

Hybrid Deep Reinforcement Learning Agent for Online Scheduling and Control for

Chemical Batch Plants

Daniel Rangel-Martinez*, Luis Ricardez-Sandoval**

*Department of Chemical Engineering, University of Waterloo, Canada (e-mail: drangelm@uwaterloo.ca)

**Department of Chemical Engineering, University of Waterloo, Canada (e-mail: laricard@uwaterloo.ca)

Abstract: This study presents a framework for the implementation of a Deep Reinforcement Learning

(DRL) agent for optimal scheduling and control integration on flow-shop batch plants with input

variability. The agent is designed to take multiple decisions at every time interval which allows for the

integration of scheduling and control. A hybrid agent with multiple decision outputs is used to perform

online scheduling and control. To account for the short-term history of the process, the agent approaches

the optimization problem as a Partially Observable Markov Decision Process (POMDP). The agent makes

use of a set of Long Short-Term Memory cells (LSTM) to correlate sequential states from the environment

to be aware of its evolution when taking decisions. To demonstrate the advantages and limitations of the

hybrid agent, the method is implemented on a batch plant under variability in the inputs. Results showed

that the agent’s policy reacted to the fluctuations in concentration from raw materials. To validate the

proposed method, a comparison with an agent trained on an environment with fixed inputs was performed

to demonstrate the adaptive behavior of the agent developed with the presented framework.

Keywords: Reinforcement learning, Integration of scheduling and control

1. INTRODUCTION

Reinforcement Learning (RL) is a learning method that

assumes that the decision-making process in an environment

follows the Markovian property. This implies the existence

and availability of a transition model that defines the

probabilities of moving from one state 𝑠 to another 𝑠′. The

Markovian property implies that the only information required

to know the next state 𝑠′ of the environment after an action is

executed is that provided by the current state 𝑠. The application

of DRL methods for scheduling and control applications has

been widely approached as Markov Decision Processes

(MDP). Nevertheless, real world scenarios present multiple

situations where the information is spread out in a sequence of

states rather than in the immediate present state. Then, it is

assumed that a Partially Observable Markov Decision Process

(POMDP) results in a more adequate approach for the

modelling of these kind of environments.

DRL has found wide acceptance as an approach for solving

scheduling problems since in most of the cases the action space

consists of a set of discrete actions. For instance, the job to be

initialized, the dispatching rule to be adopted, or the

machine(s) to activate. In control applications, DRL has also

found utility as policies can be trained to respond to changes

in the state of the process. Nevertheless, the usual DRL

approach is limited to one decision at every time interval and

does not allow the use of compound actions that involve

multiple decisions at the same time. Then, DRL cannot be

applied in problems involving simultaneous scheduling and

control decisions. To the authors’ knowledge, this integration

has not been attempted in the literature.

DRL has been previously applied to solve problems involving

optimal process integration. (Mendiola-Rodriguez and

Ricardez-Sandoval, 2023) proposed an integration scheme for

design and control with DRL. The agent trained with a Deep

Deterministic Policy Gradient method considers the first

decision as the process design and the subsequent decisions as

the control actions. (Sachio et al., 2022) made an integration

of design and control using DRL. In that work, a controller is

built using DRL and then is integrated into a bi-level

optimization problem where the other level corresponds to the

design task. Single-task applications involving for example

design, scheduling, and control decisions are common. DRL

agents have also been applied as reactive controllers that

adapts to changes in the process. (Mowbray et al., 2021)

presented a framework where a controller is generated using

inverse RL and then trained with DRL, showing potential for

optimal process control. (Bloor et al., 2024) combined

components from Proportional-Integral-Derivative control

with DRL, resulting in a controller capable to generalize

trajectories outside of the distribution set during the training.

Scheduling optimization problems have also been approached

with DRL, especially in job and flow shops for multiple fields.

(Hubbs et al., 2020) proposed a scheduler agent for a multi-

product reactor, capable of handling uncertainty in the process.

(Waschneck et al., 2018) used a multi-agent system for

reducing the waiting times in a job-shop. (Rangel-Martinez

and Ricardez-Sandoval, 2024) proposed an agent that

approached the scheduling problem as a POMDP to handle

partial information in the states sent from the environment.

