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Abstract: Digitization, which involves the adoption of various domain-relevant technologies
to create a digital equivalent of physical assets, is the main principle of Industry 4.0. As
most process plants such as Waster water treatment process (WWTP) and Post-carbon
combustion capture (PCC) process exhibit multi-scale dynamics, identification of models in
differential equation form (continuous-time) is advantageous. Further, any underlying physical
understanding of the system can be easily captured in this modeling strategy, through
appropriate choice of functionality resulting the model Gray-box in nature. Since models in
differential equation form are considered, the accuracy of modeling depends on the estimation
of derivatives from the sampled data. Therefore, the main objective of this paper is to develop
an identification methodology in continuous-time (CT) framework that can capture the physical
behavior of the system. To address the issue with the derivative information, the data set is
fitted using functions like B-splines subjected to a model-based penalty to ensure that the data
fit also satisfies the model of the process. For estimation of a parsimonious model, a sparsity
constraint in terms of zero norm on the parameter vector of the model is considered. The efficacy
of the method is demonstrated on a Van der Pol oscillator and a Continuous stirred tank reactor
(CSTR) system and the results are compared with the existing methods.

Keywords: Continuous Time Models, Sparse Optimization, Industry 4.0, Nonlinear systems,
B-splines.

1. INTRODUCTION

With the principle of digitization as primary focus, many
service industries started providing digital solutions to the
process industries. Some of the digital solutions includes,
intelligent tools for predictive maintenance, optimization
under uncertainty and constraints, Artificial Intelligence
(AI) for real time control, digital twin technology for the
processes at different levels of hierarchy and platforms for
integrating digital solutions to the industries. Utilization
of learning techniques in smart modeling and in advanced
control strategies such as Model Predictive Control (MPC)
will enable this design, control and optimization of com-
plex process systems in an efficient and smart way for
maintaining process safety, efficiency and productivity.

As the models with first principles result in a set of
highly complex and non-linear differential algebraic equa-
tions, computational cost associated with such models
in real-time application of smart modeling is too-costly.
Further, the first principles modeling require a thorough
understanding of the system, which might not always
be feasible. The challenge of computational time with
detailed first principles model resulting in a prominent
development of data-driven system identification models.
Objective of system identification is to provide an accurate
future predictions through identifying an optimal struc-
ture of model from input-output data. Such models can

be identified in discrete-time (DT) (difference equation
models) or in continuous-time (CT) (ordinary differential
equation models). Identification of discrete-time models
is more mature (Ljung, 1999) over its counterpart. For
example, while modeling a PCC process, a Non-linear
Auto-Regressive with Exogenous inputs (NARX) model in
discrete form is considered. Various non-linear functional
form ranging from Polynomials to Neural networks have
been utilized (Jung and Lee, 2023; Wu et al., 2020; Zhang
et al., 2018). While control design of a WWTP process,
an LSTM model is considered in Liu et al. (2023). Be-
ing a black-box model, a strike of balance between the
accuracy and complexity of the model has to be made.
Further in the case of sparse/insufficient historical data,
development of a black-box model be challenging and may
also limits the applicability of the model for control and
optimization. Therefore, a hybrid/gray-box model which
aims to combine a first-principles knowledge with a black-
box modeling of ML has attracted a significant amount of
interest in the recent years.

Pioneering the work of sparse identification of nonlinear
dynamics (SINDy) for data-driven discovery of dynam-
ics (Brunton et al., 2016; Raissi and Karniadakis, 2018;
Raissi et al., 2019) through construction of a library by
incorporating the priori knowledge such as conservation
laws, a significant research on gray-box modeling is be-
ing carried out for various areas in the field of systems



engineering. Some of the important areas include Model
predictive control (Arnold and King, 2021; Kaiser et al.,
2018), fault prognosis of chemical processes (Bhadriraju
et al., 2021a,b) and digital twin modeling (Wang et al.,
2023). Since not all terms in the library plays a prominent
role in defining the dynamics of the system, a sparsity
constraint is considered while estimating the parameters
of the system and methods like LASSO (Tibshirani, 1996),
Sequential thresholded least squares (Brunton et al., 2016)
will be used for parameter estimation. Recently, the au-
thors in Chakraborty et al. (2020) utilized genetic algo-
rithms for automatic identification of the gray-box models
that can capture the underlying physical, chemical and/or
biological mechanisms generating the data.

