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Abstract: This study presents a framework for the implementation of a Deep Reinforcement Learning 

(DRL) agent for optimal scheduling and control integration on flow-shop batch plants with input 

variability. The agent is designed to take multiple decisions at every time interval which allows for the 

integration of scheduling and control. A hybrid agent with multiple decision outputs is used to perform 

online scheduling and control. To account for the short-term history of the process, the agent approaches 

the optimization problem as a Partially Observable Markov Decision Process (POMDP). The agent makes 

use of a set of Long Short-Term Memory cells (LSTM) to correlate sequential states from the environment 

to be aware of its evolution when taking decisions. To demonstrate the advantages and limitations of the 

hybrid agent, the method is implemented on a batch plant under variability in the inputs. Results showed 

that the agent’s policy reacted to the fluctuations in concentration from raw materials. To validate the 

proposed method, a comparison with an agent trained on an environment with fixed inputs was performed 

to demonstrate the adaptive behavior of the agent developed with the presented framework. 
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1. INTRODUCTION 

Reinforcement Learning (RL) is a learning method that 

assumes that the decision-making process in an environment 

follows the Markovian property. This implies the existence 

and availability of a transition model that defines the 

probabilities of moving from one state 𝑠 to another 𝑠′. The 

Markovian property implies that the only information required 

to know the next state 𝑠′ of the environment after an action is 

executed is that provided by the current state 𝑠. The application 

of DRL methods for scheduling and control applications has 

been widely approached as Markov Decision Processes 

(MDP). Nevertheless, real world scenarios present multiple 

situations where the information is spread out in a sequence of 

states rather than in the immediate present state. Then, it is 

assumed that a Partially Observable Markov Decision Process 

(POMDP) results in a more adequate approach for the 

modelling of these kind of environments. 

DRL has found wide acceptance as an approach for solving 

scheduling problems since in most of the cases the action space 

consists of a set of discrete actions. For instance, the job to be 

initialized, the dispatching rule to be adopted, or the 

machine(s) to activate. In control applications, DRL has also 

found utility as policies can be trained to respond to changes 

in the state of the process. Nevertheless, the usual DRL 

approach is limited to one decision at every time interval and 

does not allow the use of compound actions that involve 

multiple decisions at the same time. Then, DRL cannot be 

applied in problems involving simultaneous scheduling and 

control decisions. To the authors’ knowledge, this integration 

has not been attempted in the literature. 

DRL has been previously applied to solve problems involving 

optimal process integration. (Mendiola-Rodriguez and 

Ricardez-Sandoval, 2023) proposed an integration scheme for 

design and control with DRL. The agent trained with a Deep 

Deterministic Policy Gradient method considers the first 

decision as the process design and the subsequent decisions as 

the control actions. (Sachio et al., 2022) made an integration 

of design and control using DRL. In that work, a controller is 

built using DRL and then is integrated into a bi-level 

optimization problem where the other level corresponds to the 

design task. Single-task applications involving for example 

design, scheduling, and control decisions are common. DRL 

agents have also been applied as reactive controllers that 

adapts to changes in the process. (Mowbray et al., 2021)  

presented a framework where a controller is generated using 

inverse RL and then trained with DRL, showing potential for 

optimal process control. (Bloor et al., 2024) combined 

components from Proportional-Integral-Derivative control 

with DRL, resulting in a controller capable to generalize 

trajectories outside of the distribution set during the training. 

Scheduling optimization problems have also been approached 

with DRL, especially in job and flow shops for multiple fields. 

(Hubbs et al., 2020) proposed a scheduler agent for a multi-

product reactor, capable of handling uncertainty in the process. 

(Waschneck et al., 2018) used a multi-agent system for 

reducing the waiting times in a job-shop. (Rangel-Martinez 

and Ricardez-Sandoval, 2024) proposed an agent that 

approached the scheduling problem as a POMDP to handle 

partial information in the states sent from the environment. 

