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Abstract: Heat exchangers in vapor compression cycles (VCCs) typically involve phase
transitions of the internal refrigerant. While numerous studies have focused on modeling these
systems, existing techniques require high computational burden or model switching depending
on the refrigerant phase at the heat exchanger outlet. These kinds of problems make each
model less suitable for control applications. To overcome these challenges, this study proposes
a hybrid model that combines conventional modeling methods with data-driven time series
analysis to obtain unified model of heat exchanger with refrigerant phase transition, especially
the evaporator in the VCC. The proposed model is fundamentally based on the moving boundary
(MB) method, and integrates long short-term memory (LSTM) networks to predict unknown
parameters arising from the phase transition. The proposed hybrid model shows high accuracy
with the Simulink-Simscape simulation result, and yields higher accuracy compared to a fully
data-driven LSTM black-box model, which is another approach to make an unified model. This
hybrid approach creates a model that improves accuracy compared to the black-box model and
eliminates the need for model switching, ultimately facilitating the design of advanced control.

Keywords: Dynamic modelling and simulation for control and operation, Modeling and
identification, Artificial intelligence and machine learning

1. INTRODUCTION

Heat exchangers are fundamental equipment in a wide
range of applications, including chemical processes, air
conditioning, and power generation. Especially in vapor
compression cycles (VCCs), commonly employed for lique-
faction and air conditioning, heat exchangers such as evap-
orators and condensers are significant due to their capabil-
ity of achieving the desired temperature. Heat exchangers
can reduce the electric work requirement by adjusting the
temperature gap between fluids, i.e., refrigerant and utility
stream. As a result, developing an accurate model of the
heat exchanger is essential for predicting its performance
and ensuring its efficient operation.

Heat exchangers in VCCs are typically coupled with com-
pression and expansion devices, leading to phase transi-
tions of the working fluid to maintain stable operation.
To model these heat exchangers, both the finite volume
(FV) method and the moving boundary (MB) method
are widely used (Rasmussen, 2012), and a schematic di-
agram illustrating those methods is shown in Fig 1. The
FV method discretizes the heat exchanger into multiple
small control volumes, allowing for detailed spatial res-
olution, but this results in increased computational load
as the number of control volumes rises. In contrast, the
MB method partitions the heat exchanger based on time-
varying phase boundaries. This method is computation-
ally more efficient, requiring fewer variables while still
maintaining a high degree of accuracy relative to the FV
method (Rasmussen and Shenoy, 2012).

Fig. 1. Two modeling approaches for heat exchanger.

Despite its advantages, the MBmethod presents challenges
in representing the phase transition. One key issue is that
the phase boundary may appear or disappear based on
the phase of refrigerant at the outlet (Bonilla et al., 2015).
In the conventional MB method, the phase variation at
the outlet is addressed by constructing separate models for
each case and switching between them as needed. However,
this approach imposes complexity for model predictive
control applications, which should consider the model
switching to compute system behavior across multiple
time horizons. Moreover, as a lumped parameter model,
the MB method simplifies the system through various
assumptions, which can introduce discrepancies between
the model and the actual system behavior.



In response to these challenges, this study introduces a
hybrid modeling approach. Hybrid model combines black-
box (data-driven) and white-box (first-principle) models,
compensating for the lack of physical insight in the black-
box model and the difficulty in capturing the unknown
behavior of the system in the white-box model (Sharma
and Liu, 2022). We propose a hybrid model that predicts
refrigerant phase information using a black-box model
based on physical variables such as pressure and specific
enthalpy, which is then integrated into a MB model. This
approach enhances accuracy by incorporating data-driven
insights into unknown parameters while preserving the
physical integrity of the heat exchanger behavior through
the first-principle model. Moreover, the hybrid model
eliminates the need for phase-dependent switching in the
MB method, providing a unified model suitable for control
applications without requiring model transitions.

Fig. 2. Two scenarios based on the phase of the refrigerant
exiting the evaporator: (a) vapor phase and (b) mixed
phase.

