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Abstract: This paper presents a nonlinear model predictive control (NMPC) strategy using
Gaussian Processes (GPs) to control a froth flotation process under partial observability.
The GP state-space model predicts future states for both observable and latent variables,
using available data, while incorporating the probability distribution of these predictions into
an optimization problem. This improves robustness against measurement noise and process
disturbances and evaluates the impact of feed particle size, a typical process disturbance.
We assessed the framework’s ability to maintain optimal process performance across varying
operating conditions. The results demonstrate that the proposed GP-MPC framework improves
process efficiency, even with frequent changes in particle size and measurement noise, confirming
its potential for online control of partially observable systems.
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1. INTRODUCTION

Froth flotation is a critical process in mineral processing
to separate valuable minerals from gangue. The process
is highly sensitive to disturbances, such as variations in
feed particle size, which are decisions originating from
upstream grinding operations (Gaudin et al., 1942; Quin-
tanilla et al., 2025). Controlling these upstream conditions
is challenging, significantly affecting the floatability of
valuable minerals and gangue (Hu, 2014; Quintanilla et al.,
2023a).

Although advanced control strategies, including Model
Predictive Control (MPC), have been extensively studied
across various processes in recent years, their application
in mineral processing remains limited. Surveys suggest
that it could greatly benefit the mineral processing in-
dustry (Olivier and Craig, 2017). However, implementing
MPC in froth flotation has been constrained by the com-
plexity of system dynamics required for accurate modeling
(Quintanilla et al., 2021b). Traditional control methods,
such as proportional-integral-derivative (PID) and rule-
based approaches, have struggled to manage the process’s
inherent complexities, including nonlinear dynamics, dis-
turbances, and measurement noise, while hybrid systems
relying on static models have failed to adequately capture
the uncertainties of the process (Maldonado et al., 2007;
Putz and Cipriano, 2015). Additionally, high computa-
tional costs have hindered real-time applications.

Given the system’s nonlinear nature and complexity, a
data-driven approach offers notable advantages (Bradford
et al., 2020). Gaussian Process (GP) models provide prob-
abilistic state predictions, allowing for more informed con-

trol decisions. This enables the GP-MPC framework to dy-
namically balance exploration (reducing uncertainty) and
exploitation (optimizing control actions) based on real-
time measurements. As a result, this approach is particu-
larly effective in maintaining robust control performance
in the presence of disturbances and measurement noise.

Most GP-based MPC applications assume full observabil-
ity, where all relevant state variables can be directly mea-
sured (Bradford et al., 2019; McAllister and Rasmussen,
2017; Park et al., 2022). However, this assumption does
not hold in real-world froth flotation processes, where key
variables, such as the mass of each mineralogical class, are
challenging to measure online (González and Quintanilla,
2024). Given the importance of these variables in deter-
mining the economic objective of the control strategy, it is
crucial to develop a partially observable model. The model
should be capable of predicting latent variables by using
prior predictions, measurements of observable variables,
and the proposed control actions to effectively tackle this
challenge.

This study introduces a Nonlinear MPC (NMPC) frame-
work that employs Gaussian Processes (GPs) to model and
control the froth flotation process under partial observ-
ability. The control actions are optimized to enhance the
economic performance of the process while also accounting
for system uncertainties and disturbances. Our approach
overcomes the limitations of previous studies by integrat-
ing stochastic process modelling through GPs, which ex-
plicitly captures prediction uncertainty. Previous studies
have identified the optimal particle size range for flotation
as 20 to 150 µm (Gaudin et al., 1942). Here, we present a



case study evaluating the performance of a flotation bank
controlled by the proposed GP-MPC framework under 5%
measurement noise and particle size disturbances ranging
from 80 to 140 µm. Our results demonstrate that even
under frequent particle size changes, the GP model accu-
rately predicts partially observed (latent) state variables
while effectively minimizing the economic objective. This
confirms the robustness of the proposed control strategy.

2. METHODOLOGY

The control strategy employs a GP-based state-space
model to predict the evolution of the flotation process.
This model accounts for both observable and latent (un-
observable) state variables, with the latter being predicted
based on historical data using a partially observable GP
model.
2.1 Partially observable Gaussian process state-space model

Discrete-time MPC is advantageous for real-world appli-
cations, as it enables the controller to update information
at specific intervals rather than continuously. This discrete
approach is ideal for digital implementations where control
strategies are executed at fixed time steps, ensuring com-
patibility with digital processors and sampled data sys-
tems while also lowering computational demands. In this
context, we consider the nonlinear discrete-time system
described by:

xk+1 = fd(xk,uk) + ϵk (1)

Here, xk ∈ Rnx denotes the state vector, uk ∈ Rnu is
the control input, ϵk represents process noise, and fd :
Rnx × Rnu → Rnx . The GP model provides probabilistic
predictions for the mean and variance of the state at the
next time step, incorporating these probability estimates
into control decisions.

