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Abstract: In most industrial settings, soft sensors are used to measure variables that are challenging to 
estimate. However, due to various factors, the estimated performance may vary over time, causing it to fail 
in estimating key variables quickly and accurately enough, which could result in financial losses and 
security risks. The variation in the predictive performance of a soft sensor is referred to as the performance 
drift of the soft sensor. These changes occur due to the differences between the current characteristics of 
the process or plant and the soft sensor. This discrepancy is also defined as plant-model mismatch (PMM). 
Therefore, once the soft sensor is designed, a way to recover the performance change is required. This 
paper proposes a method that reduces the impact of PMM without updating the soft sensor itself. This 
method reconstructs the closed-loop controller based on the performance change index (PCI) for the soft 
sensor. Then, the online identification of the fault model is studied. Finally, the modification rules for the 
controller are given using the Youla-Kučera parameterisation. This approach is tested on a three-tank 
system, where it is shown that the performance changes of the soft sensor caused by PMM are recovered. 
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1. INTRODUCTION  
In the current industrial environment, soft sensors are 

typically used to estimate critical variables that are challenging 
to measure directly. Depending on the modelling method, soft 
sensors can be categorised into three groups: model-based, 
data-driven, and hybrid models. The first group, model-based 
or white-box soft sensors, is based on a first-principles model 
(FPM) (Fortuna, Graziani, Rizzo, & Xibilia, 2007). As well, 
Kalman filters (Mangold, 2012) (Ahmad, Ayub, Kano, & 
Cheema, 2020) and adaptive observers (Bastin & Dochain, 
1990) have been used. Since an FPM calculates the target 
variables based on the physical and chemical knowledge of the 
real process, it does not consider the effect of disturbances on 
the system. Thus, the second group, data-drive or black-box 
models have been developed. The models are developed using 
many different methods including principle component 
regression (PCR) (Krdlec, Gabrys, & Strandt, 2009) and 
acritical neural networks (ANN) (Yan, Tang, & Lin, 2017). 
Since this soft sensor is developed without explicit process 
knowledge, performance can be improved by including some 
process knowledge. Adding this information creates the third 
group of soft sensors: hybrid or grey-box models (Fortuna, 
Graziani, Rizzo, & Xibilia, 2007). Despite the accuracy 
involved in initially modelling the process, over time the 
performance of the model will deteriorate due to changes in 
the properties of the raw materials, in the external environment, 
and in the catalyst activity. To optimise the performance, 
online adaptive methods have been developed, where the 
model is regularly updated using newly collected data samples, 
for example, moving-window-kernel principal component 
analysis (Liu, Kruger, Littler, & Wang, 2009). Some progress 
has also been made in using a just-in-time learning (JITL) 
strategy, which builds local models based on multiple nearest 

neighbors from test data to perform adaptive prediction (Ge & 
Song, 2010). Although these methods have reported good 
results, there are still some problems with the practical 
application of these soft sensors. First, if the soft sensor is 
updated with any bad data, the performance will inevitably 
decrease. Currently, it can be difficult to accurately detect all 
the bad data. Second, model updates typically use a narrower 
range of data. Thus, if the soft sensor is adaptively updated, 
some model parameters will change significantly, which 
means that the model may need to be re-evaluated. 

Plant-model mismatch (PMM) is the generic name for the 
discrepancy between the expected and actual behaviour. It 
would be advantageous if the performance can be maintained 
despite PMM without requiring an update of the soft sensor. 
Recently, a performance-change index (PCI) (Zhai & Shardt, 
2024) was proposed to detect PMM. Therefore, if this index is 
combined with a compensation signal from outside to offset 
the residual signal caused by PMM, then the performance can 
be recovered without changing the soft sensor. 
 Thus, this paper proposes such a system and examines the 
requirements to attain this objective. As well, the effectiveness 
of the proposed method is tested on a three-tank system.  
 
