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Abstract: As chemical plants evolve towards full autonomy, the need for effective fault handling
and control in dynamic, unpredictable environments becomes increasingly critical. This paper
proposes an innovative approach to industrial automation, introducing validation and reprompt-
ing architectures utilizing large language model (LLM)-based autonomous control agents. The
proposed agentic system—comprising of operator, validator, and reprompter agents—enables
autonomous management of control tasks, adapting to unforeseen disturbances without human
intervention. By utilizing validation and reprompting architectures, the framework allows agents
to recover from errors and continuously improve decision-making in real-time industrial scenar-
ios. We hypothesize that this mechanism will enhance performance and reliability across a variety
of LLMs, offering a path toward fully autonomous systems capable of handling unexpected
challenges, paving the way for robust, adaptive control in complex industrial environments. To
demonstrate the concept’s effectiveness, we created a simple case study involving a temperature
control experiment embedded on a microcontroller device, validating the proposed approach.
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1. INTRODUCTION

Chemical plants are moving towards autonomous opera-
tions. Especially for routine operations that follow well-
defined procedures, autonomous operation is considered
technically feasible with currently available technologies
(Borghesan et al. (2022)). However, a significant challenge
in developing autonomous control systems is the need to
account for long-tail events, which are rare, unpredictable
occurrences that fall outside of the scope of typical op-
erational scenarios. In industrial contexts, these long-tail
events can range from unexpected equipment failures to
highly unusual process disturbances. Traditional automa-
tion approaches struggle to handle such events, as they
rely heavily on predefined rules and algorithms, render-
ing them overly rigid and poorly adapted to situations
that deviate from expected patterns. Solutions leveraging
machine learning models have made some progress in
handling known unknowns such as known disturbances
or possible plant-model mismatch but they tend to fail
in handling anomalies. This is primarily because these
models are trained on majority-class data, as anomaly
data is scarce or available in too few samples. As a result,
these solutions struggle to detect and react to anomalies
in real-time, particularly in scenarios involving unknown
unknowns—unforeseen disturbances that the system was
not designed to handle.
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Currently, human operators play a key role in manag-
ing the type of unknown unknowns discussed previously.
Leveraging their reasoning abilities and domain knowledge
human operators can dynamically assess a situation and
adjust their actions based on real-time feedback. The
overarching goal of this work is to bridge these reasoning
and knowledge use abilities to autonomous systems using
generative machine learning models as intelligent control
agents. We particularly focus on the use of Large Language
Models (LLMs) for this purpose.

LLMs, with their extensive knowledge bases and reasoning
capabilities, represent a promising avenue for developing
intelligent control agents capable of autonomously ana-
lyzing incoming data, diagnosing anomalies, and making
informed control decisions in a zero-shot manner- making
inferences and offering solutions to scenarios they have not
explicitly encountered in training (Pantelides et al., 2024).
The challenge is transitioning to a fully automated system
that can evaluate responses and adjust actions indepen-
dently. To address this, we propose a reprompting archi-
tecture that empowers LLMs to function as autonomous
control agents. This architecture enables agents to validate
their actions against a digital twin, implementing them
in the physical system if they pass validation; if not, the
agent is prompted to revise its approach. This iterative
process significantly enhances decision-making capabilities
and improves system performance in real-time.



2. RELATED WORK

2.1 Evolution of Autonomous Systems for Industrial Control

Autonomous systems have been defined in various ways
across the literature, with some emphasizing their capa-
bility to solve tasks independently of specific program-
ming instructions (Abbass et al. (2018)) and others noting
their ability to achieve goals without step-by-step guid-
ance (Watson and Scheidt (2005)). Another perspective
highlights autonomy as the capacity to make decisions un-
der incomplete information (Abbass et al. (2018)). These
definitions underscore the growing role of artificial in-
telligence (AI) in industrial control systems, positioning
Autonomous Industrial Systems as a key area within In-
dustrial AI, intersecting with fields like Machine Learning,
Natural Language Processing, and Robotics (Peres et al.
(2020)).