As most of the underlying physical mechanisms are ordi-
nary/partial differential equations form, equations in such
form are considered for modeling. In reality, since only
data at finite sample instants is available, estimation of
derivatives from sampled data is an important challenge
to be addressed as requirement of derivative information
is essential for modeling. Most of the aforementioned
methods relies on finite difference method for estimation
of derivatives which is sensitive to noise in the data.
Some methods uses robust derivative estimation strategies
with inclusion of regularization’s like Total-variation, cubic
smoothing spline (Knowles and Renka, 2014; Chartrand,
2011). Although these methods provides relatively reliable
estimates of derivatives, similar to the works of Poyton
et al. (2006); Varanasi and Jampana (2018), the overall
efficacy may be improved with inclusion of model based
regularization term.

The primary objective of this paper is to propose a method
for data-driven identification of models with inclusion
of first principle’s information that can handle noise in
the data effectively. To address the challenges with the
derivative information especially with the noise, the data
set is fitted using B-splines subjected to a model-based
penalty to ensure that the data fit also satisfies the model
of the process. For estimation of a parsimonious model, a
sparsity constraint in terms of zero norm on the parameter
vector of the model is considered.

The rest of the paper is organized as follows: Section 2
presents the problem statement and explains the details
of the SINDy method and the proposed methodology.
In Section 3, the efficacy of the proposed method is
demonstrated on a Van der Pol oscillator and a Continuous
stirred tank reactor (CSTR) system and the results are
compared with the existing methods. Finally conclusions
are drawn in Section 4.

2. SMART LEARNING FROM DATA

2.1 Problem Statement

A general class of nonlinear processes is expressed by
the system of non-linear ordinary differential equations as
follows:

ẋ(t) = f(x(t),u(t), β) (1)

where, β is the vector of parameters that defines the
system, x(t) = [x1(t) x2(t) · · · xn(t)] ∈ Rn, u =

[u1(t) u2(t) · · · um(t)] ∈ Rm denote the state and input
vectors respectively. A noise corrupted version of state
data x(tk) is available at discrete time samples as,

y(tk) = x(tk) + η(tk) (2)

where, η(tk) are i.i.d Gaussian random variables. Let
Θ (x(t),u(t)) denote a library of terms that would describe
the dynamics of the system and Σ denote a coefficient vec-
tor of the library then f(x(t),u(t), β) ≈ Θ(x(t),u(t)) Σ.
Since it is challenging to explicitly include the exact dy-
namics into the library, a variety of functions like poly-
nomials, exponential and so on are included to make
the library rich in terms for better approximation. Since
not all terms in the library may play significant role in
defining the dynamics of the system, the main objective of
smart learning is to find the parsimonious/sparse param-
eter vector Σ from the measured input-output data i.e.,
{(u(tk),y(tk)) , k = 1, 2, · · · , N}.

2.2 Methodology

Identification of sparse parameter vector Σ can be per-
formed using regularization techniques such as LASSO in
the context of SINDy (Brunton et al., 2016) as

argmin
Σ

∥Ẋ−AΣ∥22+λ∥Σ∥1 (3)

where,

Ẋ =



ẋ1(t1)
ẋ1(t2)

...
ẋ1(tN )
ẋ2(t1)
ẋ2(t2)

...
ẋ2(tN )
ẋn(t1)
ẋn(t2)

...
ẋn(tN )



,A =



Θ(x(t1),u(t1)) 0 · · · 0
Θ(x(t2),u(t2)) 0 · · · 0

...
...

. . .
...

Θ (x(tN ),u(tN )) 0 · · · 0
0 Θ(x(t1),u(t1)) · · · 0
0 Θ(x(t2),u(t2)) · · · 0
...

...
. . .