2. BACKGROUND AND PROBLEM FORMULATION 

2.1. Background 

This article focuses on the white-box soft sensor. We can 
consider the controlled white-box soft sensor system shown in 
Figure 1, where G(z) = (AG, BG, CG, DG) represents the plant 
(or real process), S(z) = (A, B, C, D) is the assumed process 
model (or the soft sensor), K(z) represents the controller, Gd(z) 
is the disturbance transfer function, 𝑣𝑣(𝑧𝑧) ∈ 𝑅𝑅𝑛𝑛  is the 
reference signal, 𝑢𝑢(𝑧𝑧) ∈ 𝑅𝑅𝑚𝑚 is the input signal, y(𝑧𝑧) ∈ 𝑅𝑅𝑛𝑛 is 



the (true) plant output, 𝜃𝜃(𝑧𝑧) ∈ 𝑅𝑅𝑛𝑛 is the soft-sensor output, 
and 𝑑𝑑(𝑧𝑧) ∈ 𝑅𝑅𝑛𝑛  is the disturbance, assumed to be white, 
Gaussian noise.  

 
Figure 1: Closed-loop structure with soft sensors  

Assuming that there is no PMM in the soft sensor, the 
switch in Figure 1 is disconnected. Therefore, we have 
𝑣𝑣(𝑧𝑧) = 𝑢𝑢(𝑧𝑧) − 𝐾𝐾(𝑧𝑧)𝜃𝜃(𝑧𝑧)                                                        (1)                              

𝜃𝜃(𝑧𝑧) = 𝑆𝑆(𝑧𝑧)𝑢𝑢(𝑧𝑧)                                                                       (2) 

The control signal is 
𝑢𝑢 = 𝐾𝐾(𝑧𝑧)𝜃𝜃(𝑧𝑧) + 𝑣𝑣                                                                      (3) 

Lemma 1 (Zhou & Doyle, 1998) The left coprime 
factorisation (LCF) and right coprime factorisation (RCF) for 
the system 𝑆𝑆(𝑧𝑧) and the controller K(z) shown in Figure 1 are 
given by 
𝑆𝑆(𝑧𝑧) = 𝑁𝑁(𝑧𝑧)𝑀𝑀(𝑧𝑧)−1 = 𝑀𝑀�−1(𝑧𝑧)𝑁𝑁�(𝑧𝑧)                                       (4) 

𝐾𝐾(𝑧𝑧) = 𝑈𝑈(𝑧𝑧)𝑉𝑉(𝑧𝑧)−1 = 𝑉𝑉�−1(𝑧𝑧)𝑈𝑈�(𝑧𝑧)                                         (5) 

where 𝑀𝑀�(𝑧𝑧),𝑁𝑁�(𝑧𝑧)  are in the 𝑅𝑅𝑅𝑅∞  space with an equal 
number of rows, if there are two other matrices X̂(z) and Ŷ(z) 
in the same space that satisfy: 

[𝑀𝑀�(𝑧𝑧) 𝑁𝑁�(𝑧𝑧)] �𝑋𝑋
�(𝑧𝑧)
𝑌𝑌�(𝑧𝑧)

� = 𝐼𝐼                                                            (6)   

Similarly, M(z), N(z) are in the 𝑅𝑅𝑅𝑅∞ space with an equal 
number of columns, if there are other matrices X(z) and Y(z) in 
the same space that satisfy:  

[𝑋𝑋(𝑧𝑧) 𝑌𝑌(𝑧𝑧)] �𝑀𝑀(𝑧𝑧)
𝑁𝑁(𝑧𝑧)� = 𝐼𝐼                                                            (7) 

Definition 1 (Vinnicombe, 2000) Consider the model S(z) 
in Figure 1 and a controller that can stabilise this model. Then 
all controllers that stabilise this model can be parameterised as 
𝐾𝐾 = 𝑈𝑈(𝑧𝑧)𝑉𝑉(𝑧𝑧)−1 = 𝑉𝑉�−1(𝑧𝑧)𝑈𝑈�(𝑧𝑧)                                                       

