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Abstract: The fast pace of urbanization, population growth, and fossil fuel dependency have
brought environmental challenges such as global warming and water contamination, pressing
for solutions in greenhouse gas reduction and wastewater treatment. Microalgae cultivation
offers promising results by assimilating CO2 and purifying wastewater. This study focuses on
the identification of pH models in microalgae raceway reactors, essential for accurate control
and optimization of growth conditions. A novel multisine-based persistent excitation approach
combined with a range controller is proposed to enhance data quality and coverage across varying
operating points, without violating output constraints. This method demonstrates improved
operational stability and enriched dataset acquisition for model identification. Experimental
results, conducted at the University of Almeria and IFAPA research center, confirm the method’s
effectiveness in generating reliable excitation data, supporting accurate pH model identification
for industrial-scale applications.
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1. INTRODUCTION

The last few decades have come along with fast population
growth, an intensive urbanization, and a significant in-
crease in the use of fossil fuels. These aspects have brought
great advances in the quality of life, such as the availability
of electricity in every home, but also major problems that
society must address as soon as possible. These include
mainly water contamination, global warming, and climate
changes.
In this sense, in recent years, microalgae industrial pro-
duction has become very important in research centres, as
it constitutes a solution to many of these issues. On the
one hand, these microorganisms are able to remove 10 to
50 times more CO2 than terrestrial plants (Vieira de Men-
donça et al., 2021), resulting in a fixation of approximately
1.83 kg of CO2 per kg of biomass, thanks to autotrophic
growth (Chisti, 2007). This makes them a promising solu-
tion for greenhouse gases assimilation. On the other hand,
in order to grow, they need nutrients such as phosphorus
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and nitrogen, which happen to be the main contaminants
of wastewater. Therefore, if microalgae are cultivated using
effluents, they become a suitable solution for wastewater
treatment, reducing the amount of pollutants in it and
purifying it (Vieira de Mendonça et al., 2021).
Microalgae can be grown in closed or open reactors. The
former are characterised by a physical barrier between the
culture and the environment, thus preventing contamina-
tion of the culture with external agents. However, these
types of reactors present high operation costs, elevated
energy consumption and are difficult to scale up. Open
reactors are large, shallow ponds, which contribute to
better light penetration and therefore to an increase in
productivity. The most extended ones among open systems
are raceway reactors, which are object of this paper. They
cover 90% of the total production worldwide, require a
low initial investment, have a low energy consumption and
are easy to scale up (Guzmán et al., 2020). One of the
most important variable in this process is pH, given that
it directly affects the microalgae growth, determining the
solubility and availability of carbon and essential nutrients
(Juneja et al., 2013; Nordio et al., 2023). It presents a
highly varying dynamic and a great interaction with the
rest of variables of the process, resulting in one of the most
complex ones to model and control. It is mainly controlled
with CO2 injection, usually with on/off controllers with
hysteresis that do not take into account the dynamics



or the presence of disturbances, given the complexity of
developing an accurate but simple model.
In the literature there exist first principle models derived
from the theoretical knowledge. As shown in (Nordio et al.,
2024; Solimeno et al., 2019; Fernández et al., 2017), they
present the capability to provide an accurate description
of the system’s internal behavior. They can be adopted as
models for the so-called software sensors (Garćıa-Mañas
et al., 2019), for high-level optimization, and for simu-
lation. However, these types of models require a large
amount of informative data to be calibrated due to their
high amount of unknown parameters. They need more
elaborated techniques to be handled compared with sim-
pler data-driven models. Therefore, these types of models
are not suitable for the design of low-level controllers.
Data-driven linear model representations (Rodŕıguez-
Miranda et al., 2020; Carreño-Zagarra et al., 2019) are
also present in the literature. They are usually identified
through on-off relay experiments around an operating
point. These kinds of models require less data and are
easier to identify than first principle models, but, at the
same time, they provide a less accurate description of the
system. Linear models are usually utilized for tuning con-
trollers such as Proportional-Integrative-Derivative (PID)
(Carreño-Zagarra et al., 2019) and predictive controllers
(Pawlowski et al., 2015). There are also nonlinear data-
driven models in the literature, as shown in (Paladino
et al., 2022; Caparroz et al., 2024; Pawlowski et al., 2019)
which utilize different approaches to model the system
such as nonlinear autoregressive models with exogenous
input (NARX), linear models combined with regression
trees and Wiener models. In most cases, the identification
of these models is carried out through the use of on-off
relay or open-loop experiments. The first type of experi-
ment lacks the concept of persistent excitation due to the
poor frequency content, instead, in the case of open-loop
experiments they have to be more conservative due to the
integrator-like dynamics present in the system, as shown
in (Banerjee et al., 2024). Moreover, since the system is
nonlinear, it is important to obtain data from different
operating points to be able to capture the nonlinear be-
havior.
Therefore, in this paper, we aim to introduce an approach
that can provide a persistent excitation while ensuring
the maximization of the operating points and avoiding
violation of the output constraint. To achieve that, we
will design a suitable multisine signal in a closed-loop
scheme utilizing a range controller. Experimental results
are presented to show the capabilities of the proposed idea.
The paper is organized as follows: section 2 describes the
material and the methods adopted, section 3 presents the
application of the described method and the obtained
results, and section 4 draws the conclusions and outlines
future works.

