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Abstract: Accurate dynamic models of virus infection processes are highly relevant for
the optimization of vaccine production processes. However, fitting their parameters onto or
even designing novel dynamic models from an existing set of biological measurement data is
challenging as it is common that entire quantities are missing due to sub-optimal measurement
setups. This work targets identifying virus dynamics models based on incomplete measurement
data and domain knowledge. To this end, we unite sparse identification of non-linear dynamics
(SINDy) with a commonly used approach to identify non-linear dynamical systems from
incomplete measurements, namely an extended Kalman filter (EKF). This yields a hybrid model
that is able to identify governing equations that describe the dynamic non-linear processes. The
capabilities of this model are demonstrated on a set of incomplete artificial measurement data
of an existing infection dynamics model.
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1. INTRODUCTION AND PROBLEM SETUP

Mathematical models of virus infection are widely used
for the optimization of biopharmaceutical production pro-
cesses, to support the design of experiments and for the
identification of antiviral treatment strategies as reviewed
in Beauchemin and Handel (2011). Previously, they were
applied to describe and analyze the infection dynamics for
a large variety of virus species, e.g. HIV, hepatitis C virus,
and SARS-COV2. For the description of influenza virus
infection, various modeling approaches were used to great
success, i.e. models covering the infection in humans as
in Baccam et al. (2006), the host immune response as in
Bocharov and Romanyukha (1994) and the development of
antibiotic resistance as in Perelson et al. (2012). Here, we
focus on influenza A virus replication dynamics in animal
cells considered for vaccine production described by Heldt
et al. (2012) and Rüdiger et al. (2024). The identification
of the optimal model structure and size for the respective
system depends on the available experimental data and
is quite challenging. This is an inherent problem when
using real biological data which are often plagued by a
sparsity of measurement time points, large measurement
error ranges, and missing initial conditions. Thus, it would
be highly beneficial to develop a method to identify the
underlying dynamics of virus infection processes directly
from ill-defined experimental data. Although the under-
lying mechanisms of influenza A virus replication are a
complex interplay of processes, the overall dynamics can
be described by simple kinetics. To that end, we use a

reduced infection model that is defined as follows:

ẋ1 = −Imp · x1, ẋ2 = SynM · x4 −DegM · x2 (1)

ẋ3 = SynC · x4x6 −DegRnp · x3

ẋ4 = Imp · x1 + SynV · x3x6 −DegRnp · x4 − Exp · x4x7

ẋ5 = Exp · x4x7 −DegRnp · x5 − Rel · x5

ẋ6 = SynP · x2 − (SynCx4 + SynVx3)x6

ẋ7 = SynP · x2, ẋ8 = Rel · x5

where x are the system states that describe the production
of progeny virus particles following an infection and the
rest resembles constant scalar system parameters. Initially,
extracellular virions x1 are imported to the cell nucleus
with rate Imp and release viral genomes x4. These genomes
produce messenger RNA x2 in the nucleus with rate SynM,
which is translated to two different viral proteins with
rate SynP. Protein x6 is involved in the replication of the
viral genome and protein x7 causes the export of viral
genomes from the nucleus. An intermediate version of the
genome x3 is formed with rate SynC and is subsequently
used to produce more viral genomes with rate SynV. Due
to the accumulation of export proteins, the viral genomes
are exported from the nucleus to the cytoplasm with rate
Exp, which is accounted for in x5. Lastly, these cytosolic
genomes are released from the cell with rate Rel. All
genomic species can get degraded by cellular processes,
which is accounted for by the rates DegM for messenger
RNA and by DegRnp for all forms of the viral genome. We
are simulating this system with the following parameter
set [Imp = 10, SynM = 20, SynC = 0.9, SynV = 10,
SynP = 1, DegM = 0.33, DegRnp = 0.09, Exp = 1, Rel



Fig. 1. Behavior of an influenza virus in a cell culture from
the reduced model in (1)