This paper focuses on the evaporator in a VCC as the
target system. Under normal operating conditions, the
refrigerant enters the evaporator from the expansion valve
in a mixed phase. However, depending on the heat transfer
to the refrigerant within the evaporator, the phase of the
refrigerant at the evaporator outlet may vary between
mixed phase and vapor phase, as illustrated in Fig. 2. To
address the limitations of phase-dependent model switch-
ing inherent in the MB method, this study applies hybrid
modeling, enabling a unified representation of the evapo-
rator’s behavior across all outlet phases.

2. FIRST-PRINCIPLE MODELING OF
EVAPORATOR BASED ON MOVING BOUNDARY

METHOD

The heat exchanger model is governed by mass and energy
balance equations, both of which are originally expressed
as partial differential equations (PDEs). The mass balance
equation and the energy balance equation are presented in
equation (1). A summary of symbols associated with the
physical variables is provided in Table A.1.
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However, due to the complexity of directly applying PDEs
for control purposes, these equations are typically approxi-
mated by ordinary differential equations (ODEs). The MB
method provides one such approach by dividing the heat

exchanger into distinct regions based on phase transition
boundaries. In each region, the mass and energy balances
are formulated as separate ODEs. This method relies on
the Leibniz integration rule, leading to the construction of
a model for each control volume (cv ∈ {m, v}), as shown in
equation (2) and equation (3), representing mass balance
and energy balance, respectively. Detailed descriptions on
constructing the MB method can be found in studies by
Rasmussen and Alleyne (2004), Eldredge et al. (2008),
McKinley and Alleyne (2008), and Bonilla et al. (2015).
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Additionally, the heat transfer rate to the refrigerant is
calculated using the effectiveness-NTU method, as shown
in equation (4). The effectiveness-NTU method calculates
the heat transfer rate as a ratio relative to the maximum
possible heat transfer rate (Incropera, 2013). This maxi-
mum rate is determined based on the fluid with the lower
heat capacity, as the fluid with a lower heat capacity will
experience a greater temperature change than the fluid
with a higher heat capacity during heat exchange.

Q̇cv = εcvQ̇cv,max = εcv (ṁCp)min (Tutil,in − Tin)

where (ṁCp)min = min
{
(ṁCp)ref , (ṁCp)util

} (4)

Detailed elements of the mass matrix and the right-hand
side equation of the MB model is represented in Table 1.
This model is referred from (Rasmussen and Alleyne,
2004), but is slightly modified by rearranging the mass

balance equation leaving only the term
dζg
dt at the left-

hand side, and plugging the mass balance equation into
energy balance equations.

Solving these expressions yields a final model in an ODE
form, structured with a mass matrix in front of the
dynamic term (ẋ), as shown in equation (5). State and
input variables, x and u, of the evaporator system are
defined as equation (6). Detailed elements inside the mass
matrix and the right-hand side equations are provided in
Table 1.
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Table 1. Elements of mass matrix and right-
hand side equation inside the evaporator MB

model
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This study seeks to model the behavior of the evaporator
using a single, unified model without the need for model
switching. To achieve this, an MB model is developed with
both the mixed phase and vapor phase refrigerant inside
the evaporator. However, as the phase transition boundary
approaches the evaporator outlet, the original model with
both phase region encounters a singularity in the mass
matrix, making it challenging to accurately represent
scenarios where the refrigerant exits in the mixed phase.
To address this limitation, the proposed model requires
the estimation of key parameters, such as non-dimensional
position of phase boundary (ζg), the mean void fraction
(γ̄), and the heat exchange effectiveness factors for the
mixed and vapor phases (εm, εv). The non-dimensional
position of phase boundary ranges between 0 and 1, as
it represents the actual location of the phase boundary
within the evaporator. Moreover, when the refrigerant
exits in the vapor phase, the heat exchange effectiveness
factors range between 0 and 1, as the heat transfer rate
is defined as a positive value. Heat transfer occurs in
both the mixed and vapor phase regions, influencing the
effectiveness of the process. However, when the refrigerant
exits in the mixed phase, these values may deviate from
this range to make the model to operate similarly with the
actual behavior of the system.

3. HYBRID MODELING OF EVAPORATOR

This study employs a hybrid modeling approach to repre-
sent different refrigerant outlet phases in a single heat ex-
changer model and estimate the parameters for each case.
Hybrid modeling integrates a first-principle model with a
data-driven model to correct for physical characteristics,
biases, or noise that the first-principle model alone cannot
capture.