The previous works demonstrate that DRL policies have been 

applied effectively for process integration, and for single-task 



 

 

     

 

applications. In most of these works, the approach consists in 

handling the optimization problem as a Markov Decision 

Process (MDP). Moreover, those studies showed as a common 

feature that the action space only involves a single action. This 

limitation has been overcome with the use of multi-agents. 

This work explores the integration of the decisions of multiple 

agents into one that gathers all the information needed for the 

entire system of decisions, aiming for an efficient use of the 

information. Note that this approach assumes that tasks taking 

place at multiple scales are correlated.  

In this study, a framework to address the integration of 

scheduling and control with a DRL agent is presented. A 

hybrid agent that can output the scheduling and control 

decisions is used for the integration. The sequential decision 

problem is assumed to be a POMDP, which allows the 

inclusion of input information into the agent from past events 

that took place in the system. The POMDP assumes a lack of 

information given to the agent, which is compensated with 

historical information. This study applies an approach for 

POMDPs in the scheduling-and-control problem, which to the 

author’s knowledge, has not been reported in the literature. 

The LSTMs layers are used because they serve as a correlation 

module for sequences of events in the process and is a key 

feature in this work. To illustrate the characteristics of this 

approach, an agent is trained with this scheme to take online 

decisions of the scheduling and control of a chemical flow-

shop batch plant subject to variability in the process inputs, 

i.e., inlet material flows. The concentrations of these flows are 

assumed to follow a stochastic behaviour. The scheduling 

decision defines the task that should be initialized while the 

control actions aim to accommodate the stochastic 

perturbations in the inputs while aiming to meet the task’s 

production targets. This study is organized as follows: section 

2 presents the problem statement; section 3 shows the 

proposed methodology; section 4 shows a case study and 

results; conclusions and future work are presented at the end. 

2. PROBLEM STATEMENT 

This section presents the scheduling and control problem 
that can be addressed with the present approach. The problem 
definition was adapted from a previous work that addressed the 
integration of scheduling and control for chemical batch plants 
under stochastic uncertainty (Rodríguez Vera and Ricardez-
Sandoval, 2022). Our work does not approach the problem 
under uncertainty per se, but instead assumes that there are 
stochastic parameters (𝜓𝑣𝑎𝑟) defined by known Probability 
Density Functions (PDF). The value of these parameters is only 
known when a unit related to these parameters is turned on, i.e., 
a task is assigned to this unit. Their values remain constant 
during the operation of that particular task. In the case of units 
involving process dynamics, values for these parameters are 
known at the beginning of the operation and its value remain 
constant until the end of that specific operation. Hence, 
appropriate control actions must be determined to 
accommodate for these changes and be able to meet the unit 
operation targets. This situation demands an online decision-
making process for scheduling and unit operation control that 
needs to adapt to the outcomes of such stochastic parameters. 
For the systems that can be considered with the method 
presented in this work, consider the following:  

• A flow-shop plant that is composed by 𝑁𝑘 set of tasks, with 
𝑁𝑗 set of equipment. 

• A set of chemical processes described by the mechanistic 
dynamic model 𝑓 for 𝑁𝑝 states of the system, and expressions 

ℎ that contain the set 𝑁𝑞 of constraints of the system. 

• A set Ψ of fixed model parameters 𝜓𝑓𝑖𝑥 and of stochastic 

parameters 𝜓𝑣𝑎𝑟  described by a PDF known a priori.  

• A set 𝐶 that considers the cost information of utility services, 
raw materials, products, and by-products. 

• A finite time horizon 𝐻 which starts at 𝑡𝑠 and ends at 𝑡𝑓.  

• A finite number of equal-length time intervals 𝑡 that belong 
to the set 𝑁𝑡 and are used for the discretization of the 
scheduling horizon 𝐻. At every time interval 𝑡, scheduling 
and control decisions are taken. 

• A set Τ of processing times indicating the length of time 𝜏𝑘,𝑗 

that the units in 𝑁𝑗 takes to complete the tasks in 𝑁𝑘. 

• An economic function 𝐺 that considers product profits, 
operational times, costs related to utility services, penalties 
incurred during the operation, and other related costs.  