= 2] and the initial condition x(0) = [10, 0, 0, 0, 0, 0, 0, 0],

which forms a set of measurement data X = (x(tn))
N−1
ℓ=0 ,

x(tn) ∈ RKx in a possibly variable grid of N collocation
points tn. A visualization of the resulting trajectories can
be found in Figure 1. Various methods exist to reconstruct
behavioral models of ODEs from measurement data. As
an introductory example, we apply sparse identification of
non-linear dynamics (SINDy) by Brunton et al. (2016) as it
yields a highly interpretable closed-form solution that can
be easily reused. For this purpose, we introduce a function
library that contains a set of M unique ansatz functions

A =
{
am : RKx → R, m = 1...M

}
(2)

This ansatz function library is usually highly diverse
and contains a variety of memoryless functions such as
polynomials, trigonometric, or exponential terms. The core
idea of SINDy is to model the mapping f of ẋ = f(x) via
a weighted sum of said ansatz functions in the library A
which yields the following linear regression problem

Y = Ẋ = A(X)Ξ, Ξ̂ = argmin
Ξ

(||Y −A(X)Ξ||2) (3)

Problem (3) can be solved with standard methods such as
SVD, however, Brunton et al. (2016) suggest including a
regularization to promote sparsity in Ξ

Ξ̂ = argmin
Ξ

(||Y −A(X)Ξ||2 + λ||Ξ||p) (4)

The selection of p is crucial for the problem solution as
e.g. p = 0 yields a mixed-integer optimization problem
that requires dedicated solvers. For this work, we set
p = 1. Using sequential thresholded linear least squares
(STLSQ) in this case as described by Brunton et al.
(2016) is beneficial. However, applying SINDy by itself
is not feasible for identifying the underlying dynamics of
virus infection processes, since typically measurements are
missing for non-observable quantities. Hence we can not
solve (4) and therefore, we introduce a way to extend
SINDy for such scenarios in the next section.

2. RECONSTRUCTION FROM INCOMPLETE
MEASUREMENT DATA

A fundamental problem of the SINDy approach is the
reliance on complete measurement data. In Section 1, we
introduced a reduced system that models influenza virus
infection dynamics. Under laboratory conditions, however,
we can not measure all system states and therefore SINDy
can not be applied. For the purpose of reconstructing

governing equations from incomplete measurements, we
introduce a Kalman filter SINDy hybrid that can not only
deal with incomplete measurements but also yields the
actual underlying system equation similar to SINDy. The
proposed model is largely based on the so-called extended
Kalman filter (EKF), which is suitable for non-linear
system identification. To use this, we switch from com-
mon non-linear ODEs to non-linear difference equations,
as such models are commonly used to describe discrete
systems. Applying the following methods to a continuous
system is trivial.

2.1 Extended Kalman Filter Basics

In this Section, the EKF and corresponding derivations are
presented. It summarizes the work of Terejanu et al. (2008)
with slight changes in notation. We use the following non-
linear system

xn = f(xn−1) + qn−1, 0 ≤ n ≤ N, (5)

yn = g(xn) + rn,

where xn ∈ RKx is the system state at timestamp n,
yn ∈ RKy is the system output, qn ∈ RKx is the process-
and rn ∈ RKy the measurement noise. Suppose we can
measure y, but not the system states x. One application of
Kalman filters is to reconstruct (possibly non-observable)
system states from output measurements alone. For this
we require the initial state x(0) ≡ x0 of the system with
known mean µ0 = E[x0] and covariance P0 = E[(x0 −
µ0)(x0 − µ0)

T ]. Furthermore, we require an uncertainty
model of the process that manifests in q. In certain cases
with extensive domain knowledge, we may derive such
from physical laws, but for now, we set this quantity to
be unknown. An estimation procedure for q (respectively
its covariance matrix Q) is introduced in Section 2.3. As
for the further noise characteristics we set

E[qn] = 0, E[qnq
T
n ] = Qn, E[qiq

T
j ] = 0 ∀i ̸= j, (6)