Initial approaches in agent based systems utilized rule-
based agents for tasks such as intrusion detection (Jha
and Hassan (2002)) or decision support (Gao et al. (2009)).
Despite some success, rule-based agents are inherently lim-
ited to predefined situations, making them less adaptable
to novel scenarios (Siu et al. (2021)). This constraint led
researchers to explore machine learning and deep learn-
ing (DL) agents, which can adapt based on data. For
instance, DL-based multi-agent systems have shown effec-
tiveness in intrusion detection (Louati and Ktata (2020)),
yet the complexities of data collection and validation
in distributed environments create substantial challenges
in many industrial applications (Hanga and Kovalchuk
(2019)).

To address these limitations, researchers turned to rein-
forcement learning (RL) agents. RL agents, while highly
effective for specialized tasks, face challenges in sample effi-
ciency, generalizability, and lengthy training times (Cheng
et al. (2024)). Despite their effectiveness in specific ap-
plications like process control in crystallization (Meng
et al. (2023)) and inventory management (Mousa et al.
(2024)), RL-based approaches often require well-defined
problem settings and reward functions, which can limit
their scalability in complex, dynamic environments (Nian
et al. (2020)) and may not be well suited for handling
anomalous conditions.

2.2 Large Language Models (LLMs) in Industrial Control

Recently, large language models (LLMs) have emerged
as a promising tool in agent based systems due to their
adaptability and generalization abilities. LLMs have made
significant inroads in chemical engineering, such as pre-
dicting material properties (Jia et al. (2024), Balaji et al.
(2023)) and process decision-making (Chen et al. (2024),
Schweidtmann (2024)). LLMs have also been employed for
tasks like fault detection and flowsheet generation, where
they assist in complex problem-solving by completing,
correcting, or even generating flowsheets autonomously
(Balhorn et al. (2024), Hirtreiter et al. (2023)).

LLMs have also been considered for industrial control as
well. Song et al. (2023) proposed a framework to control
the HVAC system in a building using an LLM. Researchers
used the historical demonstrations along with the prompt

to the LLM performance in controlling the HVAC system
in the building. They demonstrated that an LLM performs
equivalent or surpasses the RL performance. Researchers
have also used LLMs for the modular production and con-
trol of autonomous industrial systems, where the LLMs are
connetced to the digital twins and LLMs adapt with the
interactions with the digital twin for a specific task (Xia
et al. (2023)). Xia et al. (2024) propose a framework to
achieve an end to end industrial automation system. Their
framework supplies LLMs with real-time events on dif-
ferent context semantic levels, allowing them to interpret
the information, generate production plans, and control
operations on the automation system. In this work, the
researchers propose to use a digital-twin of the industrial
system for generating context for the automation agents
but they do not consider a validation or reprompting
scheme or the generation of any kind of feedback or cri-
tique for the LLM actions.

2.3 Contribution

In this work, we introduce the concept of using reprompt-
ing architectures for industrial control, where LLMs oper-
ate autonomously in complex process environments. The
idea here is to have an agent based system which can
carry out tasks autonomously. The engine for the agents in
the system would be a large language model (LLM). We
hypothesize that with the reprompting architecture, the
performance of the system would improve. LLMs which
are prone to hallucinations as their inherent model char-
acteristic may result in erroneous action, which can be
hazardous in safety critical systems. Thus, having another
agent which acts as a critique in navigating to an safe-to-
optimal response would decrease the likelihood of the error
rates. More specifically we introduce validation agents
utilizing a simulation capability e.g. using a digital-twin
to check the utility of the actions generated by the LLM
agents and use a reprompting agent to provide feedback
to the actor agent for improving the action in case the
previously suggested action does not pass the validation
check.

To illustrate the potential of this approach, we present
a case study focused on temperature control using a
physical micro-controller. We argue that this methodology
aligns with the growing trend towards adaptive, fully
autonomous systems and establishes a new pathway for
intelligent industrial automation.

The following sections delve deeper into the components of
the proposed framework. Section 3 provides an overview of
the framework and its components. In section 4 we present
the temperature control case study and its architecture.
Section 5 discusses the results of the case study and its
findings. Finally, section 6 we touch upon the future work.