2. MATERIALS AND METHODS

2.1 Raceway reactor

The proposed algorithm was implemented in a raceway
reactor located at the IFAPA research center, under agree-
ment with the University of Almeŕıa (Almeŕıa, Spain). It
consists of two 40 m long channels, through which the
culture flows at 0.2 m/s, joined by a 1 m wide U-shaped

curve at their end (see Fig. 1). It presents a depth of 30 cm,
although it is operated at 15 cm since it has been proven to
be the optimal height (González Hernández et al., 2022).
The reactor has a paddlewheel that impulses and mixes
the culture, making sure all the microorganisms receive
sunlight through the channel and, located right after, a 2 m
depth sump where the CO2 and air injection takes place for
pH and dissolved oxygen (DO) control, respectively. The
system is equipped with multiple sensors registering vari-
ables related with both the reactor and climatic conditions.
In particular, thuis study fcuses on the identification of the
relation between solar irradiance, CO2 injection and the
pH, the sensor utilized to measure the pH level is localized
60m after the CO2 injection.
The produced strain is Scenedesmus, suitable for outdoor
production under the environmental conditions presented
in Southern Spain.

Fig. 1. Raceway reactor located at IFAPA research center

2.2 Experiment design

The experiment aims to provide an input signal to the
system that can persistently excite the plant while main-
taining the output inside the constraints. To achieve this
objective, we have developed the scheme shown in Fig-
ure 2, which includes a multisine generator, a range con-
troller, and the plant. The multisine generator provides the
excitation while the range controller modulates the signal
in amplitude multiplying it for a modulation factor based
on the output signal of the plant.

Multisine generator Different types of input signals
exist, as described in (Ljung, 1999), such as random binary
signals, pseudo-random binary signals, and multisine. In
this study, we adopted a multisine signal (scaled between
0 and 1) since it presents an analytical definition of the
power spectrum and it contains smother changes in it,
avoiding the slew rate phenomena of the actuator. To
design the input, the guidelines proposed by (McFarlane
and Rivera, 1992) are followed. These guidelines utilize
an approximate knowledge of the system dominant time

Fig. 2. Scheme of the experiment set up where on the left
there is the multisine generator, on the right there are
the range controller and the plant



constant to define the frequency content of the input
signal, by applying the following formula:

1

b τdomhigh
≤ ωoi ≤

a

τdomlow
, (1)

where a and b are two user-defined coefficients that de-
termine the enlargement of the frequency content to take
into account possible uncertainties in the dominant time
constants first guess. Usually, they have to be kept higher
or equal to 2. Then, τdom

high and τdom
low are the highest

and lowest system dominant time constants, respectively.
These two values are part of the a priori knowledge which
can come from previous experiments or preliminary anal-
ysis of the system. Finally, ωoi is the frequency content of
the designed signal.
Another aspect to take into account while designing an
input signal is the concept of persistent excitation which,
according to (Ljung, 1999), relates the number of frequen-
cies in the input signal 2n (signal of order n) and the
number of coefficients present in the model to identify
(nb and nf , numerator and denominator coefficients for
a discrete-time model): it has to be n = nb + nf − 1.