E[qnx
T
0 ] = 0 ∀n, E[rn] = 0, E[rnr

T
n ] = Rn,

E[rir
T
j ] = 0 ∀i ̸= j, E[rnx

T
0 ] = 0 ∀n, E[qir

T
j ] ∀i, j

meaning both noise quantities are temporally and mutu-
ally uncorrelated (white noise) with zero mean and fur-
thermore uncorrelated with the initial system state x0.
Regarding the vectorial functions f : RKx×1 → RKx×1,
g : RKx×1 → RKy×1, we require at least C1 smoothness in
the given domain. Kalman filtering essentially consists of
two steps

(1) a model forecast produces estimates of the current
state variable and its associated uncertainties before
considering the current observation (a-priori);

(2) a model correction updates the current state variable
(a-posteriori) to maximize the probability of our
observations y given the a-priori estimation from the
model forecast

In the following we derive the EKF equations whereby
quantities with a minus exponent (e.g. x−

n ) are a-priori
values calculated before considering the current observa-
tion and quantities with a plus exponent (e.g. x+

n ) are
a-posteriori values calculated with respect to the current
observation. A central aspect of the EKF derivation is the
C1 assumption for the non-linearities, as we can apply
Taylor series expansion. We assume that we received an



optimal estimation in the last time step given the obser-
vation x+

n−1 = E[xn−1|yn−1] with the corresponding state

covariance P+
n−1. The predicted current state value of our

EKF model reads

x−
n = E[xn|yn−1] = E[f(xn−1)|yn−1] (7)

neglecting qn−1 due to being uncorrelated to the system
state. Expanding f about x+

n−1 yields

f(xn−1) ≡ f(x+
n−1) +∇f(x+

n−1)(xn−1 − x+
n−1) + h.o.t

(8)

where ∇f is the Jacobian of f . As is common with
Taylor series expansion, the higher order terms (h.o.t) are
neglected. Therefore, from (7)

x−
n ≈ f(x+

n−1) +∇f(x+
n−1)E[en−1|yn−1] (9)

with en−1 ≡ xn−1 − x+
n−1 being the residual of previously

estimated and true system state. E[en−1|yn−1] = 0 since
we assumed an optimal estimate. The corresponding fore-
cast error and covariance are

ϵ−n ≡ xn − x−
n ≈ ∇f(x+

n−1)ϵn−1 + wn−1 (10)

P−
n ≡ E[e−n

(
e−n

)T
] = ∇f(x+

n−1)P
+
n−1∇fT (x+

n−1) +Qn−1

In the model forecast step, we evaluated our underlying
process model and gained knowledge about the forecast
value x−

n and covariance P−
n . In the model correction, we

aim to utilize this information to approximate the best
state estimate x+

n . Terejanu et al. (2008) mentions the
work of Lewis et al. (2006) regarding one possible approach
to get an unbiased estimate x+

n of xn (in least-squares
sense)

x+
n = a+Knzk (11)

From the unbiasedness condition follows

0 = E[xn − x+
n |yn] (12)

= E
[
(x−

n + ϵn)− (a+Kng(xn) +Knvn)|yn
]

= x−
n − a−KnE [g(xn)|yn]

a = x−
n −KnE [g(xn)|yn]

Now we can substitute (12) in (11) to get

x+
n = x−

n +Kn (yn − E [g(xn)|yn]) (13)

Following the same Taylor series expansion idea from the
model forecast step, expanding g around x−

n yields

g(xn) ≡ g(x−
n ) +∇g(x−

n )(xn − x−
n ) + h.o.t (14)

where ∇g is the Jacobian of the observation non-linearity
g. Taking the conditional expected value w.r.t yn of both
sides and once again neglecting the higher-order terms
yields

E [g(xn)|yn] ≈ g(x−
n ) +∇g(x−

n )E
[
xn − x−

n |yn
]

