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Abstract: Synthetic biology is a recent area of biological engineering, whose aim is to provide
cells with novel functionalities. A number of important results regarding the development of
control circuits in synthetic biology have been achieved during the last decade. A differential
geometry approach can be used for the analysis of said systems, which are often nonlinear.
Here we demonstrate the application of such tools to analyse the structural identifiability,
observability, accessibility, and controllability of several biomolecular systems. We focus on a
set of synthetic circuits of current interest, which can perform several tasks, both in open loop
and closed loop settings. We analyse their properties with our own methods and tools; further,
we describe a new open-source implementation of the techniques.
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1. INTRODUCTION

Synthetic biology is an interdisciplinary research field con-
cerned with “re-programming” cells, providing them with
new or modified functionalities (Qian et al., 2018). In this
context, key goals are to achieve some desired dynamics
and to reduce the effect of uncertainty. Since these systems
are usually nonlinear, tools from nonlinear control theory
are required for this aim. The theoretical ability to drive
a system to a final state is given by its accessibility and
controllability (Lewis, 2001). Biological systems often have
components with a high degree of uncertainty. To obtain a
good characterization, it is important to be able to deter-
mine correctly the values of any unknown parameters and
unmeasured variables. The possibility of performing these
tasks successfully is given by a model’s identifiability and
observability (Chatzis et al., 2015). In this work we are in-
terested in analysing such control theoretic properties from
a structural point of view, i.e., focusing on the constraints
imposed by the equations that define system dynamics,
rather than on practical limitations introduced by mea-
surement uncertainty (Wieland et al., 2021). To model the
systems under study we use nonlinear ordinary differential
equations (ODEs), which are adequate for biomolecular
systems as long as the number of molecules is sufficiently
large. They are also helpful as approximate models of
systems that are known to exhibit stochastic behaviour.
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ERDF/EU, and grant CNS2023-144886 funded by MICIU/AEI
/10.13039/501100011033 and the European Union NextGenera-
tionEU/PRTR.

Under these assumptions, the aforementioned structural
properties – accessibility, controllability, structural identi-
fiability and observability – can be studied using a differ-
ential geometry approach (Hermann and Krener, 1977).

According to Qian et al. (2018), many of the remaining
challenges in synthetic biology can be addressed by a
control-theoretic approach, but theory is currently lag-
ging behind the development of biological tools. Likewise,
Baetica et al. (2019) claim that control theory has yet to
be fully applied to the understanding and engineering of
biological systems. Indeed, there are few works reporting
these types of analyses of synthetic biology systems, de-
spite a few recent examples (Dı́az-Seoane et al., 2023a;
Haus et al., 2023). In this paper we contribute to fill this
gap by applying techniques from nonlinear control theory
to a set of recently presented models of synthetic biology
circuits. We show how the analyses can be performed with
different tools, and present a new Python implementation
of our own accessibility and controllability code, which was
previously available only in MATLAB.

2. THEORY AND METHODS

2.1 Notation and systems

We consider nonlinear systems of ordinary differential
equations of the form

M :

{
ẋ(t) = f (u(t), x(t), θ) ,

y(t) = h (u(t), x(t), θ) ,
(1)

where f and h are analytic functions; x(t) ∈ Rnx is the
vector of state variables at time t; u(t) ∈ Rnu is the



input vector, which is assumed to consist of infinitely
differentiable functions; y(t) ∈ Rny , the output vector;
θ ∈ Rnθ , the parameter vector. In the following, we may
omit the dependence on time for ease of notation, i.e.,
we may simply write x, y, u. A particular case of (1) are
input-affine systems, the dynamics of which can be written
as follows:

ẋ = f(x, θ) + Σnu
i=1 ui gi(x, θ) (2)

2.2 Differential geometric concepts

Differential geometric concepts for the analysis of nonlin-
ear systems are described e.g. by Sontag (2013). Below we
provide the definitions required in this work.

Lie derivative: Given the model (1), the Lie derivative
of the output function h along the vector field f is:

Lfh =
∂h

∂x
f +

∂h

∂u
u̇.