The previous works demonstrate that DRL policies have been

applied effectively for process integration, and for single-task

applications. In most of these works, the approach consists in

handling the optimization problem as a Markov Decision

Process (MDP). Moreover, those studies showed as a common

feature that the action space only involves a single action. This

limitation has been overcome with the use of multi-agents.

This work explores the integration of the decisions of multiple

agents into one that gathers all the information needed for the

entire system of decisions, aiming for an efficient use of the

information. Note that this approach assumes that tasks taking

place at multiple scales are correlated.

In this study, a framework to address the integration of

scheduling and control with a DRL agent is presented. A

hybrid agent that can output the scheduling and control

decisions is used for the integration. The sequential decision

problem is assumed to be a POMDP, which allows the

inclusion of input information into the agent from past events

that took place in the system. The POMDP assumes a lack of

information given to the agent, which is compensated with

historical information. This study applies an approach for

POMDPs in the scheduling-and-control problem, which to the

author’s knowledge, has not been reported in the literature.

The LSTMs layers are used because they serve as a correlation

module for sequences of events in the process and is a key

feature in this work. To illustrate the characteristics of this

approach, an agent is trained with this scheme to take online

decisions of the scheduling and control of a chemical flow-

shop batch plant subject to variability in the process inputs,

i.e., inlet material flows. The concentrations of these flows are

assumed to follow a stochastic behaviour. The scheduling

decision defines the task that should be initialized while the

control actions aim to accommodate the stochastic

perturbations in the inputs while aiming to meet the task’s

production targets. This study is organized as follows: section

2 presents the problem statement; section 3 shows the

proposed methodology; section 4 shows a case study and

results; conclusions and future work are presented at the end.

2. PROBLEM STATEMENT

This section presents the scheduling and control problem
that can be addressed with the present approach. The problem
definition was adapted from a previous work that addressed the
integration of scheduling and control for chemical batch plants
under stochastic uncertainty (Rodríguez Vera and Ricardez-
Sandoval, 2022). Our work does not approach the problem
under uncertainty per se, but instead assumes that there are
stochastic parameters (𝜓𝑣𝑎𝑟) defined by known Probability
Density Functions (PDF). The value of these parameters is only
known when a unit related to these parameters is turned on, i.e.,
a task is assigned to this unit. Their values remain constant
during the operation of that particular task. In the case of units
involving process dynamics, values for these parameters are
known at the beginning of the operation and its value remain
constant until the end of that specific operation. Hence,
appropriate control actions must be determined to
accommodate for these changes and be able to meet the unit
operation targets. This situation demands an online decision-
making process for scheduling and unit operation control that
needs to adapt to the outcomes of such stochastic parameters.
For the systems that can be considered with the method
presented in this work, consider the following:

• A flow-shop plant that is composed by 𝑁𝑘 set of tasks, with
𝑁𝑗 set of equipment.

• A set of chemical processes described by the mechanistic
dynamic model 𝑓 for 𝑁𝑝 states of the system, and expressions

ℎ that contain the set 𝑁𝑞 of constraints of the system.

• A set Ψ of fixed model parameters 𝜓𝑓𝑖𝑥 and of stochastic

parameters 𝜓𝑣𝑎𝑟 described by a PDF known a priori.

• A set 𝐶 that considers the cost information of utility services,
raw materials, products, and by-products.

• A finite time horizon 𝐻 which starts at 𝑡𝑠 and ends at 𝑡𝑓.

• A finite number of equal-length time intervals 𝑡 that belong
to the set 𝑁𝑡 and are used for the discretization of the
scheduling horizon 𝐻. At every time interval 𝑡, scheduling
and control decisions are taken.

• A set Τ of processing times indicating the length of time 𝜏𝑘,𝑗

that the units in 𝑁𝑗 takes to complete the tasks in 𝑁𝑘.

• An economic function 𝐺 that considers product profits,
operational times, costs related to utility services, penalties
incurred during the operation, and other related costs.