(15)

with E [xn − x−
n |yn] = 0. Substituting in (13)

x+
n ≈ x−

n +Kn

(
yn − g(x−

n )
)

(16)

Now we can also calculate the a-posteriori state error (with
the derivations of Akhlaghi et al. (2017))

ϵ+n ≡ xn − x+
n (17)

= f(xn−1) + wn−1 − x−
n −Kn

(
yn − g(x−

n )
)

≈
(
I −Kn∇g(x−

n )
)
∇f(x+

n−1)ϵ
+
n−1

+
(
I −Kn∇g(x−

n )
)
wn−1 −Knvn

and the a-posteriori state covariance estimate

P+
n = E

[
ϵ+n

(
ϵ+n

)T ]
(18)

= P−
n −Kn∇g(x−

n )P
−
n − P−

n ∇gT (x−
n )K

T
n

+Kn∇g(x−
n )P

−
n ∇gT (x−

n )K
T
n +KnRnK

T
n

The only remaining unknown is the so-called Kalman gain
Kn. As with the conventional (linear) Kalman filter, it can
be calculated by minimizing the trace of P+

n (tr(P+
n )) with

regard to Kn:

0 =
∂tr(P+

n )

∂Kn
(19)

= −
(
∇g(x−

n )P
−
n

)T − P−
n ∇gT (x−

n )

+ 2Kn∇g(x−
n )P

−
n ∇gT (x−

n ) + 2KnRn

↔ Kn = P−
n ∇gT (x−

n )
(
∇g(x−

n )P
−
n ∇gT (x−

n ) +Rn

)−1

where the trace is the sum of diagonal elements of P+
n

and represents the total variance (uncertainty) of the a-
posteriori state estimates. Finally substituting into (18)
yields

P+
n =

(
I −Kn∇g(x−

n )
)
P−
n (20)

A summary of the EKF update procedure can be found in
Figure 2.

2.2 Including SINDy using State Augmentation

To include the SINDy approach into the EKF, we can sim-
ply replace the non-linearities f and g with corresponding
weighted sums of ansatz functions

xn = Af (xn−1)Ξ
(f) + qn−1 (21)

yn = Ag(xn)Ξ
(g) + rn

where

• Af is the process non-linearity with Mf ansatz func-

tions a
(f)
m : RKx×1 → R

• Ξ(f) ∈ RMx×Kx is the sparse process weight matrix
• Ag is the observation non-linearity with Mg ansatz

functions a
(g)
m : RKx×1 → R

• Ξ(g) ∈ RMy×Ky is the sparse observation weight
matrix

Evaluating the non-linearities at xn produces a row vec-
tor that contains the results of the individual ansatz

functions such as Af (xn) ≡
[
a
(f)
1 (xn), . . . , a

(f)
Mf

(xn)
]
and

Ag(xn) ≡
[
a
(g)
1 (xn), . . . , a

(g)
Mg

(xn)
]
. We require that each

ansatz function in Af and Ag is at least C1 smooth. Our
goal is to identify a system characterized by the process
and observation weight matrices Ξ(f) and Ξ(g) that ap-
proximates our given observations yn in the least squares
sense. To simplify this task, we may assume that we know
Ξ(g) based on domain knowledge. However Ξ(f) remains
unknown and therefore, we define an augmented system
state

x̃n = [xT
n , ξ

(f)]T (22)

which also contains the vectorization of Ξ(f), namely ξ(f).
Since Ξ(f) is a constant weight matrix, we can define a
new EKF model with an augmented state

x̃n =

[
xn

ξ(f)n

]
=

[
Af (xn−1)Ξ

(f)
n−1

ξ
(f)
n−1

]
+ q̃n−1 (23)

yn = Ag(xn)Ξ
(g) + rn



where q̃n−1 = [qTn−1, ω] and ω is the expected uncertainty

of the process weight matrix coefficients. Note that ξ
(f)
n

has no direct effect on the observation yn and is therefore
neglected in the second equation. The process Jacobian
has to be updated to reflect the augmented state as well