Setting L0
fh = h, the i-order extended Lie derivative of h

can be recursively computed as:

Li
fh =

∂Li−1
f h

∂x
f +

i−1∑
j=0

∂Li−1
f h

∂u(j)
u(j+1).

where u(j+1) (j ≥ 0) stands for the (j + 1)-th time
derivative of u.

Lie bracket: The Lie bracket of two vector fields f, g is
another vector field given by:

[f, g] =
∂g

∂x
f − ∂f

∂x
g,

Lie algebra: A set of vector fields L is a Lie algebra when
it is a linear subspace of vector fields (that is, αf +βg ∈ L
when f, g ∈ L) and when the Lie bracket is well defined
(i.e. [f, g] ∈ L when f, g ∈ L). The Lie algebra generated
by a family of vector fields P is the smallest Lie algebra
containing P, and it is written as LA [P].

Distribution: A distribution is a map S between each
x ∈ X and a subspace S(x) ⊂ Rn.

2.3 Observability and structural local identifiability

Observability: A state xi(τ) (that is, the ith element
of the state variables vector) is observable if it can be
determined from the output y(t) and the input u(t) in
an interval t0 ≤ τ ≤ t ≤ tf , for a finite tf . Otherwise,
it is unobservable. A model is observable if all its states
are observable. Observability is usually considered as a
local property, i.e. an observable state can be distinguished
from any other states in a neighbourhood, but possibly not
from all distant states. Here we adopt this viewpoint and
consider observability and identifiability in the local sense.
This enables the use of differential geometric techniques.

Structural local identifiability: A parameter θi is struc-
turally locally identifiable (SLI) if, for almost any parame-
ter vector θ∗ ∈ Rnθ , there is a neighbourhood N (θ∗) where
the following condition holds (DiStefano III, 2015):

θ̂ ∈ N (θ∗) and y(t, θ̂) = y(t, θ∗) ⇒ θ̂i = θ∗i (3)

If (3) is not true in any neighborhood of θ∗, the parameter
θi is structurally unidentifiable (SU). If (3) is true for all
model parameters, the model is said to be SLI as well, and
SU otherwise. We will use the acronym SIO to refer to
Structural Identifiability and Observability.

Structural local identifiability and observability (SIO):
As noted by Tunali and Tarn (1987), structural local
identifiability can be treated as a particular case of ob-
servability by considering the parameters as state vari-
ables that happen to be constant, i.e. their dynamics are
given by θ̇i = f(u(t), x(t), θ) = 0. Thus, the SIO of a
model can be evaluated using a version of the observability
rank condition introduced by Hermann and Krener (1977).
Here we follow this approach, which we have previously
implemented in the MATLAB toolbox STRIKE-GOLDD
(Dı́az-Seoane et al., 2023b). The core idea is to build
an observability-identifiability matrix, OI , and calculate
its rank. To this end, we augment the state vector as
x̃ = [x, θ], defining nx̃ = nx + nθ. The observability-
identifiability matrix OI of a model (1) is:

OI(x̃) =



∂

∂x̃
h(x̃, u)

∂

∂x̃
(Lfh(x̃, u))

...

∂

∂x̃

(
Lnx̃−1
f h(x̃, u)

)


. (4)

(1) is SLI and observable if rank(OI(x̃)) = nx̃. If
rank(OI(x̃)) < nx̃, there is at least one unobservable
variable and/or one unidentifiable parameter. Since the
ith column of OI(x̃) represents the partial derivative with
respect to the ith element of x̃, the SIO of an individual
variable, x̃i, can be determined by removing the ith column
and recalculating the rank. If the rank decreases, x̃i is
observable (or SLI, if it is a parameter); if the rank remains
unchanged, x̃i is observable (or SU).

2.4 Accessibility and controllability

Reachable set: The set of all points xf = x(t) with t ≤ T
that a system can reach from an initial point x0 in time
at most T is called the reachable set:

Reach (M, ≤ T, x0) =
⋃

0≤t≤T

Reach (Σ, t, x0)

Accessibility: The system M (1) has the accessibility
property from x0 ∈ X if for every T > 0 the set
Reach (M, ≤ T, x0) has a nonempty (full dimensional)
interior (Sussmann, 1987).