3.1 Long short-term memory (LSTM)

LSTM, a type of recurrent neural network (RNN), incor-
porates gating mechanisms into the basic RNN structure
to mitigate issues such as vanishing gradient (Hochreiter,
1997). LSTM is particularly effective in identifying pat-
terns within time-series data, widely applied as black-box
or hybrid models in chemical process modeling.

In this study, LSTM is employed to predict process pa-
rameters, with the goal of capturing the dynamic char-
acteristics of parameters associated with phase transition
by utilizing both current and historical data. While the
MB model inherently assumes that the position of phase
boundary varies over time, the proposed hybrid model
treats variables related to phase transition as parameters
to be estimated. Therefore, the LSTM is integrated as the
black-box component of the hybrid model to account for
the time-dependency of parameters.

3.2 Configuration of hybrid model

The two most common hybrid model structures are the
parallel and serial configurations, as shown in Fig. 3. In
the parallel hybrid structure, the machine learning model
learns and compensates for the discrepancy between the
first-principle model and empirical data. In contrast, the
serial hybrid structure estimates unknown parameters or
disturbances not captured by the first-principle model and
integrates them into the model. Above those hybrid model
structures, the serial hybrid structure is commonly used for
the unknown parameter estimation (Sansana et al., 2021).
Owing to this property, this study employs a serial hybrid
model to estimate the unknown parameters of the MB
model.

Fig. 3. Serial hybrid modeling structure for evaporator.

Unlike conventional methodologies for estimating system
parameters and state variables, such as the Extended
Kalman Filter (EKF), serial hybrid models do not assume
that parameter values remain fixed after incorporating
feedback. Instead, they represent parameters as functions
dependent on state and input variables, allowing for a more
adaptive and physically consistent modeling approach. By
dynamically capturing system behavior rather than relying
on real-time feedback , the serial hybrid model provides a
more accurate representation of the underlying physics.
This enhanced model fidelity enables model-based control
to compute more suitable and optimal input variables,
ultimately improving system performance and control pre-
cision.



3.3 Construction of hybrid model

In this study, the hybrid model combines the MB method,
outlined in Section 2, with LSTM for unknown parameter
estimation. The overall structure of the proposed hybrid
model is illustrated in Fig. 4. In the proposed hybrid
model, the LSTM-based black-box component utilizes the
data at the current time step and learns the optimal
parameters to minimize the discrepancy between the pre-
dicted and actual state variable values at the subsequent
time step. These optimal parameters are pre-determined
in the offline basis by solving an optimization problem
with the use of MATLAB’s fmincon function. Using the
current time step data and the parameters obtained from
the black-box model, the hybrid model predicts the state
variables for the next time step.

Fig. 4. Serial hybrid modeling structure for evaporator.

To obtain the LSTM-based model, hyperparameters listed
in Table 2 were used. All training data were preprocessed
through normalization, scaling each value between 0 and
1 based on the minimum and maximum values within the
dataset. This process mitigates the impact of scale differ-
ences between data variables on the learning performance.

Table 2. Hyperparameters of LSTM model in
the proposed hybrid model

Hyperparameter Value

Layer sequence LSTM, Dense
Number of nodes 128, 32

Number of lookbacks 30
Batch size 256
Epochs 304/1000

Learning rate 0.013
Dropout ratio 0.1
Loss metric Mean squared error (MSE)
Optimizer ADAM

Train:Test:Valid 0.6:0.2:0.2

4. MODEL VALIDATION AND DISCUSSION

4.1 Simulation design of evaporator

This study employs simulation results from MathWorks’
Simulink-Simscape to validate the performance of the pro-
posed hybrid model. The block used in the simulation is

Condenser Evaporator (TL-2P), and counter flow heat ex-
changer is assumed. More detailed settings of this block are
shown in Table 3. R-1234yf (2,3,3,3-tetrafluoropropene)
was used as the refrigerant within the evaporator, while
a 50:50 mixture of ethylene glycol and water by volume
serves as the hot side utility stream. The input variables
for the simulation align with those defined for the MB
model in Section 2, but both ṁin and ṁout are set equal
to ensure mass balance within the evaporator. To reflect
prior knowledge that the refrigerant typically enters the
evaporator as a mixed phase after passing through the ex-
pansion valve, the input range of the refrigerant’s specific
enthalpy was set within mixed-phase conditions.