...
0 Θ(x(tN ),u(tN )) · · · 0
0 0 · · · Θ(x(t1),u(t1))
0 0 · · · Θ(x(t2),u(t2))
...

...
. . .

...
0 0 · · · Θ(x(tN ),u(tN ))


(4)

and methods like Sequential thresholded least squares
(Brunton et al., 2016) can be used for solving the problem
of Eq. (3).

Since only noise corrupted values of x(tk) are measured,
the main challenge of identification is the estimation of
derivatives ẋ(tk). In traditional approaches, methods like
finite difference are used for estimation of derivatives.
Since these methods are sensitive to noise in the data, the
main idea in this paper is to fit the discrete values of x(tk)
through the measured data of y(tk) with smooth curves
such as B-splines. Other global functional approximators
such as neural networks can also be used. However, an
important property of B-splines is that they allow better
local control i.e., if few control points are modified, the
splines related to those control points might change but the
splines corresponding to unchanged data will remain the
same thereby providing better control in approximating
functions with sharp changes (Boor, 1978) and hence
utilized in this paper. Further, the derivatives can then
be computed easily by differentiating the B-splines using
a recursive relation thereby improving the computational
cost. Further details on construction of B-splines and the



derivative estimations are given in Varanasi and Jampana
(2018).

As the main goal of identification is to obtain the param-
eter vector Σ, the coefficients of the B-splines enter the
optimization problem as nuisance parameters. Since L0

regularization promotes better sparsity over the relaxed
formulation of L1, the former is considered as regulariza-
tion and various sparse optimization algorithms detailed
in Beck and Eldar (2013); Tropp and Gilbert (2007) may
be used to solve the formulated problem.

Defining ∥Σ∥0= #{i : Σi ̸= 0}, i.e. the number of non-zero
elements of Σ, the optimization problem for computing the
B-spline coefficients (γ) and the model parameters (Σ) can
be posed as,

(P1) argmin
γ,Σ,∥Σ∥0≤s

fy + λg

where,

fy =

M∑
k=1

∥y(tk)− x̂(tk)∥22

g = ∥ ˙̂
X − ÂΣ∥22

x̂(t) =

Ny∑
i=0

γiϕ
ly
i (t)

and

˙̂
X =



˙̂x1(t1)
˙̂x1(t2)
...

˙̂x1(tN )
˙̂x2(t1)
˙̂x2(t2)
...

˙̂x2(tN )
˙̂xn(t1)
˙̂xn(t2)

...
˙̂xn(tN )



, Â =



Θ(x̂(t1),u(t1)) 0 · · · 0
Θ(x̂(t2),u(t2)) 0 · · · 0

...
...

. . .
...

Θ (x̂(tN ),u(tN )) 0 · · · 0
0 Θ(x̂(t1),u(t1)) · · · 0
0 Θ(x̂(t2),u(t2)) · · · 0
...

...
. . .

...
0 Θ(x̂(tN ),u(tN )) · · · 0
0 0 · · · Θ(x̂(t1),u(t1))
0 0 · · · Θ(x̂(t2),u(t2))
...

...
. . .

...
0 0 · · · Θ(x̂(tN ),u(tN ))


(5)

with Ny is the number of knot points, ly is the order of
the spline. The term fy in the objective function denote
the data fit error while the term g denote the model fit

error and the term
∑Ny

i=0 γiϕ
ly
i (t) denotes the spline fit to

the ODE solution (x).

The objective here is to minimize the data fit error while
maintaining the constraint that the data should satisfy
the model. Since the noise η(tk) is assumed to follow i.i.d.
Gaussian, the negative log-likelihood function is used to
define the data fit term. Other general noise distributions
can also be incorporated by an appropriate definition of
fy.

Since the problem (P1) involves a joint minimization with
respect to γ and Σ along with a sparsity constraint for a
fixed value of λ, in the proposed approach, similar to the
idea in Varanasi and Jampana (2018), the optimization
problem is split into two steps. In the first step, the
problem (P1) is minimized only with respect to the
nuisance parameters γ for a given Σ and in the second
step, the minimization is carried out with respect to Σ
for a given γ alongside a sparsity constraint. These two

steps are iterated for a given value of λ till the error in Σ
between two iterations is within a tolerance range.