The optimization formulation for the batch plant described 
above is stated as problem P1. This integrated optimization 
problem aims for an optimal schedule plan with dynamic 
control profiles that maximizes the profits of the process.  

max
𝑢𝑘,𝑗(𝑡), 𝑆𝑘,𝑗,𝑡

𝐺(𝑥𝑘,𝑗(𝑡), 𝑢𝑘,𝑗(𝑡), 𝜑, 𝜏𝑘,𝑗, 𝑠𝑘,𝑗,𝑡 , 𝑐)                  (P1) 

s.t. 𝑓𝑝(𝑥𝑘,𝑗(𝑡), �̇�𝑘,𝑗(𝑡), 𝑢𝑘,𝑗(𝑡), 𝜑, 𝜏𝑘,𝑗 , 𝑠𝑘,𝑗,𝑡 , 𝑡) = 0  

∀ 𝑡, 𝑝 ∈ 𝑁𝑝, 𝑡 ∈ 𝑁𝑡 , 𝑞 ∈ 𝑁𝑞 , 𝑘 ∈ 𝑁𝑘, 𝑗 ∈ 𝑁𝑗  

 ℎ𝑞(𝑥𝑘,𝑗(𝑡), �̇�𝑘,𝑗(𝑡), 𝑢𝑘,𝑗(𝑡), 𝜑, 𝜏𝑘,𝑗 , 𝑠𝑘,𝑗,𝑡 , 𝑡) ≤ 0  

∀ 𝑡, 𝑡 ∈ 𝑁𝑡 , 𝑞 ∈ 𝑁𝑞 , 𝑘 ∈ 𝑁𝑘 , 𝑗 ∈ 𝑁𝑗  

 𝜏𝑘,𝑗 ∈ 𝜏            ∀ 𝑘 ∈ 𝑁𝑘, 𝑗 ∈ 𝑁𝑗 

    𝑠𝑘,𝑗,𝑡 ∈ {0,1}    ∀ 𝑘 ∈ 𝑁𝑘, 𝑗 ∈ 𝑁𝑗 , 𝑡 ∈ 𝑁𝑡 

 𝑥 ∈ 𝑋 ⊆ ℝ𝑁𝑥×𝑁𝑗×𝑁𝑘  

 𝑢 ∈ 𝑈 ⊆ ℝ𝑁𝑢×𝑁𝑗×𝑁𝑘  

 𝑐 ∈ 𝐶 ⊆ ℝ𝑁𝑐  

 𝜓𝑓𝑖𝑥 , 𝜓𝑣𝑎𝑟 ∈ Ψ ⊆ ℝ𝑁𝜓  

 𝜓𝑣𝑎𝑟~𝑓𝜓𝑣𝑎𝑟
(𝜓) 

 𝜏 ∈ Τ ⊆ ℝ𝑁𝜏  

 𝑡 ∈ [𝑡𝑠, 𝑡𝑓], 𝐻 = 𝑡𝑓 − 𝑡𝑠  

where 𝑓𝑝 is the 𝑝𝑡ℎ differential-algebraic equation of the model 

and ℎ𝑞 is the 𝑞𝑡ℎ model constraint. 𝑥𝑘,𝑗(𝑡) is a state variable 

from the system for task 𝑘 taking place at unit 𝑗 and �̇�𝑘,𝑗(𝑡) is 

the derivative of that variable. 𝑢𝑘,𝑗(𝑡) is a control decision 

variable involved in task 𝑘 at unit 𝑗. The control actions 𝑢𝑘,𝑗(𝑡) 

that can be taken at each time interval t by the time-dependent 
unit operations j to maintain the process on target are limited to 
a set of discretized actions included in the set 𝑈. 𝑓𝜓𝑣𝑎𝑟

(𝜓) is 

the PDF used to describe the likelihood of a realization of 𝜓𝑣𝑎𝑟 . 