= −�𝑌𝑌�0 + 𝑀𝑀0𝑄𝑄��𝑋𝑋�0 − 𝑁𝑁0𝑄𝑄�
−1                                             

= −�𝑋𝑋0 − 𝑄𝑄𝑁𝑁�0�
−1�𝑌𝑌0 + 𝑄𝑄𝑀𝑀�0�                                                             (8)

 

where Q(z) is the Youla-Kučera parameterisation matrix and 
M, N, X, Y, 𝑀𝑀� , 𝑁𝑁�, 𝑋𝑋�, 𝑌𝑌�  are the transfer matrices satisfying 
Bézout’s identity (Tay & Mareels, 1998): 

�
𝑋𝑋(𝑧𝑧) 𝑌𝑌(𝑧𝑧)
−𝑁𝑁�(𝑧𝑧) 𝑀𝑀�(𝑧𝑧)� �

𝑀𝑀(𝑧𝑧) −𝑌𝑌�(𝑧𝑧)
𝑁𝑁(𝑧𝑧) 𝑋𝑋�(𝑧𝑧)

� = �𝐼𝐼 0
0 𝐼𝐼 �                           (9) 

𝑀𝑀(𝑧𝑧) = �𝐴𝐴 + 𝐵𝐵𝐵𝐵 𝐵𝐵
𝐵𝐵 𝐼𝐼 � ,            𝑁𝑁(z) = �𝐴𝐴 + 𝐵𝐵𝐵𝐵 𝐵𝐵

𝐶𝐶 + 𝐷𝐷𝐵𝐵 𝐷𝐷� 

𝑋𝑋�(𝑧𝑧) = �𝐴𝐴 + 𝐵𝐵𝐵𝐵 𝐵𝐵
𝐵𝐵 𝐼𝐼 � ,             Ŷ(𝑧𝑧) = �𝐴𝐴 + 𝐵𝐵𝐵𝐵 −𝐿𝐿

𝐵𝐵 0 �                     (10) 

𝑀𝑀�(𝑧𝑧) = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 𝐿𝐿
−𝐶𝐶 𝐼𝐼� ,              𝑁𝑁� = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 𝐵𝐵 − 𝐿𝐿𝐷𝐷

𝐶𝐶 𝐷𝐷 �               

𝑋𝑋(𝑧𝑧) = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 −𝐵𝐵 + 𝐿𝐿𝐷𝐷
𝐿𝐿 𝐼𝐼 � ,𝑌𝑌(𝑧𝑧) = �𝐴𝐴 − 𝐿𝐿𝐶𝐶 −𝐿𝐿

𝐵𝐵 0 �         

Here, ℱ and ℒ satisfy, respectively, 𝒜𝒜+ℬℱ and 𝒜𝒜 − ℒ𝒞𝒞 
stability. 

If PMM occurs in a soft sensor, the output 𝜃𝜃(𝑘𝑘) will shift. 
Therefore, a state observer and the observer-based residual 
generator (Ding, 2013) are given as 

𝑥𝑥�(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐿𝐿 �𝜃𝜃(𝑘𝑘) − 𝜃𝜃�(𝑘𝑘)�                 (11)

𝜃𝜃�(𝑘𝑘) = 𝐶𝐶𝑥𝑥�(𝑘𝑘) + 𝐷𝐷𝑢𝑢(𝑘𝑘), 𝑟𝑟 = 𝜃𝜃(𝑘𝑘) − 𝜃𝜃�(𝑘𝑘)                         (12)
 

and the residual generator is 

𝑟𝑟 = 𝑀𝑀�(𝑧𝑧)𝜃𝜃(𝑧𝑧) −𝑁𝑁�(𝑧𝑧)𝑢𝑢(𝑧𝑧)                                                      (13) 

where 𝑥𝑥�(𝑘𝑘) is the state estimate and 𝜃𝜃�(𝑘𝑘) is the estimated 
value of 𝜃𝜃(𝑘𝑘). 