Mathematically, the first step of optimization can be
written as

γ∗ = argmin
γ

fy + λg (6)

Since the optimization problem is nonlinear in nature,
gradient descent methods or search based methods can
be used to solve the problem. In this paper, fminsearch
of MATLAB has been used to solve the minimization
problem for estimation of γ and to avoid the convergence
to local optima, efficient choice of initial guess has to be
considered. Details on the selection of initial guess for
better accuracy is given in Section 2.3

The second step of optimization can be mathematically
represented as

Σ∗ = argmin
Σ,∥Σ∥0≤s

fy + λg

Since the first term fy is independent of Σ, this optimiza-
tion problem can be modified as

Σ∗ = argmin
Σ,∥Σ∥0≤s

g (7)

Since the function g is a linear function of Σ, stan-
dard sparse optimization techniques such as the Orthogo-
nal Matching Pursuit (OMP) or Least Angle Regression
(LAR) and its variants (Candes and Tao, 2005; Tropp
and Gilbert, 2007; Luu et al., 2015) can be used to solve
the optimization problem. In this paper, OMP is used
to solve the optimization problem owing to its simplic-
ity in implementation and the steps of OMP is given in
Algorithm 1. Utilization of various other algorithms and
theoretical analysis of convergence of estimates will be
pursued in future.

2.3 Selection of hyperparameters

The efficacy of the algorithm depends on the choice of
parameter λ and the choice of initial guess for γ. For λ,
following the same approach as in Varanasi and Jampana
(2018) and Ramsay et al. (2007), λ value is varied starting
from a low value (0.001) to a very high value in orders of 5
or 10. For every value of λ, the optimization (Steps-1 and
2) is performed till convergence and the final solution is
considered as initial guess for the next choice of λ. These
iterations are repeated until the error in Σ between two
consecutive choice of λ is small or the objective function
starts to increase after reaching a minimum value.

Now, to obtain an efficient initial choice for γ, the idea of
principal differential analysis (PDA) as detailed in Poyton
et al. (2006) is considered. Unlike the proposed method
wherein a model based regularization is considered, a

second order gradient term
(∫ T

0
d2x̂
dt2 dt

)
is considered as

a regularization term i.e., as g in PDA. Since this term is
independent of Σ, PDA is not an iterative approach and
one can obtain an explicit solution for γ. The solution with
the PDA method is considered as an initial choice of γ in
the proposed method.

The overall flowchart of the proposed methodology is given
in Algorithm 1.



Start

Initialize γ0 as solution of PDA problem
with an appropriate weighting factor

Start with small λ value (say 0.001)

Initialize γ as γ0 and Σ as a
Σ0(=zero vector in first step)

Estimate γ̂ for the given λ
and Σ0 by minimizing Eq. (6)

For the given γ̂, obtain sparse
Σ̂ by minimizing Eq. (7)

if
error1 <
tolerance

if
error2 <
tolerance

stop

no,increase λ,

set γ0 = γ̂,Σ0 = Σ̂

yes

no, set Σ = Σ̂

yes

Fig. 1. Overall Algorithm where, error1 denote the root
mean squared error of Σ̂ between two consecutive
iterations of step-1 and step-2 and error2 denote the
root mean squared error of Σ̂ between two consecutive
iterations of λ.

Algorithm 1 Orthogonal Matching Pursuit

• Inputs: Matrix Â, measurements
˙̂
X and termination

criteria (rms value (ϵ) or the length of the support
vector (k)).

• Initialization: r0 =
˙̂
X and Λ0 = {}

• Main step: At lth step,
* Compute error ξ(j) = minzj∥âjσj − rl−1∥,∀ j

using optimal choice, σ∗
j = âTj r

k−1/∥âj∥22.
* Identify support as λ̂l = min

j
∥ξ(j)∥ ∀ j ̸∈Λl−1.

* Update support as Λl+1 = Λl ∪ λ̂l.

* Estimate solution (Σl+1) as minimizer of || ˙̂X −
ÂΣ||22 subject to support set, Λl.