Range controller The range controller maintains the
system output within the feasibility constraints and max-
imizes the operating points in the experiment data in the
case of nonlinear systems. This controller receives as input
the plant output and computes the modulation factor. The
base algorithm can be summarized as follows:

Algorithm 1 Range controller

if yP > thsup then
µ increases of ∆µ

else if yP < thinf then
µ decreases of ∆µ

end if
sat(µ,[0 1])

where yp is the measured output of the plant, thsup and
thinf are the superior and inferior thresholds of the con-
troller which trigger the controller to act, and µ and
∆µ are the modulation factor and the increment of it,
respectively. The last statement of the algorithm saturates
the modulation factor between 0 and 1. This is done for
the sake of generality, as in this way the modulated input
is forced to be always between 0 and 1. Then, to apply
this method to a system it has to match the gain of the
system using a further gain λ, which will be explained in
more detail in section 3. This algorithm is evaluated at a
fixed sampling period Ts.
The behavior of this controller is determined by the set
of parameters Θ = {Ts, thsup, thinf ,∆µ} previously sum-
marized. The first tuning of this controller is carried out
through simulation results of a simple approximated plant
model, which can be the one utilized for the input design
phase. Finally, the controller requires fine-tuning through
a trial-and-error procedure. The initial minimization pro-
cedure utilizes historical data of the measured disturbances
to simulate different scenarios and the initial output of the
model is set to a suitable value. Formally, the following
optimization problem is solved:

min
Θ

J , (2)

subject to
thsup − thinf ≥ hysmin , (3)

where

J =w1
N

Tµmax

+ w2
N

var
+

+ w3
out

N
+ w4

1

thsup − thinf
.

(4)

The cost function can be divided into four different sub-
objectives: the first (N/Tµmax

) is minimum when the time
(Tµmax

) for which the modulation factor reaches the max-
imum value in a simulation is maximum, where N is a
normalization factor, which is the total number of samples
utilized in the optimization procedure. This factor has the
objective of maximizing the time interval when the modu-
lation factor is high during a simulation. The second term
(N/var) is minimum when the simulated output’s variance
(var) is maximum. This term aims to maximize the out-
put signal variance, maximizing the number of operating
points. The third term (out/N) minimizes the number
of output instants that violate the constraints (out). The
fourth term (1/(thsup − thinf )) aims to simplify the mini-
mization procedure by taking advantage of the knowledge
that the variance maximization is directly proportional to
the difference between the two thresholds (thsup − thinf ).
Each minimization term is weighted through user-defined
weights wi, i = 1, . . . , 4. Some guidelines for the decision
on the weights are as follows. Regarding w1 its value can
be set as the average feasible value of Tµmax , w2 can be
set as the average feasible value of var, w3 usually is set
as 103, and w4 usually is set to a feasible value of the
difference (thsup − thinf ). The minimization is subject to
the constraint (3) to ensure a minimum level of hysteresis
through the use of the user-defined hysmin parameter.
This minimization is a multi-objective non-convex problem
due to its nature. In this study, we utilized a genetic
algorithm to find a suitable solution to this minimization
problem.

3. EXPERIMENTAL RESULTS

3.1 Experiment design

To acquire the a priori knowledge, we identify a First-
Order-Plus-Dead-Time (FOPDT) continuous-time Multi-
Inputs-Single-Output (MISO) model with an on-off relay
with hysteresis experiment. The model structure is defined
as follows:

pH(s) =
KCO2

TpCO2
s+ 1

e−300 s CO2(s) +

+
KI

TpI s+ 1
I(s)

(5)

where CO2(s) and I(s) are the two main variables that
influence the pH(s) dynamics that are CO2 and solar
irradiance. The first input is manipulated while the second
one is a measured disturbance. KCO2 and KI are the
system gains. According to the a priori knowledge, the
first gain has to be negative because the injection of
carbon dioxide in the water produces carbonic acid which
decreases the pH. Instead, the solar irradiance increases
microalgae biomass production, which utilizes the carbon
present in the medium, such as carbonic acid and inorganic
carbon, producing oxygen increasing the pH. Then, TpCO2

and TpI are the system time constants, and the delay of



Fig. 3. On-off relay with hysteresis experiment and esti-
mated model output. The experiment is conducted
for around 10 hours.

CO2 is due to the plant structure (60m/0.2 m
s = 300 s as

stated in subsection 2.1).
The on-off relay with hysteresis experiment is designed in
order to capture an approximate dynamics of the system
over the operating points of interest, which is determined
by the pH constraints (7 - 9). Therefore, the hysteresis
thresholds are selected to be 7.3 and 8.7, for the sake of
safety. The CO2 injection is chosen to be 7.3L/min which
is a value that ensures the pH to always decrease in any
irradiance conditions. The identified linear model, through
the use of the procest Matlab function, is the following
one:

pH(s) =
−0.32476

3346 s+ 1
e−300 s CO2(s) +

+
2.253 · 10−3

8183 s+ 1
I(s).