 

 

     

 

𝑠𝑘,𝑗,𝑒 is a binary decision variable that specifies the scheduling 

process for the batch plant. This variable is defined for every 
task 𝑘 at unit 𝑗 during the set of time intervals 𝑡 and tells if such 
task and unit are occupied or not.  

Problem P1 can be defined as a stochastic Mixed Integer 
Dynamic Optimization (MIDO) problem, which may become 
challenging to solve since the realizations of 𝜓𝑣𝑎𝑟  are not 
known a priori. Approaches consisting of the decomposition of 
the problem into MILP or MINLP can be used to reduce the 
problem’s complexity but they present their own challenges for 
online implementation due to intensive calculations (Andrés-
Martínez and Ricardez-Sandoval, 2022). Simplifications can 
be made with a trade-off between time response and quality of 
the solution. The DRL method presented in this work is used to 
train the agent for stochastic realizations of the input parameters 
and then, once trained, it can be implemented online and 
provide immediate (online) responses to the integrated process 
thus providing a fast reliable solution to this problem. 

3. METHODOLOGY 

In this section we present the methodology to design the DRL 

agent that can provide online solutions to the flow-shop 

scheduling and control problem described in P1. A Proximal 

Policy Optimization (PPO) method is used to train the agent as 

it is a stable and general-purpose algorithm. The following key 

components in the DRL framework are explained in this 

section: 1) the action space for the scheduling and control 

tasks; 2) the input sequence vector for the agent, which 

contains relevant information used to take a decision; 3) the 

reward function, 4) the time-dependent stochastic parameters, 

and 5) the architecture of the hybrid agent.  

3.1. Action space 

The number of decisions that an agent will take at each time 

interval 𝑡 in the horizon 𝐻 include both scheduling and control 

decisions. It is assumed here that both tasks need at least one 

action to be executed in the process but this can be extended to 

multiple actions that correspond to each task. The set of action 

spaces is shown in Eq. (1), where all the needed actions for 

scheduling and control tasks are included. Note that all the 

action spaces in this set are discretized; it is also possible to set 

continuous spaces but this is beyond the scope of this work.  

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = {𝑎1, 𝑎2, … , 𝑎𝑛} (1) 

The scheduling action space can specify the task and unit to be 

initialized at each time interval. Since an action is delivered at 

every time interval 𝑡, the action space also includes an idle 

action that do not start any task. Other discrete actions related 

to the scheduling task can be added to the agent, for instance, 

the capacity at which a task should be started (i.e., 100%, 20%, 

etc.). Similarly, the number of control actions is given by the 

number of control decision variables included in the set 𝑈 

defined above. Since the control actions are discretized, the 

control profiles generated by the agent for each control 

variable uk,j will be similar to step-like functions applied to 

each time interval t.  

During implementation, at a specific time interval, the 

environment sends the sequence of observations from the 

process to the agent. Then, for every action space in 𝐴𝑐𝑡𝑖𝑜𝑛𝑠, 

a categorical distribution 𝑝𝑎𝑛
 is provided (Eq. 2). The largest 

probability at each action space distribution defines the action 

executed in the environment. During training, the distributions 

are used to sample actions and learn from their execution. Note 

that at all time intervals, the agent generates categorical 

distributions for all the action spaces described in the set 

𝐴𝑐𝑡𝑖𝑜𝑛𝑠. Naturally, not all of them are used at all time 

intervals, for instance a control action will be only used when 

the corresponding unit is active. Actions that are not required 

at a certain time interval are ignored by the environment. 

𝑝𝑎𝑛
= (𝑝1, 𝑝2, … , 𝑝𝑚) where ∑ 𝑝𝑚𝑚∈𝑀 = 1 (2) 

3.2. Observation Vector 

A vector with the information from the environment called 

observation vector (𝑜𝑡) is generated at every time interval and 

sent to the agent to produce the next set of actions. The vector 

𝑜𝑡 defined in Eq. (3) contains the features that have a 

measurable effect in the scheduling and control tasks. In this 

work, 𝑜𝑡 gathers the following information: i) the occupation 

of the available units 𝑗; ii) processing times of the units that are 

in use; iii) information relevant to the control problem, e.g., 

concentrations, flow rates, and temperatures; and iv) the 

current time interval. This information is retrieved at every 

time interval from the environment and is also normalized to 

stabilize the learning process. Note that the representation of 

these variables in 𝑜𝑡 depends on the user’s preferences. For 

instance, the use of probabilities, constant values, one-hot 

encodings, or normalized values can be used to pre-process 

these features and then add them to the observation vector 𝑜𝑡. 