The optimization formulation for the batch plant described
above is stated as problem P1. This integrated optimization
problem aims for an optimal schedule plan with dynamic
control profiles that maximizes the profits of the process.

max
𝑢𝑘,𝑗(𝑡), 𝑆𝑘,𝑗,𝑡

𝐺(𝑥𝑘,𝑗(𝑡), 𝑢𝑘,𝑗(𝑡), 𝜑, 𝜏𝑘,𝑗, 𝑠𝑘,𝑗,𝑡 , 𝑐) (P1)

s.t. 𝑓𝑝(𝑥𝑘,𝑗(𝑡), 𝑥̇𝑘,𝑗(𝑡), 𝑢𝑘,𝑗(𝑡), 𝜑, 𝜏𝑘,𝑗 , 𝑠𝑘,𝑗,𝑡 , 𝑡) = 0

∀ 𝑡, 𝑝 ∈ 𝑁𝑝, 𝑡 ∈ 𝑁𝑡 , 𝑞 ∈ 𝑁𝑞 , 𝑘 ∈ 𝑁𝑘, 𝑗 ∈ 𝑁𝑗

 ℎ𝑞(𝑥𝑘,𝑗(𝑡), 𝑥̇𝑘,𝑗(𝑡), 𝑢𝑘,𝑗(𝑡), 𝜑, 𝜏𝑘,𝑗 , 𝑠𝑘,𝑗,𝑡 , 𝑡) ≤ 0

∀ 𝑡, 𝑡 ∈ 𝑁𝑡 , 𝑞 ∈ 𝑁𝑞 , 𝑘 ∈ 𝑁𝑘 , 𝑗 ∈ 𝑁𝑗

 𝜏𝑘,𝑗 ∈ 𝜏 ∀ 𝑘 ∈ 𝑁𝑘, 𝑗 ∈ 𝑁𝑗

 𝑠𝑘,𝑗,𝑡 ∈ {0,1} ∀ 𝑘 ∈ 𝑁𝑘, 𝑗 ∈ 𝑁𝑗 , 𝑡 ∈ 𝑁𝑡

 𝑥 ∈ 𝑋 ⊆ ℝ𝑁𝑥×𝑁𝑗×𝑁𝑘

 𝑢 ∈ 𝑈 ⊆ ℝ𝑁𝑢×𝑁𝑗×𝑁𝑘

 𝑐 ∈ 𝐶 ⊆ ℝ𝑁𝑐

 𝜓𝑓𝑖𝑥 , 𝜓𝑣𝑎𝑟 ∈ Ψ ⊆ ℝ𝑁𝜓

 𝜓𝑣𝑎𝑟~𝑓𝜓𝑣𝑎𝑟
(𝜓)

 𝜏 ∈ Τ ⊆ ℝ𝑁𝜏

 𝑡 ∈ [𝑡𝑠, 𝑡𝑓], 𝐻 = 𝑡𝑓 − 𝑡𝑠

where 𝑓𝑝 is the 𝑝𝑡ℎ differential-algebraic equation of the model

and ℎ𝑞 is the 𝑞𝑡ℎ model constraint. 𝑥𝑘,𝑗(𝑡) is a state variable

from the system for task 𝑘 taking place at unit 𝑗 and 𝑥̇𝑘,𝑗(𝑡) is

the derivative of that variable. 𝑢𝑘,𝑗(𝑡) is a control decision

variable involved in task 𝑘 at unit 𝑗. The control actions 𝑢𝑘,𝑗(𝑡)

that can be taken at each time interval t by the time-dependent
unit operations j to maintain the process on target are limited to
a set of discretized actions included in the set 𝑈. 𝑓𝜓𝑣𝑎𝑟

(𝜓) is

the PDF used to describe the likelihood of a realization of 𝜓𝑣𝑎𝑟 .

𝑠𝑘,𝑗,𝑒 is a binary decision variable that specifies the scheduling

process for the batch plant. This variable is defined for every
task 𝑘 at unit 𝑗 during the set of time intervals 𝑡 and tells if such
task and unit are occupied or not.

Problem P1 can be defined as a stochastic Mixed Integer
Dynamic Optimization (MIDO) problem, which may become
challenging to solve since the realizations of 𝜓𝑣𝑎𝑟 are not
known a priori. Approaches consisting of the decomposition of
the problem into MILP or MINLP can be used to reduce the
problem’s complexity but they present their own challenges for
online implementation due to intensive calculations (Andrés-
Martínez and Ricardez-Sandoval, 2022). Simplifications can
be made with a trade-off between time response and quality of
the solution. The DRL method presented in this work is used to
train the agent for stochastic realizations of the input parameters
and then, once trained, it can be implemented online and
provide immediate (online) responses to the integrated process
thus providing a fast reliable solution to this problem.

