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Abstract: In the pursuit of a resource-efficient economy, purple non-sulfur bacteria (PNSB) represent a
promising solution due to their capacity to convert waste from various sources into valuable products,
including biomass. However, scaling up PNSB technology remains challenging, and developing reliable
dynamic models for monitoring and control is essential to facilitate this transition. Despite recent
efforts dedicated to PNSB modeling, existing gaps in process understanding and difficulties in data
collection still limit their development. In this regard, physics-informed neural networks (PINNs)
emerge as a natural candidate, considering their ability to integrate partial physical information. This
paper presents a PINN-based model developed by combining an existing first-principles model—whose
performance declines under new conditions—with additional data representing these conditions. To
assess the performance of the PINN-PNSB model, we compare it with other modeling alternatives,
including the updated parametric model obtained by classical parameter identification and a pure
artificial neural network (ANN). A PINN-derived model, obtained by updating the physical model
parameters during PINN training, is also evaluated. Results using training and test data demonstrate

the superior performance of the PINN-based model for PNSB applications.

Keywords: physics-informed neural networks, hybrid modeling, machine learning, parameter

estimation, biotechnology.

1. INTRODUCTION

Despite their recent introduction, physics-informed neural net-
works (PINNs) (Raissi et al., 2019) have quickly established a
leading role among modern modeling techniques. The key as-
pect of PINNS lies in their ability to learn systems governed by
ordinary differential equations (ODEs) and partial differential
equations (PDEs) by incorporating knowledge provided by the
physical model during the training phase. Through automatic
differentiation (AD), one can effectively compute the deriva-
tives of the state variables predictions with respect to the inputs
(often time and space coordinates). Thus, the physical model
acts as a soft constraint during hyper-parameter optimization.
Like traditional artificial neural networks (ANNSs), one or mul-
tiple initial conditions, as well as experimental data, can also
be added. As discussed in (Karniadakis et al., 2021), in con-
trast to pure black-box methods, the incorporation of physical
information significantly alleviates the requirements for data
acquisition. Although adding experimental data is optional, it
becomes mandatory for inverse problems, where the goal is
to update the physical model parameters during PINN training
simultaneously.

The potential to work with small datasets is particularly appeal-
ing for bioprocess applications, where data collection is usually
a difficult task. In this context, a few PINN-based applications
have been proposed. Rogers et al. (2023b) developed a shallow
PINN to predict biomass growth and substrate consumption in a

fermentation process. In addition, the authors identify the time-
constant and time-varying parameters of the physical model.
In (Bangi et al., 2022), the PINN framework is associated with
neural ordinary differential equations (neural ODESs) to acceler-
ate training and construct a model for B-carotene production by
S. cerevisae. The resulting hybrid model shows superior accu-
racy when compared to an existing kinetic model. Biologically-
informed neural networks (BINNs) are introduced by Lager-
gren et al. (2020) and applied to predict cell migration in in-
vitro experiments, showing superior accuracy when compared
to classical physical models. Several other PINN and non-PINN
hybrid models applied to bioprocesses can be found in the
literature, for instance, (Rogers et al., 2023a; Cui et al., 2024).

Regarding purple non-sulfur bacteria (PNSB), PINNs can serve
as a valuable tool as producing experimental data is often
challenging. In this regard, Hiilsen et al. (2022) refer to the
scarcity of data from large-scale PNSB systems as one of
the drawbacks preventing PNSB technology from progressing.
Furthermore, physical phenomena governing PNSB growth and
substrate interactions are only partially understood and subject
to ongoing research, making PNSB systems ideal candidates for
PINN-based applications. In these cases, a PINN-PNSB model
can be designed to connect partially known physics and limited
experimental data.

In a previous study (Nunes et al., 2024), we developed a
mechanistic model to predict the growth of the PNSB strain



Rs. rubrum on a mixture of monosaccharides. Despite the
model satisfactory predictive performance, it exhibits a high
parametric variability. As the model limitations become more
evident once new conditions are introduced, we address this
drawback by proposing a PINN-PNSB model that combines
the existing model with a small dataset reflecting the new
conditions. This strategy takes advantage of the PINN ability
to integrate known physics captured by the mechanistic model
and unknown dynamics learned from experimental data.