Substituting Equation (12) into Equation (11) gives 
𝑥𝑥�(𝑘𝑘 + 1) = 𝐴𝐴𝑥𝑥�(𝑘𝑘) + 𝐵𝐵𝑢𝑢(𝑘𝑘) + 𝐿𝐿�𝜃𝜃(𝑘𝑘) − 𝐶𝐶𝑥𝑥�(𝑘𝑘) − 𝐷𝐷𝑢𝑢(𝑘𝑘)� 

              = (𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑥𝑥�(𝑘𝑘) + (𝐵𝐵 − 𝐿𝐿𝐷𝐷)𝑢𝑢(𝑘𝑘) + 𝐿𝐿𝜃𝜃(𝑧𝑧)          (14) 

Taking the z-transformation of Equation (14) gives 
𝑧𝑧𝑥𝑥�(𝑧𝑧) = (𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑥𝑥�(𝑧𝑧) + (𝐵𝐵 − 𝐿𝐿𝐷𝐷)𝑢𝑢(𝑧𝑧) + 𝐿𝐿𝜃𝜃(𝑧𝑧)  

𝑧𝑧𝑥𝑥�(𝑧𝑧) − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)𝑥𝑥�(𝑧𝑧) = (𝐵𝐵 − 𝐿𝐿𝐷𝐷)𝑢𝑢(𝑧𝑧) + 𝐿𝐿𝜃𝜃(𝑧𝑧)  

[zI-(𝐴𝐴 − 𝐿𝐿𝐶𝐶)] 𝑥𝑥�(𝑧𝑧)= (𝐵𝐵 − 𝐿𝐿𝐷𝐷)𝑢𝑢(𝑧𝑧) + 𝐿𝐿𝜃𝜃(𝑧𝑧) 

𝑥𝑥�(𝑧𝑧) = [𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1(𝐵𝐵 − 𝐿𝐿𝐷𝐷)𝑢𝑢(𝑧𝑧) + [𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1𝐿𝐿𝜃𝜃(𝑧𝑧) 
                                                                                                                      (15)  

Taking the z-transformation of Equation (12) gives 
𝜃𝜃�(𝑧𝑧) = 𝐶𝐶𝑥𝑥�(𝑧𝑧) + 𝐷𝐷𝑢𝑢(𝑧𝑧)  

Considering 𝑥𝑥�(𝑧𝑧) in Equation (15): 

𝜃𝜃�(𝑧𝑧) = 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1(𝐵𝐵 − 𝐿𝐿𝐷𝐷)𝑢𝑢(𝑧𝑧) + 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴                      
− 𝐿𝐿𝐶𝐶)]−1𝐿𝐿𝜃𝜃(𝑧𝑧) + 𝐷𝐷𝑢𝑢(𝑧𝑧) 

𝑟𝑟 = 𝜃𝜃(𝑧𝑧) − 𝜃𝜃�(𝑧𝑧)                                                                               

= 𝜃𝜃(𝑧𝑧) − 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1(𝐵𝐵 − 𝐿𝐿𝐷𝐷)𝑢𝑢(𝑧𝑧) − 𝐶𝐶[𝑧𝑧𝐼𝐼- 
(𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1𝐿𝐿𝜃𝜃(𝑧𝑧) − 𝐷𝐷𝑢𝑢(𝑧𝑧)              

 = [𝐼𝐼 − 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1𝐿𝐿]𝜃𝜃(𝑧𝑧) − [𝐷𝐷 
+ 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1(𝐵𝐵 − 𝐿𝐿𝐷𝐷)]𝑢𝑢(𝑧𝑧)        (16) 

From Equation (16), we get the residual generator (13). Here, 
𝑀𝑀� , 𝑁𝑁� are the transfer-function matrices: 

𝑀𝑀�(𝑧𝑧) = [𝐼𝐼 − 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1𝐿𝐿] 