3. METHODOLOGY

In this section we present the methodology to design the DRL

agent that can provide online solutions to the flow-shop

scheduling and control problem described in P1. A Proximal

Policy Optimization (PPO) method is used to train the agent as

it is a stable and general-purpose algorithm. The following key

components in the DRL framework are explained in this

section: 1) the action space for the scheduling and control

tasks; 2) the input sequence vector for the agent, which

contains relevant information used to take a decision; 3) the

reward function, 4) the time-dependent stochastic parameters,

and 5) the architecture of the hybrid agent.

3.1. Action space

The number of decisions that an agent will take at each time

interval 𝑡 in the horizon 𝐻 include both scheduling and control

decisions. It is assumed here that both tasks need at least one

action to be executed in the process but this can be extended to

multiple actions that correspond to each task. The set of action

spaces is shown in Eq. (1), where all the needed actions for

scheduling and control tasks are included. Note that all the

action spaces in this set are discretized; it is also possible to set

continuous spaces but this is beyond the scope of this work.

𝐴𝑐𝑡𝑖𝑜𝑛𝑠 = {𝑎1, 𝑎2, … , 𝑎𝑛} (1)

The scheduling action space can specify the task and unit to be

initialized at each time interval. Since an action is delivered at

every time interval 𝑡, the action space also includes an idle

action that do not start any task. Other discrete actions related

to the scheduling task can be added to the agent, for instance,

the capacity at which a task should be started (i.e., 100%, 20%,

etc.). Similarly, the number of control actions is given by the

number of control decision variables included in the set 𝑈

defined above. Since the control actions are discretized, the

control profiles generated by the agent for each control

variable uk,j will be similar to step-like functions applied to

each time interval t.

During implementation, at a specific time interval, the

environment sends the sequence of observations from the

process to the agent. Then, for every action space in 𝐴𝑐𝑡𝑖𝑜𝑛𝑠,

a categorical distribution 𝑝𝑎𝑛
 is provided (Eq. 2). The largest

probability at each action space distribution defines the action

executed in the environment. During training, the distributions

are used to sample actions and learn from their execution. Note

that at all time intervals, the agent generates categorical

distributions for all the action spaces described in the set

𝐴𝑐𝑡𝑖𝑜𝑛𝑠. Naturally, not all of them are used at all time

intervals, for instance a control action will be only used when

the corresponding unit is active. Actions that are not required

at a certain time interval are ignored by the environment.

𝑝𝑎𝑛
= (𝑝1, 𝑝2, … , 𝑝𝑚) where ∑ 𝑝𝑚𝑚∈𝑀 = 1 (2)

3.2. Observation Vector

A vector with the information from the environment called

observation vector (𝑜𝑡) is generated at every time interval and

sent to the agent to produce the next set of actions. The vector

𝑜𝑡 defined in Eq. (3) contains the features that have a

measurable effect in the scheduling and control tasks. In this

work, 𝑜𝑡 gathers the following information: i) the occupation

of the available units 𝑗; ii) processing times of the units that are

in use; iii) information relevant to the control problem, e.g.,

concentrations, flow rates, and temperatures; and iv) the

current time interval. This information is retrieved at every

time interval from the environment and is also normalized to

stabilize the learning process. Note that the representation of

these variables in 𝑜𝑡 depends on the user’s preferences. For

instance, the use of probabilities, constant values, one-hot

encodings, or normalized values can be used to pre-process

these features and then add them to the observation vector 𝑜𝑡.

𝑜𝑡 = [𝑥𝑘,𝑗(𝑡), 𝑠𝑘,𝑗,𝑒 , 𝜏𝑘,𝑗 , 𝑡] (3)

Although this state representation provides full observation to

the agent, the use of the POMDP approach is justified to

provide the agent with additional information from past events.

The LSTMs correlate the information in a temporal context

which helps are key to consider interactions between

scheduling and control.

3.3. Reward function

A reward shaping method was used in this work to decompose

the total reward into 𝑚 sub rewards 𝑟, i.e.,

𝑅𝑒𝑤𝑎𝑟𝑑 = ∑ 𝑟𝑚

𝑚

 (4)

The subset of rewards 𝑟𝑚 for the scheduling actions is based

primarily in allocation constraints and the correct order of task

initialization in the flow-shop. This ensures that the conditions

for initiating a task are met, for instance, availability of

material or availability of units. Moreover, penalties for

machines staying idle during a process should be set to ensure

the reduction of the makespan. Furthermore, the reward should

be increased as the process reaches the end, i.e., to provide

larger rewards to the agent for initializing tasks that are closer

to the end.