To model dynamic systems, we employ a GP as a state-
space representation of the system. For ease of notation,
we group the variables as ξk = [xTk ,u

T
k ]
T such that

ξ ∈ X ⊆ Rnx+nu . Using a dataset of nd samples,
we construct the GP state-space model, which can be
interpreted as a distribution over functions as fψ(ξ) ∼
GP(mψ(ξ), kψ(ξ, ξ

′))

The model is defined by a mean function mψ(ξ) : X → R
and a covariance function kψ(ξ, ξ

′) : X × X → R each
yielding a scalar output. Both functions map control and
state inputs ξ to a single output value. To generate nx
outputs (e.g., one for each future state), we require nx
separate GPs, with one GP assigned per state. These nx
GPs are then combined to model the system dynamics:

fΨ(ξ) =


fψ1

(ξ) ∼ GP(0, kψ1
(ξ, ξ′))

...

fψnx
(ξ) ∼ GP(0, kψnx

(ξ, ξ′))

(2)

We can then combine all parameter vectors into Ψ =
[ψ1, ..., ψnx ] and all covariance functions into kΨ(·, ·) =
[kψ1(·, ·), ..., kψnx

(·, ·)] to describe the concatenation of all

kernel functions into fΨ(ξ) ∼ GP(0,kΨ(ξ, ξ
′)). This GP-

based representation captures the system dynamics within
a state-space model. However, in practical applications,
not all state variables are measurable online. We therefore
categorize them into observed variables xobs and latent

variables xlatent, where x(i) = {x(i)
latent,x

(i)
obs}

nd

i=l, with l

defined as the window size. To address this, the GP model
was trained offline using data in which all state variables
(both observed and latent) were assumed available. This
assumption holds in practice because latent variables, such
as mineral concentrations, can be measured offline through
laboratory assays. These offline measurements were used
to cross-validate the physics-based flotation model, en-
suring its accuracy in representing the system dynamics.
The training dataset was generated from the validated
physics-based model. During real-time operation, the GP-
MPC compensates for partial observability by inferring la-
tent variables from observed state measurements and past
observations, thereby ensuring the framework’s practical
applicability under realistic operating conditions.

2.2 GP-based model predictive control (GP-MPC)

For online MPC, the GP model takes the historical
observed values from the previous l steps as inputs
(xk,history) and generates predictions for the next time
step (xk+1), which includes both observed and estimated
latent states:

xk+1 = f̂d(xk,xk,history,uk) (3)

where xk,history = [xobs,k, . . . ,xobs,k−l] and l defines the
time-window size. This model enables more accurate state
estimation and control under partial observability. Here,
the GP model predicts future states and outputs of the
process, incorporating both mean and variance predictions
directly into the optimization. At each discrete time step
k, an optimization problem is solved to determine the
optimal sequence of control actions that minimize a cost
function, which includes terms for economic performance,
control effort, and predicted variance, thereby balancing
performance with robustness to uncertainty. The objective
is to minimize:

J =

N−1∑
k=0

(
w1z

T
kQ1zk + w2(∆uk)

TQ2(∆uk)

+w3u
T
kRuk + w4σ

T
kQ3σk

)
(4)

where zk represents the performance or economic term
to be minimized, ∆uk denotes the change in control
input, uTkRuk captures the control input magnitude, and
σTkQ3σk represents the predicted variance. Each term in
the objective function is penalized with a corresponding
weight wi. The GP-MPC optimization problem is thus
formulated as:

min
u0:N

J(z1:N ,u0:N−1,σ1:N )

subject to:

ξk = [µTk ,u
T
k ]
T

zk+1 = Jz(µk+1)

µk+1,σk+1 ← fΨ(µk,obs,uk)

µ0,obs = xobs

umin ≤ uk ≤ umax

for k = 0, . . . , N − 1

(5)

Here, ξk represents the concatenated vector of the pre-
dicted state mean µk and the control input uk at each
time step k, with N denoting the control horizon. The
term zk = Jz(µk) represents a mapping of the predicted



Fig. 1. (A) Training Performance of the Partially Observable GP Model; (B) Cross-validation performance of the GP
model under different noise levels

state mean µk to an economic or performance-related
variable, used in the objective function to assess the sys-
tem’s performance over the control horizon. Additionally,
µk+1 and σk+1 denote the predicted mean and variance

of the output, respectively, and GP(mψ(ξk), kψ(ξk, ξ
′
k))

describes the Gaussian process distribution. umin and umax

define the bounds for the control inputs.