This paper is organized as follows: Section 2 presents the physi-
cal model and its limitations. Section 3 details the PINN design,
training, and simulation. Section 4 discusses the numerical re-
sults regarding the PINN-based model and compares its perfor-
mance to other modeling approaches. Finally, conclusions and
perspectives are drawn in Section 5.

2. PROBLEM STATEMENT

The first-principles model to predict the growth of Rs. rubrum
cultures with fructose and glucose as carbon sources is de-
scribed in (1) to (7):
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where (1) and (2) represent the macroscopic reactions, (3) and
(4) define the Monod-like kinetics, and (5) to (7) are the mass-
balance ODEs.

The concentrations of biomass, fructose, and glucose are re-
spectively represented by X, fru, and glu, all measured in g/L.
The model parameters are: Yz, and Yy, the yield coefficients,
Hmax , and Hmax the maximum specific growth rates, K, and
Ky, the half-saturation constants for fru and glu, respectively.
The corresponding values and their 95% confidence intervals
(CI) are shown in Tab.1.

The model successfully predicts PNSB growth on mixtures of
fructose and glucose. However, acquiring supplementary exper-
imental data reveals its inability to generalize when glucose is
the sole carbon source. Figure 1 shows that the model overes-
timates biomass growth and glucose consumption after 100 h.
The fit deterioration is quantified through the root mean squared
error (RMSE) shown in Tab. 2. The first column contains
RMSE results for the original dataset described in (Nunes et al.,
2024), composed of four batch experiments, and the second
column corresponds to the new experiment from Fig. 1. While
one could simply revise the model by updating the parameter
values using the new dataset, this strategy may not capture the
underlying mechanisms that make the system behave differ-
ently when PNSB grow on fructose and glucose mixtures versus
glucose only. Therefore, we propose to represent the system by

a hybrid PINN-PNSB model. Through this approach, we expect
to leverage the physical knowledge embedded in the original
model while accounting for the partially understood phenom-
ena through the machine-learning capabilities of PINNs.
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Fig. 1. Experimental measurements (dots) and model predic-
tions for the concentrations of biomass (blue), and glucose
(black). The vertical bars correspond to a posteriori cal-
culations of the 95% confidence intervals related to the
measurement error.

Table 1. Parameter identification results and confi-
dence intervals for the original model.

Original model

Parameter Nominal value CI (%)

Hmax g, (1/h) 0.0838 636

Hmaxg, (1/h) 0.0198 95.0
Ky (g/L) 0.181 4514
Kglu (g/L) 1.40 150
Yiry (2/8) 2.37 31.0
Yoru (2/8) 0.925 17.0

Table 2. RMSE results for biomass, fructose, and

glucose for the original data (biomass cultivation

on fructose and glucose) and new data (biomass
cultivation exclusively on glucose).

Original dataset New dataset

X (g/L) 0.125 1.08
fru (g/L) 0.0133 -
glu (g/L) 0.123 0.932

3. PHYSICS-INFORMED NEURAL NETWORKS
3.1 Loss function

A scheme detailing the PINN design considered in this work
is presented in Fig. 2. The PINN structure consists of two
intersecting regions. The first (A) is comparable to a classical
feedforward neural network whose inputs are the vector of time
measurements ¢, and the initial conditions regarding the system
states, x = [X, fru,glu], represented by xo = [Xo, fruo, gluo],
where Xp, frup and glug represent the initial concentrations of
biomass, fructose, and glucose, respectively. In the intersection
between (A) and (B), we find the PINN predictions for the state
concentrations £ = [X, fru, glu] so that £ = PINN(xo,t) and
Xo = PINN(xp,t =0). In the second region (B), automatic
differentiation is applied to compute the time derivatives of
the state variables, d&/dt = [dX/dt,dfru/dt,dglu/dt] for
biomass, and both substrates. The first term of the loss function
(8) is then constructed by computing the difference between
those derivatives and the ones from the physical model, repre-
sented by f(£,,0), where 0 represents the parameter set of the
physical model. The satisfaction of the initial conditions is also
sought and is added to the loss function via equation (9). Since
this study also aims to solve an inverse problem, experimental



measurements x,; are incorporated into the loss function, as in
(10).
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where the trainable weights and biases are respectively w and
b.