Regarding the control decisions, the agent should account for

the economic incentives associated with these tasks. For

instance, providing larger rewards to utility services that are

less expensive. Penalties should be provided for constraint

violations that may occur during transient operation, e.g.,

surpassing a safety limit or not reaching the expected product

specifications at the end of the task. It is assumed that any task

𝑘 that comprises a dynamic system will need at least one time

interval to be completed. Hence, a sequence of control

decisions, each implemented at each time interval t, are

required for the duration of that task. Then, the reward for that

sequence is provided at the end of task 𝑘. Here, the POMDP

approach becomes useful as the sequence of actions (i.e., the

control profile) is receiving a reward, rather than only the

present action. Thus, the use of LSTMs results convenient for

handling the delayed rewards in the environment. After being

sent to the environment, the actions from the set 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 that

were implemented (recall that not all of them might be used)

are evaluated with the system of rewards. When all the rewards

are assigned to the scheduling and control decisions, they are

added up and sent as a unique (scalar) reward to the agent.

3.4. Stochastic Parameters

The environment is a representation of the process where the

agent can learn by trial and error on how to perform a task. The

limitations of the real process (i.e., constraints) and the

description of fixed and stochastic parameters (i.e., 𝜓𝑓𝑖𝑥, 𝜓𝑣𝑎𝑟)

should be added into this simulation. During each iteration of

the training, the stochastic parameters are set to present the

agent a specific realization of this parameter. The agent gathers

experience from these realizations and generalizes a policy

that can choose the best action for a given realization of 𝜓𝑣𝑎𝑟 .

In the environment, the mathematical description of the

stochastic parameters should be incorporated through a PDF,

e.g., a Gaussian or Uniform distribution. These values should

also be incorporated in the observation that are sent to the

agent as they are relevant for the next decision. Note that the

increase in time-varying parameters has a direct impact on the

length of the training. This is because the agent needs to

explore multiple realizations to learn its policy. Thus, the

exploration space grows as more stochastic parameters are

considered.

3.5. Hybrid Agent

The architecture considered in this study for the hybrid agent

was adapted from (Fan et al., 2019). This architecture allows

the agent to generate 𝑛 outputs for the scheduling and control

decisions defined in the set 𝐴𝑐𝑡𝑖𝑜𝑛𝑠. The 𝑛 outputs from the

agent are categorical distributions. Each distribution gives the

probability to each possible outcome of that particular action

(see Eq. (2)). The hybrid agent uses a correlational module

built with 𝑊 layers of LSTMs to gain insights of the sequence

of observations 𝑜𝑡. The sequence is also called observation

window 𝑂𝑡 as shown in Eq. (5). It starts in the time interval t-

λ+1, and ends in the time interval t, where λ denotes the

number of observations. This allows to register all the steps

that a task takes to complete. That is, the agent can access the

sequences that contain the evolution of the tasks from start to

end, which is not possible under the MDP approach.

𝑂𝑡 = [𝑜t−λ+1, … , 𝑜𝑡−2, 𝑜𝑡−1, 𝑜𝑡] (5)

The general architecture of the neural network is depicted in

Fig. 1. The observation window 𝑂𝑡 is an input to the

correlational module with 𝑊 layers. Then, the outputs are

passed through a set of 𝑌 linear layers. The final output of this

section is input into 𝑛 separated sets with 𝑍 linear layers. The

output of each set is passed through a SoftMax activation

function to output each categorical distribution.

Fig. 1. Hybrid agent with correlational module

With this architecture, an agent that can coordinate both

scheduling and control tasks can be trained. The incorporation

of LSTMs into the agent allows to correlate the observations.

This feature provides the agent with a wider visualization of

the development of the processes. Limitations of networks

with recurrence include the computational effort that they

require as they evaluate the sequence element by element, i.e.,

not in a parallel fashion.

4. CASE STUDY AND DISCUSISON OF RESUTLS

The methodology is applied to perform the simultaneous

scheduling and control of a flow-shop batch plant from the

literature (Rodríguez Vera and Ricardez-Sandoval, 2022). Fig.