(6)

The dataset utilized and the result of the identification are
illustrated in Figure 3, with a fit percentage of 77.23%,
demonstrating the model ability to describe the data.
In the input design procedure, a multisine signal with crest
factor minimization is utilized according to the guidelines
outlined in subsection 2.2. In this case, the dominant
time constant, according to the model presented in (6),
is 3346 s for the controlled input. From the simple linear
model fit shown in Figure 3, we deduced that the plant
can be described with a low-order model. Therefore, we
selected the input signal with an order 8 of persistent
excitation and we set a = 9 and b = 2. It implies that
ω ∈ [1.45, 27.56] · 10−4 rad/s and, therefore, the minimum
sampling frequencies, according to (Ljung, 1999), should
be equal to 55.12 · 10−4 rad/s, which implies a maximum
sampling period of 1140 s. However, we decided to use a
sampling period of 60 s to be more descriptive and also to
be able to represent the known delay of 300 s in an integer
number of time instants. The resulting signal has a period
of 12 h and it is shown in Figure 4.
The range controller was tuned following the procedure

Fig. 4. Multisine signal designed with the following char-
acteristics Ts = 60 s, T = 12h, w ∈ [1.45, 27.56] ·
10−4 rad/s

Table 1. Genetic algorithm parameters bounds

Ts thsup thinf ∆µ λ

Lower bound 1000 s 7.2 pH 8.0 pH 0.2 10 L/min
Upper bound 4000 s 8.0 pH 8.7 pH 1.0 14 L/min

described in subsection 2.2 using the linear model (6) to
simulate the plant and the data from September, October,
and November 2022 of solar irradiance for a total of 30
days. Applying this procedure, we introduced the scaling
factor λ as tuning parameter, which is responsible for
scaling the input signal from amplitude 1 to a suitable
value. It is expressed in L/min. Therefore, now the tuning
parameter are Θ̄ = {Ts, thsup, thinf ,∆µ, λ}. For the sake
of implementation, the modulation factor was set to zero
during the night, that is, from when the solar radiation is
lower than 20W/m2 until it exceeds 50W/m2. This last
adjustment was done because the pH does not increase
during the night due to the lack of solar irradiance. The
weighting factors of the cost function were selected as
[w1, w2, w3, w4] = [21.6 · 103, 1, 5.55 · 10−3, 10]. The used
parameters bounds are shown in Table 1 and the minimum
hysteresis factor (hysmin) was set to be equal to 0.4 based
on a priori knowledge. The tuning parameter determined
by the genetic algorithm are Θ̄ = {1550 s, 7.21, 8.68, 0.864,
11.666L/min}. The tuning parameters were then fine-
tuned through a trial and error procedure applying them
to the plant due to the model mismatch of the real plant
and the linear model. The lower and upper thresholds were
reduced from 7.21 - 8.68 to 7.5 - 8.5 for the sake of avoiding
undesired constraint violations.
The range controller ran for four days consecutively to col-
lect enough data for the identification procedure since only
8 hours out of 24 hours in a day are available to excite the
CO2 injection signal without violating the lower constraint
of 7. Furthermore, the usual aim of the identified model
for control purposes is to describe the process dynamics
during biomass production, which is performed thanks to
daylight. Instead, during the night time microalgae do not
perform photosynthesis so that the pH of the medium
remains constant. The data from a day of the four days
experiment are shown in Figure 5. From the plot of pH it
is possible to notice that the controller ensures the output
to not violate the constraints determined by the two black
dashed lines while ensuring a good variety of operating
points present in the collected data. Furthermore, from the
CO2 injection plot it is possible to observe the multisine
signal modulated according to the control algorithm.

3.2 Identification results

A Wiener model was chosen to demonstrate the effec-
tiveness of the excitation method. The Wiener model is



Fig. 5. Data collected in a day of October 2024. The first
panel shows the pH (blue) and the output constraints
(black dashed), the second panel CO2 injection, and
the third panel modulation factor

defined as a block-oriented model that is composed of
linear dynamics and static nonlinearities (Ljung, 1999).
The linear model can be of any kind such as PEM or
state-space and the nonlinearities usually are sigmoidal,
polynomial, or piecewise affine linear functions.
To perform the identification we utilized MATLAB Iden-
tification Toolbox. We divided the dataset into two parts:
three days for the identification procedure and one for the
validation.
In this study, we adopted as linear model a discrete-time
MISO Output Error (OE) model, which belongs to the
PEM family (Ljung, 1999), and it is defined as follows:

y(t) = M(q)U(t) + e(t) , (7)

M(q) =
[
B1(q)
F1(q)