The losses regarding the physical knowledge L., initial condi-
tions L;., and experimental data L, are weighted as we multiply
them by their respective loss weights w,, wi., and wy. Finally,
the losses are combined to produce a unique loss function as
follows:

L(W,b, 9) =wcLe +wicLwic +wyLy (11)
Tuning loss weights and the number of collocation points N,
is often done by trial and error. To increase the efficiency of
this task, we explore relatively simple structures for PINN-
PNSB model, prioritizing the use of compact and fast-to-solve
configurations, reducing the effort to a few trials. N, is chosen
such that the average time difference between consecutive
collocation points does not exceed five hours. Setting N, = 80
collocation points is enough to capture the physical model
dynamic during training. However, the selection of weight
values is more complex and will be detailed in subsection 3.3.
Lastly, determining the number of initial conditions N;, and data
points Ny is straightforward as it depends exclusively on the
datasets used during training.

3.2 Definition of the PINN architecture

The PINN-based model was trained by employing the Python
library DeepXDE (Lu et al., 2021) with the TensorFlow (Abadi
et al., 2016) backend. The optimal PINN architecture was de-
termined by exploring configurations that balance model reli-
ability and training duration, aiming to keep the training time
within minutes. To achieve this, a fully connected feedfor-
ward neural network, or multi-layer perceptron (MLP), was
constrained to a single hidden layer with a hyperbolic tangent
activation function, and various configurations were evaluated
by adjusting the number of neurons, N. Each candidate archi-
tecture was trained using data from 5 batch experiments and
N, = 80 collocation points for 40,000 iterations of the Adam
(Adaptive Moment Estimation) optimizer with the learning rate
Ir =15 x 1074 Initially, two simple structures, N = 5, and
N = 10, were tested. Subsequently, the number of neurons
was increased by increments of 10 until either a significant
increase in training time or no improvement in the final loss
was observed.

Table 3 presents the results for the tested architectures of the
shallow PINN-PNSB model. Notably, an increase in the resid-
ual loss occurs at N = 30. Hence, the selected architecture for
the single hidden layer corresponds to N = 20. Even though all
proposed structures demonstrate satisfactory predictive perfor-
mance, this architecture represents the lowest final loss among
the tested configurations. Given that the computation times are

considerably low, this architecture offers an optimal balance
between computational efficiency and predictive accuracy.

Although the resulting PINN-based models are already accept-
able at this stage, the primary objective is to evaluate the candi-
date architectures. Therefore, further improvements to the final
loss will be performed during the training phase.

Table 3. PINN architecture candidates.

Number of neurons 5 10 20 30
Training time (s) 50 49 53 64
Final loss 476 116 80 267

3.3 PINN training and test

The training phase is a two-stage procedure inspired by Rogers
et al. (2023b). In this work, the authors have empirically iden-
tified that such an approach can be more effective in avoiding
undesired local minima.

Loss function minimization is achieved by using its partial
derivatives with respect to the trainable parameters. An op-
timization algorithm, such as Adam or L-BFGS (Limited-
memory Broyden—Fletcher—Goldfarb—Shanno), is employed to
solve the optimization problem. Before training starts, the set
of nominal values 0 of the original model is provided and opti-
mized alongside w and b. As a result, the model parameters are
updated, generating a PINN-derived model. The optimization

problem is formulated as follows:
{w*,b*,0"} = min} L(w,b,0)

w,b,

min (12)

where w* and b* are, respectively, the optimal sets of the PINN-
PNSB weights and biases, and 6* is the optimal parameter set
of the PINN-derived model.

A full-batch optimization is conducted by incorporating data
from five independent experiments from a batch reactor (to-
talizing 130 measurements), x; = [Xq,,Xd,,Xd;,Xd,,Xd5] and
Xo = [X0,,X0,,X0;,X0,,X0s], along with physics from the orig-
inal model, N, = 80. In the first stage, the PINN is trained
without physical information (w, = 0, w;c = 1, wy = 1) for
20,000 iterations of Adam (Ir = 5 x 10~%). The resulting
PINN is then trained with w, = 1, wije = 10, wy = 1 x 103 for
20,000 iterations of Adam with the same learning rate as the
previous step, followed by 30,000 iterations of L-BFGS.

To verify the effectiveness of the two-stage training approach,
a one-stage training is also performed, consisting of 40,000
iterations of Adam followed by up to 30,000 iterations of L-
BFGS, using the same weight configuration as in the second
stage of the two-stage optimization. Each training strategy was
repeated five times, and the configuration yielding the lowest
loss was selected. The resulting PINN-based model is then
tested against unseen data, and its predictive performance is
evaluated by calculating the RMSE values for each state.