𝑜𝑡 = [𝑥𝑘,𝑗(𝑡), 𝑠𝑘,𝑗,𝑒 , 𝜏𝑘,𝑗 , 𝑡]  (3) 

Although this state representation provides full observation to 

the agent, the use of the POMDP approach is justified to 

provide the agent with additional information from past events. 

The LSTMs correlate the information in a temporal context 

which helps are key to consider interactions between 

scheduling and control.  

3.3. Reward function 

A reward shaping method was used in this work to decompose 

the total reward into 𝑚 sub rewards 𝑟, i.e., 

𝑅𝑒𝑤𝑎𝑟𝑑 = ∑ 𝑟𝑚

𝑚

 (4) 

The subset of rewards 𝑟𝑚 for the scheduling actions is based 

primarily in allocation constraints and the correct order of task 

initialization in the flow-shop. This ensures that the conditions 

for initiating a task are met, for instance, availability of 

material or availability of units. Moreover, penalties for 

machines staying idle during a process should be set to ensure 

the reduction of the makespan. Furthermore, the reward should 

be increased as the process reaches the end, i.e., to provide 

larger rewards to the agent for initializing tasks that are closer 

to the end.  



 

 

     

 

Regarding the control decisions, the agent should account for 

the economic incentives associated with these tasks. For 

instance, providing larger rewards to utility services that are 

less expensive. Penalties should be provided for constraint 

violations that may occur during transient operation, e.g., 

surpassing a safety limit or not reaching the expected product 

specifications at the end of the task. It is assumed that any task 

𝑘 that comprises a dynamic system will need at least one time 

interval to be completed. Hence, a sequence of control 

decisions, each implemented at each time interval t, are 

required for the duration of that task. Then, the reward for that 

sequence is provided at the end of task 𝑘. Here, the POMDP 

approach becomes useful as the sequence of actions (i.e., the 

control profile) is receiving a reward, rather than only the 

present action. Thus, the use of LSTMs results convenient for 

handling the delayed rewards in the environment. After being 

sent to the environment, the actions from the set 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 that 

were implemented (recall that not all of them might be used) 

are evaluated with the system of rewards. When all the rewards 

are assigned to the scheduling and control decisions, they are 

added up and sent as a unique (scalar) reward to the agent.  

3.4. Stochastic Parameters 

The environment is a representation of the process where the 

agent can learn by trial and error on how to perform a task. The 

limitations of the real process (i.e., constraints) and the 

description of fixed and stochastic parameters (i.e., 𝜓𝑓𝑖𝑥, 𝜓𝑣𝑎𝑟) 

should be added into this simulation. During each iteration of 

the training, the stochastic parameters are set to present the 

agent a specific realization of this parameter. The agent gathers 

experience from these realizations and generalizes a policy 

that can choose the best action for a given realization of 𝜓𝑣𝑎𝑟 .  

In the environment, the mathematical description of the 

stochastic parameters should be incorporated through a PDF, 

e.g., a Gaussian or Uniform distribution. These values should 

also be incorporated in the observation that are sent to the 

agent as they are relevant for the next decision. Note that the 

increase in time-varying parameters has a direct impact on the 

length of the training. This is because the agent needs to 

explore multiple realizations to learn its policy. Thus, the 

exploration space grows as more stochastic parameters are 

considered. 