· · · Bnu (q)
Fnu (q)

]
(8)

U(t) = [u1(t− nk,1 T ) · · · unu(t− nk,nu T )]
T

(9)

Bi(q) = bi,1 + bi,2 q
−1 + · · ·+ bi,nb,i

q−nb,i+1 , (10)

Fi(q) = 1 + fi,1 q
−1 + · · ·+ fi,nf,i

qnf,i . (11)

where q is the forward shift operator, i = 1, . . . , nu

indicates the considered input where nu is the number
of inputs, nb,i, nf,i, and nk,i are called the model order
because define numerator and denominator order of the
system model (nb,i, nf,i) and the number of delay instant
(nk,i), y(t) is the output of the system, ui(t − nk,i T ) is
the delayed input of nk,i instants of time length T , and
e(t) is considered to be a zero mean white noise. This type
of modelization permits to identify the system model p̃(q)
and the error model p̃e(q) as follows:

p̃(q) =
[
B1(q)
F1(q)

· · · Bnu (q)
Fnu (q)

]
, p̃e(q) = 1. (12)

A sampling period of T = 60 s was considered. The OE
order is determined by considering: a priori knowledge,
the analysis of the model residual, and parsimony, which
implies that the number of parameters to identify should

Fig. 6. Residual auto-correlation and cross-correlation
evaluation for order selection of OE model from the
consider experiment design, the dots are the data,
instead the blue area is the confidence bounds

Table 2. OE order

nb nf nk

CO2 2 4 5
I 2 2 1

Fig. 7. Validation of the Wiener model identified with
range controller data (in orange, fit percentage:
80.20%), relay data (in blue, fit percentage: 28.67%),
and the validation data (in black dashed line). The
data presented are subtracted by 8 and standardized

be as low as possible (in fact, by increasing them, the
model can better fit the data, but it can be because of
overfitting; furthermore, the accuracy of each parameter
decreases). Thus, the nk parameters of the order for the
two inputs are selected based on the a priori knowledge of
the delay, which is 300 s in the case of the CO2 and no delay
in the case of the solar irradiance, therefore nk = [5 1].
From the residual shown in Figure 6, it is possible to
observe that the model of the system p̃(q) well describes
the system itself, as the cross-correlation between the input
signal and the output error is approximable to zero. It
means that all the linear correlation is described by the
model.
The resulting nonlinearity is a cubic spline defined as
follows:

f(r) = c0 + c1 r+ c2 |k1 − r|3 + · · ·+ cn+1 |kn − r|3 , (13)

where ci i = 0, . . . , n+ 1 are the coefficients that multiply
the different terms, ki i = 1, . . . , n are the nodes of the
cubic spline where each term |ki − r|3 is equal to zero,
and n is the number of nodes which is called the order
of the cubic spline. The values of the order selected for
the considered dataset are presented in Table 2 and the
validation results are presented in Figure 7.
It turns out that the identification procedure reaches a
satisfactory fit percentage on the validation data. Finally,
for the sake of comparison, we identified the same model
on on-off relay experiments to confirm the efficacy of the
approach and the improvement introduced. The experi-
ment characteristics are the same as the ones presented in
Figure 3. We collected data for three days and validated



Fig. 8. Residual auto-correlation and cross-correlation
evaluation for order selection of OE model from the
on-off relay experiment, the dots are the data, instead
the blue area is the confidence bounds.

the model on the same validation data previously used for
comparison.
The procedure utilized to identify the Wiener model is
the same as presented in the previous subsection. The OE
order utilized is shown in Table 2. The validation results
are shown in Figure 7, and from these results it can be
observed that the obtained fitting percentage is lower than
the one obtained with the range controller data.

4. CONCLUSIONS

In conclusion, we can state that the experiment design
procedure achieves the desired objectives: the constraints
on the output are ensured thanks to the range controller
which also captures a wide variety of operating points in
the dataset, the excitation of the model has a frequency
focus on the dominant dynamics and it presents the per-
sistent excitation property. Furthermore, the identifica-
tion results, including the comparison with the standard
approach, confirm the efficacy of this approach. Future
improvements will include the extension of this work to
non-linear MIMO systems and further generalization of
this approach regarding robustness concerns.
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Rodŕıguez-Miranda, E., Guzmán, J.L., Berenguel, M.,
Acién, F., and Visioli, A. (2020). Diurnal and nocturnal
ph control in microalgae raceway reactors by combining
classical and event-based control approaches. Water
Science and Technology, 82(6), 1155–1165.
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