3.4 Hybrid vs. classical modeling

To assess the hybrid PINN-PNSB model, we compare its per-
formance to other modeling approaches: 1) the updated phys-
ical model obtained through a traditional identification pro-
cess, 2) a pure black-box artificial neural network (ANN), and
3) the PINN-derived model resulting from the parameter re-
identification during PINN training. The model performance
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Fig. 2. PINN-PNSB scheme.

analysis consists of evaluating all models in terms of fit quality
on both seen and unseen data, respectively, experiments 1-
5 and 6, which is achieved by computing the RMSE values.
The procedure for model training/identification and testing is
detailed in Fig. 3.

Training Test
Data Experiment 1
Experiment 2
Experiment 3 —/ Experiment 6 M
Experiment 4
Experiment 5
Physical
model Original model |— Updated Updated
model model
PINN-derived PINN-derived +—
I
Hybrid
model PINN fe—I PINN —|
Pure data-driven
model ANN [ ANN —

Fig. 3. Schematic representation of the procedure for model
comparison.

The methodology for updating the physical model parameters
and confidence intervals is based on the procedure described in
(Fekih-Salem et al., 2019). Parameters are estimated by mini-
mizing a weighted least-squares criterion, which measures the
distance between the model-simulated data and the observed
values. The parameter values from the original model are pro-
vided to the solver to initialize the optimization process.

The classical ANN architecture and training procedure repli-
cates those of the PINNs, with the key distinction that no
physics is incorporated in the form of ODEs. Instead, we en-
hance the training process by incorporating 10 datasets contain-
ing 8 data points for each state, directly generated from sim-
ulations of the original model, covering all initial conditions.
The generated datasets provide a total of 80 additional training
points, aligning with the number of collocation points used in

the PINN training. ANN training is completed in 72 seconds
with a residual loss of 9.3 x 1073,

4. NUMERICAL RESULTS
4.1 PINN training and test

Training for both two-stage and single-stage strategies is com-
pleted in under five minutes, producing smooth profiles with
no significant overfitting. Figure 4 depicts the evolution of the
weighted losses. As expected, the two-stage PINN exhibits a
spike after 20,000 iterations, corresponding to the inclusion of
the model loss at the start of the second stage. However, the loss
subsequently decreases and stabilizes at a lower final value than
in single-stage training. The average residual losses, computed
across five training runs, demonstrate a clear advantage of the
two-stage approach, resulting in reductions of 25.8%, 16.1%,
and 18.8% in the model, data, and total losses, respectively.

Loss
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Fig. 4. Loss evolution for the best run of the two-stage (dashed
line) and single-stage training (continuous line).

4.2 Results of hybrid vs. classical modeling

In this section, we present the PINN-PNSB model performance
compared to the other modeling alternatives. Figure 5 presents
the resulting PINN and ANN predictions for the state evolutions
across five training experiments and one test dataset. Results
demonstrate that the proposed PINN-based model effectively
predicts biomass growth and substrate consumption for all
datasets used during training while successfully performing
on unseen data. The training datasets show the full capacity
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. 5. Experimental measurements (dots) and model predic-
tions for the concentrations of biomass (blue), fructose
(red), and glucose (black). The PINN-PNSB predictions
are indicated by continuous lines, and the classical ANN
predictions are shown in dashed lines. The bars correspond
to a posteriori calculations of the 95% confidence intervals
related to the measurement error.

of PINNSs because, in addition to the limited number of mea-
surements, we observe significant gaps between consecutive
measurements, notably the last two points of experiments 1 and
2. For this reason, incorporating physical knowledge is crucial
to avoid deviations from the expected behavior in regions where
no experimental information is provided.

It can also be noted in Fig. 5 that the pure ANN presents un-
expected behavior in regions of large intervals between consec-
utive measurements. This result demonstrates that simply aug-
menting the training samples by generating data with the phys-
ical model is ineffective in this case. In contrast, incorporating
physical information during training prevents this and other
related issues, such as the transgression of physical constraints
(e.g., negative values of biomass and substrate concentrations),
which we observe in the classical ANN results but not in the
PINN. It is important to mention that the ANN model could
be further improved by incorporating additional data or ad-
justing the architecture and activation function. However, such
modifications deviate from the purpose of evaluating the PNSB
models under comparable conditions. Additionally, considering
the limited complexity of the PNSB system’s dynamics, the
MLP—recognized as a universal approximator—represents a
reasonable choice.