3.5. Hybrid Agent  

The architecture considered in this study for the hybrid agent 

was adapted from (Fan et al., 2019). This architecture allows 

the agent to generate 𝑛 outputs for the scheduling and control 

decisions defined in the set 𝐴𝑐𝑡𝑖𝑜𝑛𝑠. The 𝑛 outputs from the 

agent are categorical distributions. Each distribution gives the 

probability to each possible outcome of that particular action 

(see Eq. (2)). The hybrid agent uses a correlational module 

built with 𝑊  layers of LSTMs to gain insights of the sequence 

of observations 𝑜𝑡. The sequence is also called observation 

window 𝑂𝑡 as shown in Eq. (5). It starts in the time interval t-

λ+1, and ends in the time interval t, where λ denotes the 

number of observations. This allows to register all the steps 

that a task takes to complete. That is, the agent can access the 

sequences that contain the evolution of the tasks from start to 

end, which is not possible under the MDP approach. 

𝑂𝑡 = [𝑜t−λ+1, … , 𝑜𝑡−2, 𝑜𝑡−1, 𝑜𝑡] (5) 

The general architecture of the neural network is depicted in 

Fig. 1. The observation window 𝑂𝑡 is an input to the 

correlational module with 𝑊 layers. Then, the outputs are 

passed through a set of  𝑌 linear layers. The final output of this 

section is input into 𝑛 separated sets with 𝑍 linear layers. The 

output of each set is passed through a SoftMax activation 

function to output each categorical distribution.  

 
Fig. 1. Hybrid agent with correlational module 

With this architecture, an agent that can coordinate both 

scheduling and control tasks can be trained. The incorporation 

of LSTMs into the agent allows to correlate the observations. 

This feature provides the agent with a wider visualization of 

the development of the processes. Limitations of networks 

with recurrence include the computational effort that they 

require as they evaluate the sequence element by element, i.e., 

not in a parallel fashion.  

4. CASE STUDY AND DISCUSISON OF RESUTLS 

The methodology is applied to perform the simultaneous 

scheduling and control of a flow-shop batch plant from the 

literature (Rodríguez Vera and Ricardez-Sandoval, 2022). Fig. 

2 shows the process composed by four tasks: 1) a set of 

chemical reactions (RI), 2) a filtration process (FI), 3) a set of 

reactions (RII), and 4) a separation process (SI), i.e., 𝑁𝑘 =
{𝑅𝐼, 𝐹𝐼, 𝑅𝐼𝐼, 𝑆𝐼}. The time horizon 𝐻 is set to 15 hours and is 

divided in even time intervals of 𝑡 = 0.5 h; hence, there are 30 

time intervals at which the agent can take decisions. 

 
Fig. 2. Bach Plant model 

The process begins in RI, where a non-isothermal batch reactor 

is used to transform substance A into an intermediate product 

B. The temperature of the reactor is controlled through the 

flow rates of Feed 1 and Feed 2, which correspond to a hot and 

a cold stream of water, respectively. The resulting mixture of 

products A and B from RI is then filtered in task FI. The 

intermediate species B is then passed to a semi-batch reactor 

where species D is added through Feed 3. The flow-rate of 

Feed 3 is controlled during the process to regulate the 

production of products E and F. The mixture of species B, D, 

E, and F (where E is the desired product) is separated in task 

SI, as shown in Fig. 2. Processes FI and SI are assumed to 



 

 

     

 

achieve perfect separation and are stationary processes. The 

four tasks have a fixed operation time of 2h. RI and RII are 

assumed to be dynamic processes and are expected to finish at 

their corresponding processing time. Each task has one unit, 

i.e., 𝑁𝑗 = {𝑅𝑒𝑎𝑐𝑡𝑜𝑟1, 𝐹𝑖𝑙𝑡𝑒𝑟, 𝑅𝑒𝑎𝑐𝑡𝑜𝑟2, 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟}. After 

completion, each unit will store the outgoing material until the 

following task is initialized. While the material is stored in that 

unit, a subsequent task for this unit cannot be initialized. The 

mechanistic models of the dynamics systems, the process 

constraints, model parameters and initial conditions for this 

case study can be found in (Rodríguez Vera and Ricardez-

Sandoval, 2022). For the present case study, the initial 

concentrations of species A entering RI and D in Feed 3 vary 

according to a uniform distribution. For the former, the 

distribution is bounded between 1.01 and 1.15 𝑘𝑚𝑜𝑙/𝑚3, 

while the latter is bounded between 0.80 and 0.89 𝑘𝑚𝑜𝑙/𝑚3. 