𝑁𝑁�(𝑧𝑧) = [𝐷𝐷 + 𝐶𝐶[𝑧𝑧𝐼𝐼 − (𝐴𝐴 − 𝐿𝐿𝐶𝐶)]−1(𝐵𝐵 − 𝐿𝐿𝐷𝐷)]  

Substituting Equation (8) into Equation (3) gives 
𝑋𝑋0𝑢𝑢 + 𝑌𝑌0𝜃𝜃 = 𝑄𝑄𝑁𝑁�0𝑢𝑢 − 𝑄𝑄𝑀𝑀�0 𝜃𝜃 + �̅�𝑣                                         (17) 

with �̅�𝑣 =  (𝑋𝑋0 − 𝑄𝑄𝑁𝑁�0)𝑣𝑣 

Comparing Equations (17) and (13), shows that 

𝑋𝑋0𝑢𝑢 = −𝑄𝑄𝑟𝑟 − 𝑌𝑌0𝜃𝜃 + �̅�𝑣                                                             (18) 



With transfer matrices X(z) and Y(z) in Equation (10), we have 

𝑢𝑢(𝑧𝑧) = −𝑄𝑄(𝑧𝑧)𝑟𝑟(𝑧𝑧) + 𝐵𝐵[𝑧𝑧𝐼𝐼 − 𝐴𝐴𝐿𝐿]−1[𝐿𝐿𝜃𝜃(𝑧𝑧) + 𝐵𝐵𝐿𝐿𝑢𝑢(𝑧𝑧)] + �̅�𝑣        (19) 

where 𝐴𝐴𝐿𝐿 = 𝐴𝐴 − 𝐿𝐿𝐶𝐶,𝐵𝐵𝐿𝐿 = 𝐵𝐵 − 𝐿𝐿𝐷𝐷. 

 Comparing Equations (19) and (15), a new control rule 
can be given as 

𝑢𝑢(𝑧𝑧) = 𝐵𝐵𝑥𝑥�(𝑧𝑧) − 𝑄𝑄(𝑧𝑧)𝑟𝑟(𝑧𝑧) + �̅�𝑣(𝑧𝑧)                                   (20) 

At this point, the control block diagram becomes that shown 
in Figure 2. The switch is finally closed to verify the effect of 
accuracy of PMM on the effectiveness of the proposed 
method. 

 
Figure 2: Closed-loop structure with soft sensors 

In Figure 2, when the performance of the soft sensor 
degrades to an unacceptable level, the generated residual 
signal r(z) can activate the optimal Q to update the control 
module online and generate a compensation signal to offset the 
error signal of the system caused by PMM. 

2.2 Problem formulation 

Let
𝑆𝑆𝑃𝑃 = 𝑀𝑀�−1𝑁𝑁� = �𝑀𝑀�0 + ∆𝑀𝑀��

−1�𝑁𝑁�0 + ∆𝑁𝑁��                               (21) 

where 𝑀𝑀�0,𝑁𝑁�0 ∈ 𝑅𝑅𝑅𝑅∞ represent the LCF of the soft sensor 
when there are not faults and ∆𝑀𝑀� ,∆𝑁𝑁�∈ 𝑅𝑅𝑅𝑅∞  represent the 
model uncertainties (Vinnicombe, 2000). 

The main goal of the paper is to find the parameter Q to 
provide the compensation signal. Specifically, the Youla-
Kučera parameterization is first studied, which lays the 
foundation for this paper. Then, based on the realisation form 
of the PMM and online identification of fault model, a 
performance change recovery method is developed. Finally, a 
three-tank system was used to verify the effectiveness of the 
proposed method. 

Let us assume that the soft sensor can be modelled as a linear 
and time-invariant system. In addition, a controller and an 
observer can be designed to satisfy the performance and 
stability requirements in the soft-sensor control loop. Finally, 
assume that the reference signal v(z) is continuous exciting. 