Controllability: The system M (1) is small-time locally
controllable (STLC) from x0 ∈ X if for every T > 0 the set
Reach (M, ≤ T, x0) contains x0 in its non-empty interior.

To analyse accessibility and controllability we adopt the
methodology described by Dı́az-Seoane et al. (2023a),
which was originally implemented in MATLAB. To widen
its adoption we have developed a new version in Python.
We provide both implementations as open source software
(https://github.com/afvillaverde/NLcontrollability). The test
for accessibility is based on determining whether certain



distributions defined by the Lie algebras generated by
the vector fields of a system are full-dimensional. We use
the Lie Algebraic Rank Condition (LARC) described by
Dı́az-Seoane et al. (2023a), which provides a sufficient and
necessary condition for accessibility. For controllability we
consider the General Sufficient Condition (GSC). These
tests are applicable to systems of the form (2), i.e. which
are affine in the inputs. This analytical approach informs
about structural properties, which are locally valid for a
generic point, and can also inform about specific points by
replacing the symbolic variables with numerical values. If
we were interested in a specific operating region, we could
use numerical approaches such as empirical Gramians, as
e.g. (Himpe, 2018).

3. CONTROL CIRCUITS IN SYNTHETIC BIOLOGY

Importantly, biological systems are typically positive, a
property that has implications for their control (Briat,
2020). However, this feature is not an obstacle for ob-
taining signals that can in principle be negative, such as
derivatives, since this goal can be achieved by adding a
bias (Alexis et al., 2021); likewise, it is not an obstacle
for performing the analyses, as noted by Dı́az-Seoane
et al. (2023a). Haus et al. (2023) analysed the structural
identifiability of several models of biomolecular controller
motifs, classified either as ‘basic’ or ‘antithetic’. In this
paper we focus on a set of circuits of which we analyse
their accessibility, controllability (when possible), struc-
tural identifiability and observability. We provide their
mathematical description in the remainder of this section,
and their topologies in Fig. 1. These ODE models are
approximations of the real systems, which are inherently
stochastic. The extent to which this modelling assumption
is adequate is worthy of investigation. In this regard, Kelly
et al. (2018) found that the effect of extrinsic noise (the one
resulting from cell-wide variations) was stronger than that
of the intrinsic noise (the one resulting from stochasticity).
It should also be noted that the dichotomous feedback
architecture described in Section 3.2 decreases intrinsic
noise (Sootla et al., 2022).

3.1 Molecular topologies for signal differentiation

Alexis et al. (2021) presented three topologies that per-
form signal differentiation. They can serve several pur-
poses, such as acting as speed biosensors or implementing
derivative control actions. We refer to them as BioSD-I,
BioSD-II and BioSD-III, and give their equations below.
We use a generic notation for their description, where the
parameters are written as pi, and the derivative signal is
x1(t) ≈ u̇(t).

BioSD-I:

Ẋ = kin · U + b− k1 ·X · Z − δ ·X
Ż = k2 ·X − k3

BioSD-II:

Ẋ = kin · U + b− k1 ·X · Z1 − δ ·X
Ż1 = k2 ·X − η · Z1 · Z2

Ż2 = k3 − η · Z1 · Z2

BioSD-III:

Ẋ = kin · U + b− k1 ·X · Z1 + k1 ·X · Z2 − δ ·X
Ż1 = k2 ·X − η · Z1 · Z2

Ż2 = k3 − η · Z1 · Z2

Additionally, Alexis et al. (2021) introduced a more real-
istic version of BioSD-II, in which the activation of x2 by
x1 takes place with Michaelis-Menten kinetics:

BioSD-II-MM-simple:

Ẋ = kin · U + b− k1 ·X · Z1 − δ ·X

Ż1 =
Vmax ·X
X +Km

− η · Z1 · Z2

Ż2 = k3 − η · Z1 · Z2

BioSD-II-MM-complex:

Ẋ = kin · U + b− k1 ·X · Z1 − (δ + γ) ·X

Ż1 =
Vmax ·X
X +Km

− η · Z1 · Z2 − γ · Z1

Ż2 = k3 − η · Z1 · Z2 − γ · Z2

3.2 Dichotomous Feedback

Natural biological systems may exhibit dichotomous feed-
back, which works through sequestration of a molecule or
a signal. Sootla et al. (2022) proposed several ways of im-
plementing this functionality. Here we study the following
model, which is described in equations (2.7) of their article:

˙HK = βHK − δ ·HK − kap(I) ·HK

+ kt·
(
βHK

δ
−HK

)
·RR+ ktc·

(
βHK

δ
−HK

)
·SR

ṘR = βRR − δ ·RR− kt ·
(
βHK

δ
−HK

)
·RR

+ kp ·HK ·
(
βRR

δ
−RR

)
˙SR = βSR − δ · SR− ktc ·

(
βHK

δ
−HK

)
· SR

+ kpc ·HK ·
(
βSR

δ
− SR

)

where kap(I) = kap−max
I

I+Kda
, and I is the input signal.

Note that taking kap as the input signal yields a model
that is affine in the inputs. We will also analyse this model
considering the production rates β∗ as inputs that can be
modified.

3.3 Negative Feedback

We consider two synthetic circuits based on engineered
small RNAs (sRNAs) presented by Kelly et al. (2018).
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Fig. 1. Diagrams of the synthetic biology circuits analysed in this work.

sRNA-tuned autorepressor:

ṫ = γT − δt · t−K1 · t · s
ṡ = γR − δs · s−K1 · t · s

ċ = K1 · t · s− δc · c
Ṫ = βT · t− δT · T

Where γT and γR are defined as follows:

γT =
αt

1 +

(
T

KT (1+(u1/Ku1 )
nu1 )

)nT
+

αL

(
T

KT (1+(u1/Ku1 )
nu1 )

)nT

1 +

(
T

KT (1+(u1/Ku1 )
nu1 )

)nT

γR = αr
u2

Ku2 + u2
(5)

The states are: t, mRNA concentration; s, sRNA concen-
tration; c, sRNA-mRNA complex concentration; and T ,
TetR-GFP complex concentration. Similarly to the models
in Section 3.2, this model is only affine in the inputs if these
are taken to be γT and γR instead of u1 and u2. The same
applies to the following model.

Closed-loop sRNA Feedback Circuit:

ṙ =
∗
γX − δr · r −K2 · r · s

ṡ =
∗
γR − δs · s−K2 · r · s

ċ = K2 · r · s− δc · c
Ṙ = βR · r − δR ·R

Where
∗
γX and

∗
γR are defined as follows:

γ∗
X = α∗

X

u3

Ku3
+ (u3)

(6)

γ∗
R = α∗

r

(
R·u2

K∗
u2

+u2

)
KR + R·u2

K∗
u2

+u2

(7)

The new states are r, mRNA concentration; and R, RhaS-
GFP complex concentration.

4. RESULTS

4.1 Accessibility and controllability

Table 1. Results: accessibility, controllability.

Case study Eq. point Accessible Controllable

BioSD-I param. yes yes

BioSD-II param. yes yes

BioSD-II-MM-simple param. yes yes

BioSD-II-MM-complex not found yes (neq) NA

BioSD-III param. yes yes

Dichotomous Feedback param. yes yes

sRNA-tuned auto-
repressor (input: γR)

param. yes yes

Closed-loop sRNA
(inputs: γ∗

R, γ∗
X)

param. yes yes

Table 1 shows the list of biosystems along with the results
produced by the LARC and GSC tests, which assess ac-
cessibility and small-time local controllability, respectively.
The GSC is not applicable (NA) in non-equilibrium points,
and it cannot test if the model is inaccessible. In princi-
ple, tests are performed at the equilibrium (in the table,
‘param.’ means that the equilibrium point depends on the
value of the parameters and inputs). When an equilibrium
is not found, the tests are performed around a point xi =
1, i= 1, . . . , nx; this is denoted as (neq). We analysed the
negative feedback models of Section 3.3 by treating the
γ functions as inputs. Alternatively, one could consider



as inputs the u∗ variables; however, doing so would make
these models non-affine in the inputs, which would prevent
the application of the accessibility and controllability tests.