2 shows the process composed by four tasks: 1) a set of

chemical reactions (RI), 2) a filtration process (FI), 3) a set of

reactions (RII), and 4) a separation process (SI), i.e., 𝑁𝑘 =
{𝑅𝐼, 𝐹𝐼, 𝑅𝐼𝐼, 𝑆𝐼}. The time horizon 𝐻 is set to 15 hours and is

divided in even time intervals of 𝑡 = 0.5 h; hence, there are 30

time intervals at which the agent can take decisions.

Fig. 2. Bach Plant model

The process begins in RI, where a non-isothermal batch reactor

is used to transform substance A into an intermediate product

B. The temperature of the reactor is controlled through the

flow rates of Feed 1 and Feed 2, which correspond to a hot and

a cold stream of water, respectively. The resulting mixture of

products A and B from RI is then filtered in task FI. The

intermediate species B is then passed to a semi-batch reactor

where species D is added through Feed 3. The flow-rate of

Feed 3 is controlled during the process to regulate the

production of products E and F. The mixture of species B, D,

E, and F (where E is the desired product) is separated in task

SI, as shown in Fig. 2. Processes FI and SI are assumed to

achieve perfect separation and are stationary processes. The

four tasks have a fixed operation time of 2h. RI and RII are

assumed to be dynamic processes and are expected to finish at

their corresponding processing time. Each task has one unit,

i.e., 𝑁𝑗 = {𝑅𝑒𝑎𝑐𝑡𝑜𝑟1, 𝐹𝑖𝑙𝑡𝑒𝑟, 𝑅𝑒𝑎𝑐𝑡𝑜𝑟2, 𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑜𝑟}. After

completion, each unit will store the outgoing material until the

following task is initialized. While the material is stored in that

unit, a subsequent task for this unit cannot be initialized. The

mechanistic models of the dynamics systems, the process

constraints, model parameters and initial conditions for this

case study can be found in (Rodríguez Vera and Ricardez-

Sandoval, 2022). For the present case study, the initial

concentrations of species A entering RI and D in Feed 3 vary

according to a uniform distribution. For the former, the

distribution is bounded between 1.01 and 1.15 𝑘𝑚𝑜𝑙/𝑚3,

while the latter is bounded between 0.80 and 0.89 𝑘𝑚𝑜𝑙/𝑚3.

The economic function is described in Eq. (6) and aims to

maximize the revenue from the production of product E while

considering the minimization of costs related to the utility

services from the three controlled flow rates corresponding to

Feeds 1, 2, and 3 as described above.

𝐺 = 𝑐𝑜𝑠𝑡𝐸 ∗ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑆𝐼 + 𝑐𝑜𝑠𝑡𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 (6)

where 𝑐𝑜𝑠𝑡𝐸 ∗ 𝑆𝑡𝑜𝑟𝑎𝑔𝑒𝑆𝐼 denotes the revenue obtained from

the product that is output from task 𝑆𝐼. The costs of the product

E and utility services are specified in (Rodríguez Vera and

Ricardez-Sandoval, 2022). The objective of the DRL agent is

to design a policy that can produce an online schedule and a

control strategy considering the stochastic variability in the

concentrations in the raw materials, i.e., species A and D.

At every time interval 𝑡, the agent will provide four (𝑛 = 4)

decisions: 1 for the scheduling task, and 3 for the control task.

For the scheduling task, the agent will decide which task to

activate; hence, this decision has 5 possible outcomes (i.e., 4

tasks and 1 idle action). The control task manipulates the flows

of Feeds 1, 2, and 3 (see Fig. 2) while the task RI and RII are

in operation. For every time interval cloistered in the operation

time of these tasks, the agent sends a control decision to the

environment. Then, the states of tasks RI or RII are sent back

to the agent where another control decision is made for the next

time interval. The control actions for each flowrate are

discretized as shown in Table 1.

Table 1. Flow-rates for the control tasks.

 Low 𝑚3/ℎ Medium 𝑚3/ℎ High 𝑚3/ℎ

Feed 1 3.75 7.5 16.0

Feed 2 3.75 7.5 16.0

Feed 3 0.08 0.9 1.7

Since the processing times (𝜏𝑘,𝑗 = 2.0ℎ) are the same for

every task and since a time interval is of length 0.5h, the

control profile for each process has four stages. If the reaction

task do not reach the desired concentration at the end of the

processing time, or if one of the constraints is violated during

operation, then the product will be wasted away from the

process. For the subsequent actions, the agent should consider

this interruption and schedule tasks accordingly. The system

of rewards shown in Table 2 was used to guide the learning of

the agent to aim for the maximization of profit.