3. PERFORMANCE CHANGE RECOVERY 

3.1 Calculation of the Youla-Kučera parameter Q 

The performance-change index (PCI) (Zhai & Shardt, 2024) 
can detect the performance change of a soft sensor:  

PCI = �[−∆𝑁𝑁� ∆𝑀𝑀� ] �𝑀𝑀0 −𝑈𝑈
𝑁𝑁0 𝑉𝑉 ��

∞
                                    (22) 

where ∆𝑀𝑀� ,∆𝑁𝑁�∈ 𝑅𝑅𝑅𝑅∞ are the PMM of the soft sensor. 

Substituting Equation (8) into Equation (22): 

PCI = �[−∆𝑁𝑁� ∆𝑀𝑀� ] �𝑀𝑀0 −𝑌𝑌�0 − 𝑀𝑀0𝑄𝑄
𝑁𝑁0 𝑋𝑋�0 − 𝑁𝑁0𝑄𝑄

��
∞

                      (23)  

where the Youla-Kučera parameter Q is an unknown matrix. It 
obviously can negate the effect of PMM. If we can find the 
optimal Q*, it will generate an optimal compensation signal to 
offset the influence of PMM, which will restore the PCI to its 
original state: 

PCI∗ = �[−∆𝑁𝑁� ∆𝑀𝑀� ] �𝑀𝑀0 −𝑌𝑌�0 − 𝑀𝑀0𝑄𝑄∗

𝑁𝑁0 𝑋𝑋�0 − 𝑁𝑁0𝑄𝑄∗
��

∞
                    (24) 

P1=[−∆𝑁𝑁� ∆𝑀𝑀� ][M0
N0

]; P2 = [−∆𝑁𝑁� ∆𝑀𝑀� ][−Y�0 − M0Q∗

X�0 − N0Q∗ ] 

If P2 satisfies the following stability condition (Georgiou & 
Smith, 1990): 

‖[−∆𝑁𝑁� ∆𝑀𝑀� ]‖∞ ��
−𝑌𝑌�0 −𝑀𝑀0𝑄𝑄
𝑋𝑋�0 − 𝑁𝑁0𝑄𝑄

��
∞

<  1 (25) 

then, the soft sensor will be internally stable. Therefore, the 
optimal parameter Q needs to be found such that the above 
condition can be met: 

𝑄𝑄∗ = 𝑎𝑎𝑟𝑟𝑎𝑎 inf
𝑄𝑄∈𝑅𝑅𝑅𝑅∞

�[−∆𝑁𝑁� ∆𝑀𝑀� ] �−𝑌𝑌
�0 −𝑀𝑀0𝑄𝑄
𝑋𝑋�0 − 𝑁𝑁0𝑄𝑄

��
∞

              (26) 

However, P2 contains the unknown PMM. Therefore, 
identifying the PMM is a prerequisite for calculating Q*. To 
solve this, we will consider the realisation form of PMM. 

3.2 The realisation form of PMM 

The stable kernel representation (SKR) of the model is not 
unique. Assume that [−𝑁𝑁� 𝑀𝑀�] and [−𝑁𝑁�𝑠𝑠 𝑀𝑀�𝑠𝑠]  are two 
different SKRs of the faulty soft sensor. There exists 𝑅𝑅(𝑍𝑍) ∈
𝑅𝑅𝑅𝑅∞ (Ding, 2013) such that 

[−𝑁𝑁�𝑠𝑠 𝑀𝑀�𝑠𝑠] = 𝑅𝑅[−𝑁𝑁� 𝑀𝑀�],𝑅𝑅−1(𝑍𝑍) ∈ 𝑅𝑅𝑅𝑅∞                                   

[−∆𝑁𝑁� − 𝑁𝑁�0 ∆𝑀𝑀� + 𝑀𝑀�0] = 𝑅𝑅[−𝑁𝑁� 𝑀𝑀�]  

where �𝑁𝑁�0     −𝑀𝑀�0� is the SKR of the fault-free soft sensor 
and �𝑁𝑁�   −𝑀𝑀�� is the SKR of the faulty soft sensor. 