3. CASE STUDY: MINERAL FROTH FLOTATION

3.1 Problem set-up

The control strategy is implemented in a mineral froth
flotation process, with the primary objective of maximiz-
ing metallurgical recovery while maintaining concentrate
grade. We used a physics-based dynamic model, developed
by Quintanilla et al. (2021b) as a differential and algebraic
equation system to act as the real system. The model
was validated at a laboratory scale (Quintanilla et al.,
2021a, 2023b). The flotation model includes nine states:
mineral masses (Mmin, Mgangue), gas holdup for each
bubble size class (Mesa et al., 2022) (ε1, ε2, ε3, ε4, ε5), pulp
height (hp), and tailings flow rate (Qtails). There are only
three observed variables: hp, Qtails, and the total gas

hold up (
∑5
b=1 εb), while the rest are considered latent

(unobservable) variables. These observed and latent vari-
ables align with what is commonly found on the industrial
scale with the existing instrumentation. We used the typi-
cal industrial-scale manipulated variables, which are pulp
height and air flow rate (Qair) setpoints.

3.2 Implementation details

The GP model was trained on six sets of simulation data
generated in MATLAB R2022b, using a time horizon of 30
steps and a sampling interval of 5 minutes, as this interval
is sufficient to reach a new steady state under the operating
conditions and tank dimensions used in this study (Quin-
tanilla et al., 2021a, 2023c). The control action bounds in

the simulation were set to hp ⊆ [0.37, 0.42] and Qair ⊆ [9 ·
10−4, 3 · 10−3]. The GP model was then implemented in
Python 3.8.19 with a Radial Basis Function (RBF) kernel
and optimized with 10 hyperparameters, using a multistart
approach. The entire GP-MPC framework was developed
in Python, integrating MATLAB for process simulation
and Python for model training and control execution.

For MPC implementation, the control optimisation was
performed using Sequential Least Squares Programming
(SLSQP). The economic term C1,tails is calculated as
defined in Eq.(6) at the final step of the control horizon (5
time steps). The MPC weight coefficients w1, w2, w3, w4 in
the cost function were carefully tuned to balance economic
performance, control effort, and variance minimization.
Improper weighting can result in excessive fluctuations in
control inputs or slow response times. Based on tuning, the
selected weight coefficients were set to [w1, w2, w3, w4] =
[500, 0.05, 0.01, 0.2].

C1,tails =
Mmin

hp(1−
∑5
b=1 εb)Acell

(6)

where Mmin represents the mineral masses, hp is the pulp
height, ε1−5 denote bubble size classes, and Acell is the
cross-sectional area of the cell.

4. RESULTS AND DISCUSSION

4.1 GP-model construction

To assess the model’s fit, particularly the alignment of
predicted distributions with the true data distribution,
we used the Negative Log Predictive Density (NLPD)
metric, a standard for evaluating GP models (GPyTorch
Team, 2021). Figure 1(A) shows the training performance
of the partically obervable GP model. The NLPD values
for all observed variable fittings are between -9.78 (for
Qtails) and -2.49 (for hp), indicating excellent model



Fig. 2. GP-MPC Optimization with 5% measurement noise without external disturbances

performance, as nearly all state values fall within the
model’s confidence intervals (CI), which are relatively
narrow. For latent variables, the NLPD values remain
close to zero, with an average NLPD of 4.14 for Mmin

and 5.38 for Mgangue, reflecting a well-calibrated model
that achieves high accuracy with appropriately estimated
uncertainty.

For cross-validation of the fitted GP model, Figure 1(B)
shows that the actual state values of observed variables
consistently lie within the model’s CI, with a moderate CI
size, indicating no signs of overfitting. Regarding latent
variables, the model aligns well with the real system
trends. Although a slight deviation is observed in Mmin

between steps 22 and 26, the error does not accumulate
over subsequent predictions; from step 27 onward, the
predictions realign closely with the actual system values.
This ability to recover alignment is particularly valuable
when operating under various disturbances.