4.2 Structural local identifiability and observability

Since identifiability and observability (SIO) depend on the
model outputs, we have considered several possible output
configurations for each system. First, we considered the
output defined in the original publications. Additionally,
we explored combinations of several states, always keeping
the original output among the measured states. Thus we
are able to assess how measurement availability influences
the SIO of the unmeasured states and parameters. Table
2 summarizes the results of these analyses. We analyse
two versions of the Dichotomous Feedback circuit: one
that replaces kap(I) with kap−max

I
I+Kda

in the equations,

which we denote with (I), and another one which uses
directly kap. In each of these versions we perform the
analyses when said variable is the input, and also when
each of the production rates β∗ is the input (when a β∗ is
not an input, it is treated as a parameter). Likewise, we
consider similar variants of the sRNA models, i.e., taking
either the γ or the u variables as inputs. We note that the
sRNA-tuned autorepressor model could only be analysed
by assuming that at least two states can be measured;
analyses with only one output required too much memory.

The SIO results inform about the possibility of identifying
the parameters for every possible output configuration.
Let us consider for example the closed-loop sRNA circuit.
A typical choice could be to take measurements on the
RhaS-GFP complex, i.e. R. As shown in Table 2, this
would make it impossible to identify the sRNA-mRNA
binding strength (K2), the translation rate of RhaS-GFP
mRNA (βR), the degradation rate of the mRNA-sRNA
complex (δc), and the transcription rates α∗

r and α∗
X .

Furthermore, it would be impossible to infer any of the
unmeasured state variables. In contrast, if one measures
not only R but also c, which is the sRNA-mRNA complex
concentration, all the parameters become identifiable, and
all state variables become observable. Similar insights can
be extracted for each of the output configurations shown
in the aforementioned table.

5. DISCUSSION

In this paper we have demonstrated the use of symbolic
computation to analyse structural properties of synthetic
biological circuits. Our analyses have shed light on how
the availability of output measurements affects parameter
identifiability. While certain outputs yield identifiable and
observable models, others achieve only partial identifiabil-
ity. In contrast, all systems were found to be accessible,
as one could expect; our analyses did not find any un-
foreseen deficiencies. While the structural identifiability of
a number of synthetic biology models had already been
analysed by Haus et al. (2023), here we have considered
a different set of models. In regard to accessibility and
controllability, to the best of our knowledge the results
reported in this paper represent the first systematic study
of these properties in synthetic biology circuits.

An additional contribution of this work is the implemen-
tation of the methods in open source software toolboxes.

The main novelty is the development of a Python ver-
sion of NLcontrollability, which we had previously made
available in MATLAB. Together with STRIKE-GOLDD
and STRIKEpy, these tools provide implementations of
the tests reported here in MATLAB and Python.

It should be noted that some models could only be anal-
ysed under assumptions that render them affine in the
inputs, which is a requirement for the application of these
accessibility and controllability tests. This transformation
is, in principle, practically achievable, but it introduces
additional challenges for the design of control laws. Fur-
thermore, the results should be taken as an initial approxi-
mation to the properties being studied: our analyses adopt
a structural viewpoint; they do not consider practical lim-
itations that can affect their numerical versions. In partic-
ular, the analyses assume that the inputs are continuous,
time-varying, and sufficiently exciting; in contrast, in real
applications inputs may be restricted to e.g. constant or
piecewise constant functions. Taking those limitations into
account requires a different set of methods.

DATA AND CODE AVAILABILITY STATEMENT

All the code developed and used for the analyses re-
ported in this paper is available at: https://github.com/
afvillaverde/NLcontrollability (for accessibility and
controllability) and https://github.com/afvillaverde/
strike-goldd (for structural identifiability and observ-
ability). The models analysed in this paper can be found
in the corresponding models folders.
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