Table 3. Simscape evaporator settings

Configuration

Flow arrangement Counter flow
Cross sectional area 0.01 (m2)

Two-phase Liquid (Refrigerant)

Number of tubes 10
Tube cross section Rectangular

Tube length 0.5 (m)
Tube width 0.1 (m)
Tube height 0.005 (m)

Pressure loss coeff. 125
Heat transfer coeff. model Colburn equation

[a, b, c] in
colburn equation

liquid [0.023, 0.8, 0.33]
mixed [0.280, 0.8, 0.33]
vapor [0.023, 0.8, 0.33]

Fouling factor 0.1 (K·m2/kW)
Total fin surface area 0 (m2)

Fin efficiency 0.5
Initial pressure 150 (kPa)
Initial quality 0.5

Thermal Liquid (Utility)

Number of tubes 10
Tube cross section Rectangular
Flow geometry Flow inside one or more tubes
Tube length 0.5 (m)
Tube width 0.1 (m)
Tube height 0.005 (m)

Pressure loss coeff. 125
Heat transfer coeff. model Colburn equation
[a, b, c] in Colburn equation [0.0861, 0.8, 0.33]

Fouling factor 0.1 (K·m2/kW)
Total fin surface area 0 (m2)

Fin efficiency 0
Initial pressure 101.325 (kPa)

Initial temperature 0 (oC)

The dataset was generated from 100,000 seconds of simu-
lated data in Simulink with a sampling time of 2 seconds.
After discarding the first 80 seconds to remove transient
effects, the remaining data was chronologically split into
training, validation, and test sets in a 0.6:0.2:0.2 ratio for
parameter learning. Detailed simulation settings are sum-
marized in Table 4. The overall structure of the simulation
and hybrid model construction is illustrated in Fig. 5.

4.2 Model validation results

To assess the performance of the proposed hybrid model,
predictions of state variables from the hybrid model were
compared against data from Simulink-Simscape simula-
tions. Additionally, to determine whether the integration
of the MB model with the LSTM black-box compensates



Table 4. Simulation settings

Refrigerant and Utility

Refrigerant R-1234yf (2,3,3,3-tetrafluoropropene)
Utility stream Ethylene Glycol:water=50:50 (vol%)

Input variable bounds

Variable Lower Upper Unit

ṁ 0.01 0.05 (kg/s)
hin 210 290 (kJ/kg)
ṁutil 0.4 1.2 (kg/s)
Tutil,in -10 10 (oC)

Simulation settings

Time step 2 (sec)
Step change 10 (sec)

Total simulation time 100,000 (sec)

Fig. 5. Overall schematic diagram of simulation and hybrid
model construction.

for the limitations of purely data-driven models lacking
physical knowledge, we evaluated the model’s time series
dynamics predictions compared to a black-box model. The
hyperparameters used for the black-box model in this
validation are set equal to those of the hybrid model.

Fig. 6 presents the results from the proposed hybrid
model and the black-box model, along with the Simulink-
Simscape simulation data and MB model result. The time
domain presented in Fig. 6 is a selected subset from a
region within the test set, corresponding to data recorded
after 80,016 seconds. This result demonstrates that the
proposed hybrid model closely aligns with the results
obtained from the Simulink-Simscape simulation. While
both the hybrid model and the black-box model capture
the overall trends, the hybrid model exhibits reduced bias
relative to actual data, leading to improved accuracy.

Table 5 summarizes the mean absolute percentage error
(MAPE) values, which quantify the accuracy of the pre-
dictions on the test set, as well as the training and one-
step computation time of each model. While the MB model
which explicitly represents phase change through multiple
models demonstrated the highest performance, the hybrid
model formulated as a single model achieved comparable
accuracy. The black-box model exhibited lower accuracy
than both the MB and hybrid models.