Furthermore, increasing the level of measurement noise
does not significantly affect model performance, likely due
to the partially observable nature of the model, which
inherently enhances robustness against external measure-
ment noise. The results confirm that the GP-MPC frame-
work can reliably operate with up to 5% measurement
noise. In this work, process noise ϵk is assumed to be zero-
mean Gaussian, i.e., ϵk ∼ N (0, σ2I). This assumption is
widely used in modeling chemical processes, as Gaussian
noise effectively represents measurement uncertainties and
unmodeled process variations.

4.2 GP-MPC performance

The proposed GP-MPC framework is designed to achieve
reliable tracking by optimizing control actions based on
state predictions while explicitly accounting for uncer-
tainty.

The GP-MPC was initially tested without disturbances
to assess its baseline performance. Since Mmin, a latent
variable, is required to calculate C1,tails (the economic
term), the control feedback on C1,tails also relies on model
predictions, introducing additional challenges. Neverthe-
less, as shown in Figure 2, the GP model successfully
captures the trends of all state variables.

For observed variables, the CIs of the real state measure-
ments, affected by measurement noise, are either equal
to or narrower than the CIs of the model predictions,
indicating stable performance under noise. For latent vari-
ables, the model performs particularly well in predicting
Mmin, as all state values fall within or very close to the
prediction CI. Although there is a minor deviation in the
prediction of Mgangue, this deviation remains minimal at
approximately +5% of the state value, while the overall
trend remains aligned. These results confirm the reliability
of the GP model, establishing a strong foundation for MPC
implementation.

The controller demonstrates substantial effectiveness, be-
ginning to minimize the economic term within the first
five time steps once the GP-MPC completes its initial data
collection window and initiates control actions. During the
first three time steps, a fixed control action is applied while
collecting measurements of observable variables. Active
control begins at the fourth step, using real-time mea-
surements of observable variables and past predictions of
latent variables as model inputs. The economic term is
successfully minimized, reaching a steady-state value of
approximately 0.9 kg/m3, closely aligning with the pre-
dicted mean of around 0.7 kg/m3. In addition, to eval-
uate the practical feasibility of our GP-MPC framework,
we measured the optimization time at each control step.
The optimization consistently took less than 30 seconds
per 5-minute interval, confirming suitability for real-time
implementation.



Fig. 3. GP-MPC optimization with 5% measurement noise under particle size disturbances (Case 1)

Fig. 4. GP-MPC optimization with 5% measurement noise under particle size disturbances (Case 2)

4.3 GP-MPC: Disturbance handling

The GP-MPC was then tested under both 5% measure-
ment noise and two randomly generated sequences of par-
ticle size disturbances, each differing from the conditions in
the training dataset. Changes in particle size affect floata-

bility (Hu, 2014), potentially impacting system dynamics
and reducing model prediction accuracy. In Case 1, Mmin

and C1,tails show minor deviations in alignment between
steps 14 and 20 (see Figure 3); similarly, in Case 2, these
variables exhibit slight misalignments between steps 26
and 29 (see Figure 4). Despite these minor deviations, the



model consistently aligns with the trends of most observed
and latent variables. Additionally, the GP-MPC responds
quickly, effectively minimizing the economic term in both
cases.

For control variables, neither control variable exceeded or
leverage its boundary limits. The control action for hp
aligned well with its set trajectory without frequent, dras-
tic adjustments, demonstrating stable and effective con-
trol performance. When comparing economic and penalty
terms between disturbed and non-disturbed cases, the
objective function is minimized effectively across all cases,
with no significant differences attributable to disturbances.
Interestingly, the variance penalty term is further mini-
mized in the disturbed case compared to the non-disturbed
case. This could indicate a potential risk where the model
overfits by narrowing the confidence interval of state pre-
dictions, potentially compromising reliability.

5. CONCLUSIONS

This study demonstrates the potential of a Gaussian
Process-based Model Predictive Control (GP-MPC) frame-
work for managing a froth flotation process under distur-
bances and partial observability. The GP model effectively
handles both observed and latent variables by incorpo-
rating prediction uncertainty into the control strategy,
enabling robust decision-making even when key state vari-
ables cannot be directly measured. The framework was
tested across various scenarios, including feed particle size
disturbances and measurement noise. It is demonstrated
to maintain stable control while minimizing economic ob-
jectives and adapting to dynamic conditions. These results
suggest that GP-MPC is a promising, adaptable approach
for complex, nonlinear processes in mineral processing,
where reliable performance under uncertainty is essential.
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