The economic function is described in Eq. (6) and aims to 

maximize the revenue from the production of product E while 

considering the minimization of costs related to the utility 

services from the three controlled flow rates corresponding to 

Feeds 1, 2, and 3 as described above.  

𝐺 = 𝑐𝑜𝑠𝑡𝐸 ∗ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑆𝐼 + 𝑐𝑜𝑠𝑡𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 (6) 

where 𝑐𝑜𝑠𝑡𝐸 ∗ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑆𝐼  denotes the revenue obtained from 

the product that is output from task 𝑆𝐼. The costs of the product 

E and utility services are specified in (Rodríguez Vera and 

Ricardez-Sandoval, 2022). The objective of the DRL agent is 

to design a policy that can produce an online schedule and a 

control strategy considering the stochastic variability in the 

concentrations in the raw materials, i.e., species A and D. 

At every time interval 𝑡, the agent will provide four (𝑛 = 4) 

decisions: 1 for the scheduling task, and 3 for the control task. 

For the scheduling task, the agent will decide which task to 

activate; hence, this decision has 5 possible outcomes (i.e., 4 

tasks and 1 idle action). The control task manipulates the flows 

of Feeds 1, 2, and 3 (see Fig. 2) while the task RI and RII are 

in operation. For every time interval cloistered in the operation 

time of these tasks, the agent sends a control decision to the 

environment. Then, the states of tasks RI or RII are sent back 

to the agent where another control decision is made for the next 

time interval. The control actions for each flowrate are 

discretized as shown in Table 1. 

Table 1. Flow-rates for the control tasks. 

 Low 𝑚3/ℎ Medium 𝑚3/ℎ High 𝑚3/ℎ 

Feed 1 3.75 7.5 16.0 

Feed 2 3.75 7.5 16.0 

Feed 3 0.08 0.9 1.7 

Since the processing times (𝜏𝑘,𝑗 = 2.0ℎ) are the same for 

every task and since a time interval is of length 0.5h, the 

control profile for each process has four stages. If the reaction 

task do not reach the desired concentration at the end of the 

processing time, or if one of the constraints is violated during 

operation, then the product will be wasted away from the 

process. For the subsequent actions, the agent should consider 

this interruption and schedule tasks accordingly. The system 

of rewards shown in Table 2 was used to guide the learning of 

the agent to aim for the maximization of profit.  

Table 2. Rewards assigned to the actions. 

 Description of the rewards 
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Reward +5 if the unit for that task is not busy when 

initializing a task and -10 if the unit is busy.  

If the task is completed to the end, then give a reward 

of +10, if the process is interrupted due to constraint 

violation, give a penalty of -5. 

For every time interval that tasks RI, FI and RII keep 

the product stored, a penalty of -0.5 is addressed. 
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Feeds 1 and 2: 

If Task 1 (RI) is running, provide a reward of +3 if 

the high profile is chosen, +6 for the medium profile, 

and +9 for the low profile. 

This is done for each hot and cold flows. The total 

reward is the addition of both. 

Feed 3:  

If Task 3 (RII) is running, provide a reward of +6 if 

the high profile is chosen and applied, +12 if it is 

medium profile, and +18 if it is the low profile.  

The architecture of the agent is based on Fig. 1. The length of 

the observation window is set to 4 (i.e., 𝜆 = 4) since each unit 

is assumed to require 4 time intervals to complete a task. The 

relational module has three layers of LSTMs (𝑊 = 3), 

followed by two layers, i.e., 𝑌 = 3. Then, the output of this set 

is the input of each of the sets of layers that represent each 

action (𝑛 = 4); each one with three layers (𝑍 = 3). Hidden 

layers use tanh activation functions while a SoftMax activation 

function is used to generate categorical distributions. The DRL 

method was developed in Python 3.11.3 and PyTorch version 

2.1.0. The training was performed using Adam’s optimizer; 

with the learning rate gradually decreased through an 

annealing technique, starting at 1e-4 and finishing at 1e-6. To 

refine the exploration as the training progressed, the 

smoothness of the categorical distributions was sharpened 

using temperature annealing, starting at 1 and ending at 0.001. 

