
rate

Runtime Success
rate

Single Gomory cut 73.5 0.2 57.5 0.45 69.3 0.4

Lifted cover cut 39.9 0.87 36.2 0.9 40.1 0.85

The results highlight distinct differences in how the three
RL configurations – TD3-TD3, PPO-PPO, and TD3-PPO
perform in selecting effective cutting planes.

(1) PPO-PPO stands out across all metrics, consistently
achieving higher cumulative rewards and success
rates. Its on-policy approach encourages greater ex-
ploration, making it particularly effective in complex
scenarios like sensor network design. This ability to
quickly explore and identify effective cutting planes
allows it to converge faster than the other methods.

(2) TD3-TD3 takes a more stable and cautious approach,
leading to a slower accumulation of rewards but still
competitive success rates. It performs well in envi-
ronments where extensive exploration is less critical,
such as cover cuts, but struggles to keep up with
the more exploration-heavy PPO-PPO in dynamic
problems like sensor network design.

(3) TD3-PPO, as a hybrid method, balances exploration
and stability, performing better than TD3-TD3 in
tasks that require more exploration, like single cuts.
However, it doesn’t achieve the rapid convergence of
PPO-PPO. Its balanced nature makes it a versatile
option for environments needing both stability and
exploration.

In summary, the choice of MARL framework for cutting
plane selection depends on the nature of the optimization
problem. PPO-PPO is particularly well-suited for prob-
lems where exploration is key to success, such as in the
sensor network design problem. TD3-TD3 is more appro-
priate for scenarios where stability and careful exploitation
of past experiences are necessary, while TD3-PPO offers
a flexible solution that can adapt to a variety of problem
complexities.

5. CONCLUSIONS

This paper demonstrates the potential of MARL strategies
to improve cutting plane selection for IP problems. Com-
paring TD3-TD3, PPO-PPO, and TD3-PPO, the study
reveals their strengths and weaknesses. PPO-PPO excelled
in tasks requiring extensive exploration, while TD3-TD3
delivered slower but consistent results, ideal for stable
environments. The hybrid TD3-PPO offered a balanced,
flexible approach suited for diverse challenges. These find-

ings highlight MARL’s potential in solving complex opti-
mization problems, like the sensor network design prob-
lem, by enabling more dynamic and efficient cut selection.
Future extensions of this MARL framework can include
adaptive reward functions, cross-framework integrations,
and applications in varied IP problem domains to further
enhance MARL’s robustness and utility.

REFERENCES

Bengio, Y., Lodi, A., and Prouvost, A. (2021). Machine
learning for combinatorial optimization: a methodolog-
ical tour d’horizon. European Journal of Operational
Research, 290(2), 405–421.

Boyd, S.P. and Vandenberghe, L. (2004). Convex opti-
mization. Cambridge university press.

Busoniu, L., Babuska, R., and De Schutter, B. (2008).
A comprehensive survey of multiagent reinforcement
learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 38(2),
156–172.

Conforti, M., Cornuejols, G., and Zambelli, G. (2014).
Integer Programming. Springer Publishing Company,
Incorporated.

Fujimoto, S., Hoof, H., and Meger, D. (2018). Addressing
function approximation error in actor-critic methods.
In International conference on machine learning, 1587–
1596. PMLR.

Gupta, N., Anand, S., Joshi, T., Kumar, D., Ramteke, M.,
and Kodamana, H. (2023). Process control of mab pro-
duction using multi-actor proximal policy optimization.
Digital Chemical Engineering, 8, 100108.

Gupta, N., Anand, S., Kumar, D., Ramteke, M., Kandath,
H., and Kodamana, H. (2024). A twin agent reinforce-
ment learning framework by integrating deterministic
and stochastic policies. Industrial & Engineering Chem-
istry Research.

Joshi, T., Kodamana, H., Kandath, H., and Kaisare, N.
(2023). Tasac: A twin-actor reinforcement learning
framework with a stochastic policy with an application
to batch process control. Control Engineering Practice,
134, 105462.

Joshi, T., Makker, S., Kodamana, H., and Kandath, H.
(2021). Twin actor twin delayed deep deterministic pol-
icy gradient (tatd3) learning for batch process control.
Computers & Chemical Engineering, 155, 107527.

M, A. and Magbool Jan, N. (2023). Convex optimization
approach to design sensor networks using information
theoretic measures. AIChE Journal, 70(2), e18267. doi:
https://doi.org/10.1002/aic.18267.

Paulus, M.B., Zarpellon, G., Krause, A., Charlin, L.,
and Maddison, C. (2022). Learning to cut by looking
ahead: Cutting plane selection via imitation learning.
In International conference on machine learning, 17584–
17600. PMLR.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement
learning: An introduction. MIT press.

Turner, M., Koch, T., Serrano, F., and Winkler, M. (2022).
Adaptive cut selection in mixed-integer linear program-
ming. arXiv preprint arXiv:2202.10962.