3. METHODOLOGY

The proposed framework introduces a modular and adap-
tive LLM-based multi-agent system, with a focus on pro-
grammatically leveraging a Reprompting step via a Re-
prompter Agent to guide an Actor Agent toward safe
and effective solutions. Each agent is assigned a specific
role, equipped with tools, and tasked with distinct actions



Fig. 1. Schematic of an agentic framework for monitoring and controlling a process plant during anomalous conditions

that contribute to the overarching system objectives. This
section outlines the framework’s role in enhancing system
reliability and responsiveness through a coordinated agent-
based approach.

3.1 Framework Overview

The core of this framework is built around four principal
agents—the Monitoring Agent, Actor Agent, Validator
Agent, and Reprompter Agent—that interact with a simu-
lated digital twin environment (see e.g. Fig 1). This digital
twin serves as a proxy for the physical system, enabling
safe validation of actions and structured feedback loops
before passing actions to the physical plant.

• Monitor Agent: The Monitoring Agent gathers
the state from the plant and can act as a versatile
agent. The Monitoring agent can be used for both
continuous control or anomaly detection. In case of
continuous control, it would keep the track of the
performance of the system and would allow for a
planned action in a continuous manner. While in case
of anomaly detection, the Monitoring agent would
only trigger the subsequent agents if it detects the
anomaly.

• Actor Agent: The Actor Agent initiates actions
aimed at achieving control objectives, such as modify-
ing parameters or toggling operational states. It oper-
ates based on predefined goals, and once it formulates
an action, the Actor Agent passes this decision to the
digital twin. This simulation evaluates the potential
effects of the action, minimizing the risk of unsafe
interventions on the physical system.

• Digital Twin Simulation: The digital twin emu-
lates the behavior of the physical system in response
to the Actor Agent’s actions, enabling real-time as-
sessment in a no-risk environment. This simulated
feedback captures anticipated system responses, al-
lowing agents to test actions safely before deploy-
ment.

• Validator Agent: Following the simulation, the Val-
idator Agent assesses the Actor Agent’s proposed
action based on safety and operational criteria. If the
action meets these criteria, it is ready for physical

deployment. However, if it is deemed unsafe or subop-
timal, the Validator Agent flags the action, prompting
the Reprompter Agent to intervene for a predefined
iterations after which, if the actions are unsafe, the
safety system would override the actions.

• Reprompter Agent: The Reprompter Agent is a
pivotal component in ensuring system safety and re-
finement. When an action fails validation, the Re-
prompter Agent collaborates with the Actor Agent to
adjust the initial decision. Using alternative prompts
generated by processing the digital-twin outputs.
These reprompting strategies enable the agent to de-
compose complex tasks for the action agent or devise
alternative approaches to ensure the successful com-
pletion of the task. The Reprompter Agent conditions
the Action Agent until it aligns with the Validator
Agent’s criteria. This process forms a feedback loop
in which each iteration is tested in the digital twin
and validated again, ensuring the action is both safe
and optimized. The loop persists until the action
either satisfies validation standards or reaches a pre-
defined limit on iterations, safeguarding stability in
the control process. Since this loops are not based on
numerical iterations, they do not affect the stability
of the control feedback.

This structured interaction between agents, anchored by
the Reprompter Agent’s corrective capabilities, enables
the system to autonomously navigate complex control en-
vironments. By leveraging programmatic refinement, the
Reprompter Agent helps the Actor Agent reach safe and
effective solutions, ensuring robust and adaptive control in
dynamic industrial settings.

3.2 Components of framework

• Agents: Each agent functions as a specialized LLM-
driven entity with a distinct role in the feedback loop,
contributing to adaptive control:

· Role: Defines the purpose of each agent.
· Goal: Provides clarity on what each agent should
achieve.

· LLM: Serves as the core reasoning engine, en-
abling agents to analyze, evaluate, and adapt.



· Tools: Specify tools which the agent would have
access to in the decision making process.

• Tools: These serve as specialized utility functions
that support agents during decision-making. Tools
enable agents to handle tasks that are beyond the
core capabilities of an LLM, such as performing com-
plex calculations or accessing specific lookup tables.
By supplementing the LLM’s reasoning with precise
computational and data-access functions, the tools
enhance the agents’ ability to make informed, accu-
rate decisions.