* Estimate residual, rl+1 =
˙̂
X − ÂΣl+1.

* if ∥rl∥2< ϵ or length(Λl) ≤ k, terminate algo-
rithm or else repeat the steps.

3. NUMERICAL EXPERIMENTS

To demonstrate the efficacy of the proposed method, Van
der Pol Oscillator and a Continuous Stirred Tank Reactor
systems are considered. The systems are simulated in
MATLAB to obtain the noiseless state data i.e., {x(tk),

for k = 1, 2, · · · , N} and a Gaussian noise with a signal
to noise ratio 1 of 20 to 25 is added to the state data
to obtain the output data. Monte-carlo simulations are
performed with 200 realizations of such noise and the mean
and standard deviation of the estimates are reported in
this paper. A tolerance value of 1× 10−3 is considered for
both error1 and error2.

3.1 Van der Pol Oscillator

The first system considered is a Van der Pol Oscillator
whose dynamics are given below:

dx1

dt
= x2

dx2

dt
=−x1 + µ

(
1− x2

1

)
x2

To obtain the measurements of x1 and x2, the system is
simulated in MATLAB over the time domain of [0, 15] with
µ = 2 and initial conditions as x1(0) = 1 and x2(0) = 0.
An i.i.d Gaussian noise of 200 realizations with a SNR
of 20 is added to the measurements to obtain the output
dataset. To model the system using the proposed method,
a candidate library with the polynomial terms as given in
Eq. (8) are considered.

Θ(x1, x2) =
[
1 x1 x2 x2

1 x2
2 x2

1x2 x1x
2
2

]
(8)

The estimated parameters (mean and standard devia-
tion) for state x2 with the proposed method and the
SINDy (Brunton et al., 2016) method (with a hyper-
parameter value of 0.22) are shown in Table. 1 and the
corresponding response with the mean value is shown in
Fig. 2.

Table 1. Estimates (mean and standard de-
viation) of parameters of coefficients of each
candidate term in the Library for state x2 of

Van der Pol Oscillator case study.

Candidate
term

True Value Proposed
method

SINDy

1 0 0 0
x1 -1 -1.013±0.046 -0.983±0.037
x2 2 1.923±0.032 1.8353±0.0711
x2
1 0 0 0

x2
2 0 0 0

x2
1x2 -2 -1.822±0.076 -1.799±0.068

x1x2
2 0 0 0

From the results reported in Table 1 and the corresponding
response plot in Fig. 2, it can be concluded that although
both the methods were able to identify the non-zero
candidate terms accurately, the accuracy of parameter
estimation is slightly higher with the proposed method
over the SINDy method. This can be attributed to the
fact that as finite difference method is employed in SINDy,
the derivative estimation might be inaccurate thereby
resulting in relatively large error in the estimates.

1 Defined as 10× log10(Psignal/Pnoise) where Psignal, Pnoise are the
power of the signal and noise respectively; power of a signal is defined
as its root mean square value
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Fig. 2. Mean response of state x2 with different methods

3.2 CSTR Case Study

In this section, the efficacy of the proposed method
is demonstrated using a perfectly mixed non-isothermal
CSTR system of volume V in which an irreversible and
endothermic chemical reaction of second order dynamics is
taking place. The feed with an initial concentration of CA0

enters the reactor with a flow rate Fr and Temperature T0.
The dynamics of such a reactor system is represented using
mass and energy balance equations as:

dCA

dt
=

Fr

V
(CA0 − CA)−K0exp

(
− E

RT

)
C2

A

dT

dt
=

Fr

V
(T0 − T ) +

(−∆Hr)

ρcp
K0exp

(
− E

RT

)
C2

A +
Q

ρcpV

where, K0 and E denote the rate constant, activation
energy of the reaction respectively and R is the universal
gas constant. Q is the heat input to the system and using
this variable the reaction mechanism is to be controlled,
∆Hr is the heat of reaction and ρ and cp are the density
and specific heat of the inlet fluid.

To generate the concentration and temperature data, the
system is simulated in MATLAB with a random heat input
profile in the range of −6 × 104 and 10 × 104. All the
other parameters required to simulate the system is given
in Table. 2.