A test with 1000 multiple realizations in 𝜓𝑣𝑎𝑟  was performed 

with the trained policy 𝜋𝑣. Fig. 3 shows the number of times 

(cycles) that the process in Fig. 2 was executed in the horizon 

𝐻. In almost 90% of the realizations, the agent could complete 

two to three cycles. The agent could not set three cycles in all 

the instances due to time limitations or a task failure, as 

discussed below. To compare the performance of the policy 

obtained by this method (𝜋𝑣), a second policy (𝜋𝑓) was trained 

on the same environment but under no variability in the inlet 

concentrations, i.e., 𝜓𝑣𝑎𝑟  were fixed to 1.08 𝑘𝑚𝑜𝑙/𝑚3 and 

0.845 𝑘𝑚𝑜𝑙/𝑚3 for species A and D, respectively. The 

resulting policy 𝜋𝑓 was then tested under 1000 stochastic 

realizations in 𝜓𝑣𝑎𝑟 . As shown in Fig. 3, the strategy learned 

by 𝜋𝑓 could handle many of the scenarios on which 𝜋𝑣 was 

trained. This was expected because the control profiles that 

were learnt by 𝜋𝑓 may be adequate to accommodate most of 

the stochastic scenarios; nevertheless, they might not align 

with the objective function. In half of the processes, 𝜋𝑓 could 

not produce a full cycle, i.e., no production; only in 13.3% of 



 

 

     

 

the instances it was able to complete three cycles as policy 𝜋𝑣. 

Fig. 4 shows a schedule built with 𝜋𝑣 in which the first cycle 

was interrupted due to the cancellation of Task RII. After this, 

the agent chooses the initialization of Task RI instead of Task 

S, which aims to produce more product E. This decision 

corresponds to the reaction of the agent to the suspension of 

the first cycle. It was observed that the agent left blank spaces 

in between tasks, presumably due to a lack of sensitivity to the 

observation window. Also, some tasks that were already in 

operation were selected to be initialized by the agent; these 

actions result in an infeasible operation. This problem can be 

addressed by increasing the penalties associated with violation 

of allocation constraints in exchange for a more conservative 

agent. A heuristic that cancels the initialization of infeasible 

actions was added to the environment, i.e., new task that must 

be started on a unit that is already in operation are cancelled.  

 
Fig. 3. Comparison between policies 

In most of the cases, the control profiles found by 𝜋𝑣  
completed reactions RI and RII without any constraint 

violations (not shown for brevity). Results from Fig. 3 confirm 

the effectiveness of the control actions chosen by the hybrid 

agent since it completed multiple cycles under stochastic 

variability in the inputs parameters affecting RI and RII.  

 
Fig. 4. Schedule with three cycles initialized 

5. CONCLUSIONS 

In this work a methodology for developing a DRL to address 

the integration of scheduling and control in flow-shop batch 

plants is presented. The DRL method allows to build online 

schedules and control profiles according to the conditions of 

the plant. A POMDP approach is used to retrieve history from 

the plant and consider the tasks evolution in the decision-

making process. To handle multiple decisions taken during 

transient operation, a hybrid agent is used to output more than 

one action at every time interval. To validate the method, a 

batch plant was considered for optimal scheduling and control. 

The agent designed an effective online schedule and control 

policy that can accommodate stochastic realizations in the 

input parameters. The application of this method for partially 

observable environments is part of the future work. 

Consideration of discrete and continuous actions for 

scheduling decisions has been recently reported (Rangel-

Martinez and Ricardez-Sandoval, 2025); extending this 

approach for integration of scheduling and control is also 

recommended for future work.  
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