Table 5. Test set MAPE and computation time

Model Hybrid Black-box MB

MAPE of p (%) 0.932 4.439 0.860
MAPE of hout (%) 0.475 1.133 0.142

Training time (sec) 1281.64 1790.06 -
One-step computation

0.00392 0.00160 0.00112
time (sec/step)

The training time differed by approximately 500 seconds
between the hybrid and black-box models, likely due to
variations in the number of epochs required to meet
the early-stopping criterion. The computation time was
approximately 0.001 seconds per step for both the the MB
and black-box models, while the hybrid model required
around 0.003 seconds per step. Although the hybrid model
has a slightly higher computational cost, its computation
time remains sufficiently fast for real-time applications,
and thus is expected to be suitable for use in control
models.

Fig. 6. Comparison of the simulation data, hybrid model
estimation, and black-box model estimation, within
the test set.

Fig. 7 compares the values of the unknown parameter
obtained from a priori optimization on the test set data
with those predicted by the LSTM component of the
hybrid model. In Fig. 7(a), the operating region encom-
passed both data points where ζg = 1, indicating two-
phase refrigerant at the evaporator outlet, and data where
ζg < 1, representing superheated vapor. While some biases
exist between the LSTM-predicted parameters and those
derived from direct optimization, the overall trends are
well-aligned. Notably, in the latter part of Fig. 7(a), the
LSTM model effectively differentiates between mixed and
vapor phase outlets. This concludes that the proposed
hybrid model can capture the system’s behavior with a
unified approach, eliminating the need for model switching
based on the refrigerant phase at the evaporator outlet.



Fig. 7. Comparison of the parameters optimized from the
simulation data and estimated from the hybrid model.

5. CONCLUSION

This study introduces a hybrid modeling approach that
integrates the MBmethod with an LSTMmodel to address
challenges in conventional modeling methodologies, partic-
ularly those arising from phase transitions in refrigerant
exiting the evaporator. The hybrid model employs the
LSTM black-box model to predict system parameters asso-
ciated with phase transitions, which are then incorporated,
alongside data from the previous time step, into the MB-
based white-box model to predict state variables for the
subsequent time step.

The proposed hybrid approach effectively simulates phase
transitions at the evaporator outlet using a unified model,
eliminating the need for model switching. This addresses
a key limitation of traditional MB models, where multiple
models must be constructed and switched depending on
the evaporator outlet phase, complicating their application
in controller design. By improving model accuracy and
overcoming the constraints of existing evaporator models,
the hybrid model presented here has the potential to
enhance the performance in model-based control.

Although this study focuses on the evaporator, the ap-
proach can be extended to the condenser and the entire
VCC system. Developing a hybrid model for the VCC
system would enable more comprehensive implementation
and control, accommodating various operational objec-
tives such as cooling and heating. Furthermore, validat-
ing the extrapolation performance of the proposed hybrid
model could contribute to the development of a more
effective control model.

In this context, LSTM was employed as the black-box
component for hybrid modeling, but further exploration
of alternative time-series analysis techniques is necessary.
Deeper investigation is needed to compare methods such
as GRU, attention mechanisms, and transformers with
LSTM to evaluate their effectiveness in improving hybrid
modeling and control performance. Future work will focus
on extending the hybrid model to the entire VCC system
and evaluating its effectiveness for control by assessing
its performance in both interpolation and extrapolation
scenarios using various time-series analysis methods.
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Appendix A. NOTATIONS OF THE VARIABLES

The notations employed throughout this paper are sum-
marized in Table A.1. All variables associated with physi-
cal properties without subscripts refer to values for the re-
frigerant (ref). Bar notation of a physical quantity X(X̄)
represents the arithmetic mean along the control volume.

Table A.1. Elements of mass matrix and right-
hand side equation inside the evaporator MB

model

Symbols

Cp Specific heat Q Heat transfer rate
T Temperature V Volume
h Specific enthalpy ṁ Mass flow rate
p Pressure t Time
γ Void fraction ε Effectiveness factor
ρ Density ζ Phase boundary ∈ [0, 1]

Subscripts

f Liquid saturation g Vapor saturation
m Mixed phase v Vapor phase
cv Control volume in Inlet flow
out Outlet flow util Utility stream