∇f(x̃n) =

[
∇Af (xn)Ξ

(f)
n Af (xn)⊗ I

0 I

]
(24)

where ∇Af (xn) is the Jacobian of the process non-
linearity (our SINDy model) w.r.t xn and ∇f(x̃n) repre-
sents the Jacobian of the augmented process equation. We
can employ a similar process in the calculation of ∇g(x̃n),
but in most cases, a dedicated output non-linearity is not
required. We can write

yn = Gxn + vn (25)

where G is an observability matrix indicating which states
in xn appear in yn. The calculation of the corresponding
Jacobian ∇g(x̃n) is trivial.

2.3 Estimating Process/Observation Covariance Matrices

Another challenge of the introduced SINDy-augmented
EKF is the selection/estimation of the process noise co-
variance Qn, which also implicitly includes the SINDy
parameter uncertainty. One common approach for linear
Kalman filters is to update Qn and the measurement
covariance matrix Rn at each step according to Mehra
(1970). For EKFs, Akhlaghi et al. (2017) provide an
innovation/residual-based estimation approach which is
referred to as adaptive EKF (AEKF), whereby innova-
tion dn is be the difference between observations and a-
priori state estimations contrary to residuals en using a-
posteriori estimations

dn = yn − g(x̃−
n ) (innovation) (26)

en = yn − g(x̃+
n ) (residual)

Since covariance matrices are positive definite, Akhlaghi
et al. (2017) uses a residual-based approach to estimate
Rn as introduced by Wang (1999)

Sn = E[ene
T
n ] = E[vnv

T
n ]−∇g(x̃−

n )P
−
n ∇gT (x̃−

n ) (27)

Rn = E[vnv
T
n ] = Sn +∇g(x̃−

n )P
−
n ∇gT (x̃−

n )

We can estimate Rn using an exponential window with a
forgetting factor 0 < α ≤ 1 and β = 1− α. This yields

Rn = αRn−1 + β
(
ene

T
n +∇g(x̃−

n )P
−
n ∇gT (x̃−

n )
)

(28)

A similar principle can be applied regarding the process
noise covariance matrix Qn using the innovation. We can
estimate the process noise using the a-posteriori state
estimation as in Akhlaghi et al. (2017)

q̂n−1 = x̃+
n − f̃(x̃+

n−1) (29)

= x̃+
n − x̃−

n = Kn

[
yn − g(x̃−

n )
]
= Kndn

and therefore

Qn−1 ≈ E[q̂n−1q̂
T
n−1] (30)

= E[Kn(dnd
T
n )K

T
n ] = KnE[dnd

T
n ]K

T
n

We can determine E[dnd
T
n ] using the same exponential

window as with the process noise covariance

Qn = αQn−1 + β
(
Kndnd

T
nK

T
n

)
(31)

Combining the principles of covariance matrix estimation
with our SINDy augmenting approach forms an algorithm
that we call augmented adaptive EKF (AAEKF). The

Fig. 2. Flowchart of the proposed augmented AAEKF,
inspired by Akhlaghi et al. (2017)

flowchart for a single iteration of the AAEKF is displayed
in Figure 2.

2.4 Introducing Sparsity into AAEKF

AAEKF using SINDy models does however lack a crucial
aspect in its current form: the added augmentation state
ξ(f) is not sparse. To solve this, we introduce a sparsity
criterion for the process equation into AAEKF, which
leads to more compact system approximations. One way to
include sparsity is to modify the Kalman gain accordingly
by adding a regularization term to (19)

0 =
∂tr (P+

n ) + λ||x+
n ||p

∂Kn
(32)

where x+
n ≈ x−

n + Kn (yn − g(x−
n )) as in (16). Similar to

(19) we need to solve (32) for Kn, which is trivial for p = 2
but only moderately useful to facilitate sparsity in x+

n as
it penalizes the sum of squares

Kn =
(
P−
n ∇gT (x−

n ) + λx−
n d

T
n

)
(33)