• Tasks: These are targeted assignments given to each
agent, ranging from concise directives to detailed
instructions that guide the LLM in executing spe-
cific actions. Tasks are carefully assigned to agents
equipped with the necessary expertise or context,
ensuring the agent’s background aligns with the re-
quirements of the task. Each task description provides
clear guidance to optimize agent performance and
streamline the overall decision-making process.

In summary, this methodology outlines a structured, it-
erative framework designed to leverage the capabilities
of Large Language Model (LLM)-based agents in au-
tonomous industrial control. Each component, from spe-
cialized agents to supporting tools and defined tasks, works
in concert to ensure safe, adaptive, and effective control ac-
tions within a digital twin environment. The introduction
of a Reprompter Agent strengthens the system’s resilience,
facilitating a feedback-driven refinement process that iter-
atively adjusts actions until they meet safety and efficacy
standards.

To demonstrate the practical application of this frame-
work, we present a case study in temperature regulation.
This case study illustrates the roles and interactions of
the Actor, Validator, and Reprompter agents in real-world
scenarios, showcasing the framework’s capability to au-
tonomously navigate complex control challenges.

4. CASE STUDY

This case study demonstrates the application of the pro-
posed LLM-based multi-agent framework to autonomously
control a physical Arduino microcontroller known as
TCLab (Oliveira and Hedengren (2019)). The setup aims
to manage heater operations based on specific temperature
thresholds: heaters are turned off when the temperature
exceeds 27°C and turned on when it falls below 25°C. This
creates a cyclical oscillation within these thresholds, with
the control sequence monitored over a 40-minute period.
The goal of this case study is to assess how effectively
the proposed multi-agent framework improves via the use
of re-prompting for autonomous control under real-world
conditions.

Structure of the Case Study The case study employs
a three-agent structure (Fig 2), each with distinct roles to
facilitate intelligent decision-making and control processes:

• Operator Agent: The Operator agent initiates an
action based on real-time temperature readings. It
determines when to activate or deactivate the heater
based on the predefined thresholds. By leveraging its

Fig. 2. Case Study Schematic

role-specific prompts, the Operator Agent interprets
data and issues commands to maintain the target
temperature range.

• Validator Agent: The Validator Agent assesses
the actions proposed by the Operator Agent. It
verifies whether the action aligns with the control
logic—specifically, maintaining temperatures within
the desired range. If the proposed action does not
meet the criteria, the Validator flags it for reevalu-
ation, preventing potentially unsafe or incorrect re-
sponses from being implemented.

• Reprompter Agent: Upon a validation failure, the
Reprompter Agent is activated to analyze and refine
the action suggested by the Operator Agent. The
Reprompter Agent recalibrates the initial action to
ensure it aligns with the system’s predefined require-
ments. The refined action undergoes a secondary val-
idation before being deployed.

While the framework is generally designed to work with a
digital twin model, the simplicity of this control task allows
us to embed it into the Validator Agent in this case study.
This approach demonstrates the framework’s adaptability
to different control tasks, highlighting each agent’s contri-
bution to maintaining stable, autonomous control. Future
work will integrate a digital twin, particularly for complex,
safety-critical scenarios like fault detection, enhancing the
framework’s robustness for advanced industrial control.
This case study underscores the potential of this multi-
agent configuration to autonomously manage and correct
actions in real-world applications.

5. RESULTS

The case study framework was realized using CrewAI
mutli-agent platform (CrewAI, 2024). The framework was
createdand executed locally while the agents’ engine uti-
lized LLMs from OpenAI suite (OpenAI, 2024) accessed
in the cloud via the OpenAI APIs for the correspond-
ding LLMs . The communication between TCLab and
the framework was achieved via a Python based wrapper.
The performance of the proposed framework, leveraging
OpenAI’s large language models (LLMs) suite as control
agents, was evaluated within a temperature regulation case
study. This evaluation centered on the agents’ accuracy in
executing control actions and their control performance.
We measured accuracy across two settings—initial pass
accuracy and accuracy post-reprompting—to analyze the
models’ ability to correct missteps autonomously.