Table 2. Rewards assigned to the actions.

 Description of the rewards

S
ch

ed
u

li
n

g

ac
ti

o
n

s

Reward +5 if the unit for that task is not busy when

initializing a task and -10 if the unit is busy.

If the task is completed to the end, then give a reward

of +10, if the process is interrupted due to constraint

violation, give a penalty of -5.

For every time interval that tasks RI, FI and RII keep

the product stored, a penalty of -0.5 is addressed.

C
o

n
tr

o
l

ac
ti

o
n

s

Feeds 1 and 2:

If Task 1 (RI) is running, provide a reward of +3 if

the high profile is chosen, +6 for the medium profile,

and +9 for the low profile.

This is done for each hot and cold flows. The total

reward is the addition of both.

Feed 3:

If Task 3 (RII) is running, provide a reward of +6 if

the high profile is chosen and applied, +12 if it is

medium profile, and +18 if it is the low profile.

The architecture of the agent is based on Fig. 1. The length of

the observation window is set to 4 (i.e., 𝜆 = 4) since each unit

is assumed to require 4 time intervals to complete a task. The

relational module has three layers of LSTMs (𝑊 = 3),

followed by two layers, i.e., 𝑌 = 3. Then, the output of this set

is the input of each of the sets of layers that represent each

action (𝑛 = 4); each one with three layers (𝑍 = 3). Hidden

layers use tanh activation functions while a SoftMax activation

function is used to generate categorical distributions. The DRL

method was developed in Python 3.11.3 and PyTorch version

2.1.0. The training was performed using Adam’s optimizer;

with the learning rate gradually decreased through an

annealing technique, starting at 1e-4 and finishing at 1e-6. To

refine the exploration as the training progressed, the

smoothness of the categorical distributions was sharpened

using temperature annealing, starting at 1 and ending at 0.001.

A test with 1000 multiple realizations in 𝜓𝑣𝑎𝑟 was performed

with the trained policy 𝜋𝑣. Fig. 3 shows the number of times

(cycles) that the process in Fig. 2 was executed in the horizon

𝐻. In almost 90% of the realizations, the agent could complete

two to three cycles. The agent could not set three cycles in all

the instances due to time limitations or a task failure, as

discussed below. To compare the performance of the policy

obtained by this method (𝜋𝑣), a second policy (𝜋𝑓) was trained

on the same environment but under no variability in the inlet

concentrations, i.e., 𝜓𝑣𝑎𝑟 were fixed to 1.08 𝑘𝑚𝑜𝑙/𝑚3 and

0.845 𝑘𝑚𝑜𝑙/𝑚3 for species A and D, respectively. The

resulting policy 𝜋𝑓 was then tested under 1000 stochastic

realizations in 𝜓𝑣𝑎𝑟 . As shown in Fig. 3, the strategy learned

by 𝜋𝑓 could handle many of the scenarios on which 𝜋𝑣 was

trained. This was expected because the control profiles that

were learnt by 𝜋𝑓 may be adequate to accommodate most of

the stochastic scenarios; nevertheless, they might not align

with the objective function. In half of the processes, 𝜋𝑓 could

not produce a full cycle, i.e., no production; only in 13.3% of

the instances it was able to complete three cycles as policy 𝜋𝑣.

Fig. 4 shows a schedule built with 𝜋𝑣 in which the first cycle

was interrupted due to the cancellation of Task RII. After this,

the agent chooses the initialization of Task RI instead of Task

S, which aims to produce more product E. This decision

corresponds to the reaction of the agent to the suspension of

the first cycle. It was observed that the agent left blank spaces

in between tasks, presumably due to a lack of sensitivity to the

observation window. Also, some tasks that were already in

operation were selected to be initialized by the agent; these

actions result in an infeasible operation. This problem can be

addressed by increasing the penalties associated with violation

of allocation constraints in exchange for a more conservative

agent. A heuristic that cancels the initialization of infeasible

actions was added to the environment, i.e., new task that must

be started on a unit that is already in operation are cancelled.

Fig. 3. Comparison between policies

In most of the cases, the control profiles found by 𝜋𝑣
completed reactions RI and RII without any constraint

violations (not shown for brevity). Results from Fig. 3 confirm

the effectiveness of the control actions chosen by the hybrid

agent since it completed multiple cycles under stochastic

variability in the inputs parameters affecting RI and RII.