Figure 6 shows the state predictions of the PINN-derived and
classical models, and the respective parameter values and 95%
confidence intervals are listed in Table 4. While both paramet-
ric models provide an improved fit to the experimental data
as compared to the original model, the PINN-derived model
demonstrates superior overall performance, especially on the
test dataset. However, concerning the confidence interval re-
sults, the updated physical model exhibits lower parametric un-
certainties than the PINN-derived one. Regardless, both alterna-
tives represent an improvement in parameter uncertainty with

respect to the original PNSB model, reducing the confidence
interval for 5 out of 6 parameters.

Despite producing a better fit, parameter identification of the
PINN-derived model can be particularly challenging since the
parameter values may diverge from the original ones and even
assume negative values, losing physical meaning. This issue
can be avoided by constraining parameter outputs during opti-
mization, which can be achieved by modifying the TensorFlow
variable tf.variable to force the solution of the optimization
problem to be bounded. To accomplish this, we employ a func-
tion whose outputs are limited to a certain range, such as the
sigmoid.

To draw a rigorous comparison of all considered methods, we
compute the RMSE values for training and test datasets, as
indicated in Tab. 5 and 6, respectively. Results highlight the
PINN superior performance for most tested scenarios, with the
only exception being observed for fructose. However, this state
may be considered less representative than the others since it
is rapidly depleted, leaving only a few non-zero measurements
for evaluation. Interestingly, the classical ANN outperforms
the updated physical and PINN-derived models on the training
datasets. However, this outcome is not replicated on unseen
data, where the PINN-derived model surpasses it. This result
is expected as the classical ANN tends to overfit the data, while
for the PINN, the embedded physics constrains such behavior.
Consequently, the hybrid model generalizes better than the
pure data-driven approach when applied to the studied case.
Overall, both qualitative and quantitative analysis confirm the
PINN potential to improve the modeling of PNSB cultures,
showing it can successfully address issues imposed by process
understanding and data limitations.
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Fig. 6. Experimental measurements (dots) and model predic-
tions for the concentrations of biomass (blue), fructose
(red), and glucose (black). The updated physical model is
indicated by dashed lines, and the PINN-derived model
is shown in continuous lines. The bars correspond to a
posteriori calculations of the 95% confidence intervals
related to the measurement error.



Table 4. Parameter identification results for the
updated physical model and PINN-derived model.

Updated model PINN-derived model
Parameter Value CI(%) | Value CI (%)
Hmax ,, (17h) 0.125 60.0 0.108 128
Hmaxg, (1/h)  0.0021 29.0 0.0028 21.0
Kpry (g/L) 0.619 159 0.389 537
K (2/L) 0.140 218 0.0574 399
Y (2/2) 118 11.0 1.42 13.0
Yoru (g/2) 1.73 23.0 1.25 18.0

Table 5. RMSE results for the PINN-PNSB model,
updated physical model, PINN-derived model, and
classical ANN on training/identification datasets.

Exp 1-5
RMSE X fru glu
PINN 0.0459  0.0155 0.0538
Updated model 0.141 0.0339  0.166
PINN-derived model ~ 0.153  0.0284  0.163
Classical ANN 0.0787  0.0337  0.0882

Table 6. RMSE results for the PINN-PNSB model,
updated physical model, PINN-derived model, and
classical ANN on the test dataset.

Exp 6
RMSE X fru glu
PINN 0.167 0.0745 0.234
Updated model 0404  0.145  0.450
PINN-derived model ~ 0.212  0.0131  0.247
Classical ANN 0.362  0.0951 0.344