Table 2. Parameter values of CSTR

Parameter Value Units

Fr 5 m3/hr
CA0

4 kmol/m3

T0 300 K
V 1 m3

K0 8.46× 106 hr−1

E/R 6.014× 103 k
∆Hr 1.15× 104 kJ/kmol
ρ 1× 103 kg/m3

cp 0.231 kJ/kg.K

For the generated concentration and temperature data,
an i.i.d Gaussian noise of 200 realizations with a SNR of
20 is added to obtain the final output dataset to be used
for identification of model. Further, a candidate library of
terms as given in Eq. (9) are considered for modeling the
system.

Θ(CA, T,Q) =
[
1 CA T C2

A T 2 log(CA) log(T )

sin(CA) sin(T ) exp

(
− E

RT

)
C2

A Q

]
The estimated parameters (mean and standard deviation)
for the concentration and temperature with the proposed
method and the SINDy are shown in Tables 3 and 4
respectively.

Table 3. Estimates (mean and standard de-
viation) of parameters of coefficients of each
candidate term in the Library for state CA of

CSTR case study

Library
term

True Value Proposed
method

SINDy

1 20 20.2693±1.184 -3211.2
±4443.8

CA -5 -
4.8260±0.125

106.72±140.97

T 0 0 -8842.9±6470
C2

A 0 0 -
53501±75501

T 2 0 0 (6.2456 ±
8.8136)× 105

log(CA) 0 0 -
6.9261±9.5584

log(T ) 0 0 4884.2±6107.5
sin(CA) 0 0 0
sin(T ) 0 (−3.3±0.6)×

10−3
0

exp
(
− E

RT

)
C2

A −8.46× 106 (−8.314 ±
0.406)× 106

-
3.8083±5.3857

Q 0 0 -
1144.3±1623.4

Table 4. Estimates (mean and standard de-
viation) of parameters of coefficients of each
candidate term in the Library for state T of

CSTR case study

Library
term

True Value Proposed
method

SINDy

1 1500 1590±210.15 1131.8±0.002
CA 0 0 9681.5±7083.6
T -5 -

4.9598±0.056
(1.4793 ±
2.077)× 105

C2
A 0 0 (−4.6799 ±

6.6182)× 107

T 2 0 0 (−8.5092 ±
12.034)× 106

log(CA) 0 0 -2289±191.81
log(T ) 0 0 -

11287±11169
sin(CA) 0 0 -

2.2569±3.3348
sin(T ) 0 -

0.3374±0.049
0

exp
(
− E

RT

)
C2

A −4.2117×108 (−4.102 ±
0.0032)× 108

0

Q 43×10−3 (4.2 ±
0.0286) ×
10−3

-
10806±15283

From the results reported in Tables 3 and 4, it can
be observed that although very few zero-coefficients are
identified by the proposed method, the overall accuracy
is high as the estimates of parameters for the non-zero



coefficients are very close to the true values. On the other
hand, when the SINDy algorithm is applied for the same
dataset, a dense parameter vector with values very far from
the actual values is obtained. A probable reason for the
SINDy algorithm to fail might be due to the inaccurate
estimates of derivatives in the presence of noise.

4. CONCLUSIONS

In this paper, an algorithm for data-driven identification of
models with inclusion of physical information is proposed.
To address the challenges with the derivative information
especially in the presence of noise, the data set is fitted
using B-splines subjected to a model-based penalty to
ensure that the data fit also satisfies the model of the
process. For estimation of a parsimonious model, a sparsity
constraint in terms of zero norm on the parameter vector
of the model is considered. A two step approach is followed
to solve the coefficients of B-splines and to estimate the
parsimonious model parameters. A systematic approach
for selection of initial choice of estimates and the choice
of regularization parameter is also presented in the paper.
The efficacy of the method is demonstrated on a Van der
Pol oscillator and a Continuous stirred tank reactor system
and the results are compared with the existing methods.
From the results, it can be concluded that the proposed
method is providing better and reliable estimates over the
existing methods.
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