Fig. 3. Temperature Profile for GPT 3.5

Fig. 4. Temperature Profile for GPT 4o-mini

Fig. 5. Temperature Profile for GPT 4o

The results in Table 1 show a two fold story, one is
about the sampling rates and other about the accuracy.
Here the sampling rates for GPT 4o is the highest while
GPT 4 has the lowest sampling rate. This is a result
of the inference time of these models, thus impact the
sampling rates. This although of lesser importance for this
application, indicates that autonomous systems with LLM
based agents may not be suitable for a system that needs
to have fast dynamics.

In terms of accuracy, GPT 4o outperforms other OpenAI
models, with GPT 4 following as the second-best per-
former. Notably, when reprompting is applied, the sys-

Table 1. Accuracy Performance of Language
Models in the proposed framework

Metric GPT3.5 GPT4omini GPT4o GPT4

Accuracy- first pass (%) 60.04 72.49 99.63 93.75

Accuracy - reprompts (%) 85.34 89.97 99.81 96.09

Samples 423 394 554 128

Passes 254 253 552 120

Fails 169 61 2 8

Pass after reprompts 107 96 1 3

Fig. 6. Temperature Profile for GPT 4

tem’s performance increases across all models, with the
most significant improvement observed in GPT 3.5 rising
from 60.4% to 85.34%. These results highlight the poten-
tial of reprompting architectures to enhance model perfor-
mance significantly, enabling even less capable models to
approach the accuracy of more advanced ones.

The control performance of these models were evaluated
using the average temperate deviation from the midpoint
of the temperature range. Table 2 shows that GPT 4o mini
has the best control performance where the overshoots
and undershoots are minimal, whereas while GPT 4 being
highly accurate performs the worst in control performance
amongst the OpenAI LLM suite. This is attributed to the
inference time of the model. For GPT 4 the inference time
was high resulting in previous action being implemented
for an extended period of time. Since the system does not
have cooling, even when the heaters are switched off, resid-
ual heat continues to dissipate, raising the temperature
further. Thus, it is important to note that LLM inference
times do influence the control performance of the system.

Table 2. Control Performance of Language
Models in the proposed framework

Metric GPT3.5 GPT4omini GPT4o GPT4

Average Deviation 0.832 0.077 0.582 1.469

Time above 27C (s) 949 499.10 887.70 1163.09

Time below 25C (s) 0 432.30 285.87 173.40

Time outside range (s) 949.24 931.40 1173.58 1336.50

These results confirm that the proposed framework effec-
tively utilizes LLMs as control agents, and the reprompting
mechanism significantly enhances accuracy and reliability,
especially for models with initially lower performance.

An important consideration in the use of LLMs is the
cost associated with their deployment. Models such as
GPT-4 incur significantly higher costs due to their larger
token usage and increased computational demands. For
instance, OpenAI’s pricing structure currently stands at
$30.00 per 1M tokens for GPT-4 and $0.50 per 1M tokens
for GPT-3.5. These costs highlight the potential long-term
financial benefits of utilizing local LLMs on suitable GPUs.
By deploying locally hosted models, organizations can
significantly reduce overhead costs, making the framework
more sustainable and scalable for extended use.

6. CONCLUSION

In conclusion, this paper highlights the promising potential
of large language models (LLMs) as autonomous control
agents in industrial applications. The proposed framework,



enhanced by a reprompting architecture, demonstrates a
significant capability for agents to autonomously correct
their actions, leading to improved reliability and accuracy
in control tasks. Our results indicate that even earlier
models like GPT 3.5-turbo can achieve substantial per-
formance gains through reprompting, with accuracy im-
proving from 60.04% to 85.34%. More advanced models,
such as GPT 4o, reached near-perfect accuracy exceeding
99%, showcasing the framework’s effectiveness in harness-
ing LLMs for control tasks with proposed framework.

These findings validate the viability of LLM-based systems
in autonomous industrial control, where rapid and precise
decision-making is essential. While this case study focused
on a relatively straightforward task, the adaptability of
the framework positions it well for application in more
complex control scenarios. Future work may explore its de-
ployment in fault handling and digital twin environments,
where real-time decision-making is critical in dynamic and
unpredictable settings. Overall, this research supports the
integration of LLMs with reprompting architecture as a
vital component toward realizing fully autonomous and
intelligent industrial systems.
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