5. CONCLUSION

A PINN-based hybrid model is designed to improve the pre-
dictive performance of the mathematical model for PNSB cul-
tures. An existing physical model is well-adjusted to experi-
mental data but suffers a performance deterioration once new
conditions are incorporated. To handle this problem, a PINN-
PNSB model is designed, combining physical knowledge from
the initial model with experimental results. The shallow PINN
architecture was selected by comparing the final losses and
training durations from pre-selected candidates containing a
distinct number of neurons. A two-stage training is preferred
for the final training, considering that it leads to lower residual
losses than the single-stage one. PINN training is completed
in a few minutes, and in parallel, the model parameters are re-
identified, producing a PINN-derived model. Following train-
ing, the performance of the PINN-PNSB model is compared to
a revised mechanistic model, a classical ANN, and the physi-
cal model whose parameters were optimized during the PINN
training. RMSE results from the training phase indicate that
the PINN-based model delivers the best performance, followed
by the pure ANN and the PINN-derived model. Concerning
parameter uncertainty, the updated physical model compen-
sates for having the worst predictive accuracy by exhibiting the
best results among the parametric models. Finally, when tested
on unseen data, the PINN-PNSB model again outperforms its
counterparts, with the PINN-derived model ranking second.
These findings confirm the suitability of PINN-based models
in improving predictive accuracy in bioprocesses, especially in
small data scenarios. Future work should focus on expanding
the application of PINN-based models to other PNSB cultures
where more complex physical structures and additional inputs
are present. Further analysis is also needed to investigate alter-

native architectures, particularly those specifically designed for
time-series data.

ACKNOWLEDGEMENTS

The research leading to these results has been funded by the
Public Service of Wallonia (Economy, Employment and Re-
search), under the FoodWal agreement n°2210182 from the
Win4Excellence project of the Wallonia Recovery Plan.

REFERENCES

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,
J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
(2016). {TensorFlow}: a system for {Large-Scale} machine
learning. In /2th USENIX symposium on operating systems
design and implementation (OSDI 16), 265-283.

Bangi, M.S.F.,, Kao, K., and Kwon, J.S.I. (2022). Physics-
informed neural networks for hybrid modeling of lab-scale
batch fermentation for B-carotene production using saccha-
romyces cerevisiae. Chemical Engineering Research and
Design, 179, 415-423.

Cui, T., Bertalan, T., Ndahiro, N., Khare, P., Betenbaugh,
M., Maranas, C., and Kevrekidis, 1.G. (2024). Data-driven
and physics informed modeling of chinese hamster ovary
cell bioreactors. Computers & Chemical Engineering, 183,
108594.

Fekih-Salem, R., Dewasme, L., Castro, C.C., Nobre, C.,
Hantson, A.L., and Vande Wouwer, A. (2019). Sensitivity
analysis and reduction of a dynamic model of a bioproduc-
tion of fructo-oligosaccharides. Bioprocess and Biosystems
Engineering, 42, 1793—-1808.

Hiilsen, T., Barnes, A.C., Batstone, D.J., and Capson-Tojo, G.
(2022). Creating value from purple phototrophic bacteria via
single-cell protein production. Current Opinion in Biotech-
nology, 76, 102726.

Karniadakis, G.E., Kevrekidis, 1.G., Lu, L., Perdikaris, P,
Wang, S., and Yang, L. (2021). Physics-informed machine
learning. Nature Reviews Physics, 3(6), 422-440.

Lagergren, J.H., Nardini, J.T., Baker, R.E., Simpson, M.J., and
Flores, K.B. (2020). Biologically-informed neural networks
guide mechanistic modeling from sparse experimental data.
PLoS computational biology, 16(12), e1008462.

Lu, L., Meng, X., Mao, Z., and Karniadakis, G.E. (2021).
Deepxde: A deep learning library for solving differential
equations. SIAM review, 63(1), 208-228.

Nunes, M.C., Dewasme, L., Gilson, M., Bayon-Vicente, G.,
Leroy, B., and Vande Wouwer, A. (2024). Robust tube-based
predictive control of continuous protein production by purple
non-sulfur bacteria. IFAC-PapersOnLine, 58(14), 724-729.

Raissi, M., Perdikaris, P., and Karniadakis, G.E. (2019).
Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving
nonlinear partial differential equations. Journal of Compu-
tational physics, 378, 686-707.

Rogers, A.W., Song, Z., Ramon, FV,, Jing, K., and Zhang,
D. (2023a). Investigating ‘greyness’ of hybrid model for
bioprocess predictive modelling. Biochemical Engineering
Journal, 190, 108761.

Rogers, A.W., Cardenas, 1.0.S., Del Rio-Chanona, E.A., and
Zhang, D. (2023b). Investigating physics-informed neural
networks for bioprocess hybrid model construction. In
Computer Aided Chemical Engineering, volume 52, 83—88.
Elsevier.