·
(
∇g(x−

n )P
−
n ∇gT (x−

n ) +Rn + λdnd
T
n

)−1

where dn = yn − g(x−
n ) once again resembles the model

innovation. Selecting p = 1 as commonly used for SINDy
by Brunton et al. (2016) yields

0 =
∂tr(P+

n )

∂Kn
+ λ · sign(x−

n +Kndn)d
T
n (34)

which can not be directly solved for Kn. There exist
different methods to handle such problems, but we can also
formulate an algorithm similar to sequential thresholded
linear least squares (STLSQ) as introduced by Brunton
et al. (2016). In Algorithm 1 we initially solve the non-
sparse regression problem and systematically remove ele-
ments in the a-posteriori covariance matrix P−

n to update
the Kalman gain estimations until a sufficient degree of
sparsity is reached.



Algorithm 1 Adapted STLSQ for AAEKF

1: B = P−
n ∇g(x̃−

n ), A =
(
∇g(x−

n )P
−
n ∇gT (x−

n ) +Rn

)−1

2: Compute the non-sparse initial solution K = BA−1

3: while ξ+n ∈ x+
n = x−

n +Kndn is non-sparse do
4: find non-zeros in ξ+n and ξ−n smaller then λ
5: set the app. rows and columns in P−

n to zero
6: update A and B
7: re-calculate the Kalman gain K = BA−1

8: end while
9: calculate the posterior state x̃+

n = x̃−
n +Kndn

10: set all non-zeros ξ+n ∈ x̃+
n smaller than λ to zero

3. PARALLELS TO EXISTING LITERATURE

Literature research indicates there are other publications
concerned with fusing some aspects of SINDy with the
capabilities of EKFs. To highlight the novelty of this work,
we are therefore adding context on the main differences,
most notably w.r.t the works of Stevens-Haas et al. (2024)
and Rosafalco et al. (2024). Especially similarities to the
method of Stevens-Haas et al. (2024) are minor, as it is
concerned with making SINDy more robust to noise by
using Kalman smoothing in the data assimilation step to
compensate the noise amplification in numerical deriva-
tives. The proposed method in this work however utilizes
EKFs to perform the sparse regression step of SINDy itself
and therefore covers a different anchor point. In Rosafalco
et al. (2024) multiple algorithms are presented, e.g. time
delay embedding approaches, but the focus in the context
of this work lies on the EKF-related part. The underlying
idea of utilizing a SINDy approach for the process and
observation equations as in (21) and co-estimating the cor-
responding weight coefficients alongside the actual system
state can be considered equivalent. However, Rosafalco
et al. (2024) does not account for estimating the process
and observation covariance matrices Q,R which makes the
proposes method harder to parameterize. Additionally no
direct sparsity mechanism has been introduced into the
EKF-SINDy approach (online phase) of Rosafalco et al.
(2024). For AAEKFs both points are covered.

4. INFLUENZA DYNAMICS RECONSTRUCTION

In the following section, we apply our Kalman filter hybrid
model (AAEKF) to identify a realistic influenza virus
model containing only observations of measurable quan-
tities. To promote the stability of the identified system
we utilize the integral formulation in combination with an
appropriate ODE solver

x(tn) = x(tn−1) +

∫ tn

tn−1

f(x(t))dt (35)

whereby x(tn) ≡ xn for all collocation points. This formu-
lation has the decisive advantage, that fewer measurements
are required compared to the discrete variant and further-
more we can detect instabilities during the Kalman filter
update process by evaluating the ODE solver output. The
Kalman filter flow from Figure 2 holds nonetheless. Under
realistic conditions resulting from common experimental
setups, only x2, x3, x8, the sum of x4, x5 and the initial
value of x1 are directly measurable. To generate artificial
observations, we solve (1) for x(0) = [10, 1, 1, 1, 1, 1, 1, 1]
in the interval t = [0, 5] and select N = 100 equidistant