Fig. 4. Schedule with three cycles initialized

5. CONCLUSIONS

In this work a methodology for developing a DRL to address

the integration of scheduling and control in flow-shop batch

plants is presented. The DRL method allows to build online

schedules and control profiles according to the conditions of

the plant. A POMDP approach is used to retrieve history from

the plant and consider the tasks evolution in the decision-

making process. To handle multiple decisions taken during

transient operation, a hybrid agent is used to output more than

one action at every time interval. To validate the method, a

batch plant was considered for optimal scheduling and control.

The agent designed an effective online schedule and control

policy that can accommodate stochastic realizations in the

input parameters. The application of this method for partially

observable environments is part of the future work.

Consideration of discrete and continuous actions for

scheduling decisions has been recently reported (Rangel-

Martinez and Ricardez-Sandoval, 2025); extending this

approach for integration of scheduling and control is also

recommended for future work.

6. ACKNOWLEDGMENT

Support provided by CONAHCYT, Mexico is acknowledged.

7. REFERENCES

Andrés-Martínez, O., Ricardez-Sandoval, L.A., 2022.

Integration of planning, scheduling, and control: A review

and new perspectives. The Canadian Journal of Chemical

Engineering 100, 2057–2070.

https://doi.org/10.1002/cjce.24501

Bloor, M., Ahmed, A., Kotecha, N., Mercangöz, M., Tsay,

C., Chanona, E.A.D.R., 2024. Control-Informed

Reinforcement Learning for Chemical Processes.

Fan, Z., Su, R., Zhang, W., Yu, Y., 2019. Hybrid Actor-Critic

Reinforcement Learning in Parameterized Action Space.

Hubbs, C.D., Li, C., Sahinidis, N.V., Grossmann, I.E.,

Wassick, J.M., 2020. A deep reinforcement learning

approach for chemical production scheduling. Computers

& Chemical Engineering 141, 106982.

https://doi.org/10.1016/j.compchemeng.2020.106982

Mendiola-Rodriguez, T.A., Ricardez-Sandoval, L.A., 2023.

Integration of design and control for renewable energy

systems with an application to anaerobic digestion: A deep

deterministic policy gradient framework. Energy 274.

https://doi.org/10.1016/j.energy.2023.127212

Mowbray, M., Smith, R., Del Rio-Chanona, E.A., Zhang, D.,

2021. Using process data to generate an optimal control

policy via apprenticeship and reinforcement learning.

AIChE Journal 67, e17306.

https://doi.org/10.1002/aic.17306

Rangel-Martinez, D., Ricardez-Sandoval, L.A., 2024. A

recurrent reinforcement learning strategy for optimal

scheduling of partially observable job-shop and flow-shop

batch chemical plants under uncertainty. Computers &

Chemical Engineering 188, 108748.

https://doi.org/10.1016/j.compchemeng.2024.108748

Rangel-Martinez, D., Ricardez-Sandoval, L.A., 2025. A

Recurrent Reinforcement Learning Strategy with a

Parameterized Agent for Online Scheduling of a State Task

Network Under Uncertainty. Industrial & Chemical

Engineering Research.

https://doi.org/10.1021/acs.iecr.4c04900

Rodríguez Vera, H.U., Ricardez-Sandoval, L.A., 2022.

Integration of Scheduling and Control for Chemical Batch

Plants under Stochastic Uncertainty: A Back-Off

Approach. Ind. Eng. Chem. Res. 61, 4363–4378.

https://doi.org/10.1021/acs.iecr.1c04386

Sachio, S., Mowbray, M., Papathanasiou, M.M., del Rio-

Chanona, E.A., Petsagkourakis, P., 2022. Integrating

process design and control using reinforcement learning.

Chemical Engineering Research and Design 183, 160–169.

https://doi.org/10.1016/j.cherd.2021.10.032

Waschneck, B., Reichstaller, A., Belzner, L., Altenmüller, T.,

Bauernhansl, T., Knapp, A., Kyek, A., 2018. Optimization

of global production scheduling with deep reinforcement

learning. Procedia CIRP, 51st CIRP Conference on

Manufacturing Systems 72, 1264–1269.

https://doi.org/10.1016/j.procir.2018.03.212