collocation points along the trajectories. As we introduced
mechanisms to estimate Q,R along the identification pro-
cedure, we initialize those to be positive definite diagonal
matrices of random values around µ = 10−3. This is
mainly due to the reason that we do not consider explicit
process or observation noise in our artificially generated
observations, yet. Our sparsification parameter is λ = 1e−
4 and α = 0.99. From domain knowledge (see Equation
(1)) we know that a linear-quadratic ansatz function li-
brary is sufficient to describe the virus dynamics. As a
comparative measure we employ different figures of merit
(FOM), namely the maximum approximation error, the
mean squared error (MSE) and its root variants (RMSE,
NRMSE). As evident in Figure 3 and numerically backed
by Table 1, the approximated trajectories (red, dashed)
for x2, x3, x4+x5 and x8 match the available observations
(black) well, whereby the a-priori estimations of the states
x−
n from the Kalman filter are displayed. However, we

could only approximate the sum of x4, x5 well which is due
to the fact that we don’t have separated observations for
these variables. In Figure 4, the remaining unobservable
system state approximations for x1, x6, x7 are displayed
including the confidence intervals resulting from the corre-
sponding values within the state covariance matrix P−

n at
the end of the Kalman filter update process. As visible in
Figure 4, the reconstructed unobservable system states are
partially negative, which is not possible in actual infection
dynamics. However, this can not be prevented during the
approximation process without constraints, which is cur-
rently under investigation. A promising approach includes
reformulating the minimization process of the a-posteriori
state covariance matrix P+

n into a quadratic program-
ming (QP) problem and applying constraints onto the a-
posteriori estimation x+

n of the system state. However, the
identified coefficients for the chosen SINDy ansatz function
library of at most quadratic polynomials (see Figure 5)
bears little resemblance to the reference system in (1). This
is to be expected since we are missing crucial information
due to the incomplete state measurements. What can be
noticed is the significant sparsity of the Ξ coefficients over
all sub-equations due to applying Algorithm 1.

Fig. 3. Approximation of x−
n (red) for the observed in-

fluenza virus behavior (x2, x3, x4 + x5, x8) (black)

Fig. 4. Approximation of x−
n for the hidden influenza virus

behavior (x1, x6, x7)



Fig. 5. SINDy library coefficients for each Influenza dy-
namics sub-system (x1, ..., x8)

State FOM

max MSE RMSE NRMSE
x2 5.2e-2 4.8e-2 2.2e-1 3.0e-3
x3 2.1e-2 2.1e-4 1.5e-2 3.1e-3
x4 1.0e3 1.8e5 4.3e2 4.9e1
x5 1.0e3 1.8e5 4.3e2 1.3e1

x4 + x5 1.7e-1 7.8e-3 8.8e-2 2.8e-3
x8 1.3e-1 4.1e-3 6.4e-2 2.6e-4

Table 1. Influenza dynamics model FOM

5. CONCLUSION AND REMARKS

We introduced a novel extended Kalman filter SINDy
hybrid model (AAEKF) that is capable of identifying
governing equations from incomplete measurement data.
Furthermore, we added ways to make the update process
using available system observations more robust by co-
estimating the process respectively measurement noise co-
variance matrices and by introducing sparsity criteria sim-
ilar to the original SINDy model by Brunton et al. (2016).
We then applied our proposed model onto a reduced
model of influenza virus infection dynamics, whereby only
few system states are observable respectively measurable.
From our experiments, we can conduct that the Kalman
filter SINDy hybrid yields promising approximation re-
sults. This work opens up several promising avenues for
future work, as both the topic of Kalman filters and SINDy
approaches are vast.

Data Availability: All implementations and experi-
ments are available upon request as MATLAB code at
a GitLab repository (https://gitlab.fh-ooe.at/fe/
sparserf) under the MIT license that is authored by the
University of Applied Sciences Upper Austria.
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