The PMM can be written as 
[−∆𝑁𝑁� ∆𝑀𝑀� ] = �−𝑅𝑅𝑁𝑁� + 𝑁𝑁�0 𝑅𝑅𝑀𝑀� −𝑀𝑀�0�              (27) 

where R(z) can be any transfer function.  

Thus, PMM can be described as 

‖[−∆𝑁𝑁� ∆𝑀𝑀� ]‖∞ ≥ inf
𝑅𝑅∈𝑅𝑅𝑅𝑅∞

��−𝑅𝑅𝑁𝑁� +𝑁𝑁� 0 𝑅𝑅𝑀𝑀�−𝑀𝑀�0��∞         (28) 

According to the stability condition (Georgiou & Smith, 1990), 
the effect of PMM on model stability has a unique expression: 
[−∆𝑁𝑁� ∆𝑀𝑀� ] = �𝑁𝑁�0     −𝑀𝑀�0� − 𝑅𝑅∗�𝑁𝑁�   −𝑀𝑀��                        (29) 

𝑅𝑅∗ = arg inf
𝑅𝑅∈𝑅𝑅𝑅𝑅∞

��𝑁𝑁�0     −𝑀𝑀�0�  − 𝑅𝑅∗�𝑁𝑁�   −𝑀𝑀���
∞

              (30) 



�𝑁𝑁�   −𝑀𝑀��  is the SKR of the faulty soft sensor, which is 
unknown. To calculate the PMM, The SKR should first be 
identified. 

Thus, based on input/output data, the SKR data-driven 
implementation is examined. To this end, some necessary 
notation is introduced (Jiang, An, Huo, & Yin, 2018): 

𝑤𝑤𝑠𝑠,𝑘𝑘 = �
𝑤𝑤𝑘𝑘
⋮

𝑤𝑤𝑘𝑘+𝑠𝑠−1
� ;  𝑊𝑊𝑘𝑘,𝑠𝑠 = [𝑤𝑤𝑠𝑠,𝑘𝑘 … 𝑤𝑤𝑠𝑠,𝑘𝑘+𝑁𝑁−1]               (31) 

where 𝑤𝑤𝑘𝑘  is the sampled data at the time K and s is the 
truncation length of the signal sequence 𝑤𝑤𝑘𝑘 . S and K are 
sufficiently large positive integers. 

According to Equation (31 ), construct 𝑢𝑢𝑠𝑠,𝑘𝑘 , 𝜃𝜃𝑠𝑠,𝑘𝑘  and the 
Hankel matrices 𝑈𝑈𝑘𝑘,𝑠𝑠, 𝜃𝜃𝑘𝑘,𝑠𝑠: 

𝑢𝑢𝑠𝑠,𝑘𝑘 = �
𝑢𝑢𝑘𝑘
⋮

𝑢𝑢𝑘𝑘+𝑠𝑠−1
� ;  𝑈𝑈𝑘𝑘,𝑠𝑠 = [𝑢𝑢𝑠𝑠,𝑘𝑘 … 𝑢𝑢𝑠𝑠,𝑘𝑘+𝑁𝑁−1]                 (32) 

𝜃𝜃𝑠𝑠,𝑘𝑘 = �
𝜃𝜃𝑘𝑘
⋮

𝜃𝜃𝑘𝑘+𝑠𝑠−1
� ;  𝜃𝜃𝑘𝑘,𝑠𝑠 = [𝜃𝜃𝑠𝑠,𝑘𝑘 … 𝜃𝜃𝑠𝑠,𝑘𝑘+𝑁𝑁−1]                   (33) 

There exists a matrix with row full rank 𝜅𝜅𝑑𝑑,𝑠𝑠 satisfying the 
following relationship (Ding, 2014)： 

𝜅𝜅𝑑𝑑,𝑠𝑠 �
𝑢𝑢𝑠𝑠,𝑘𝑘
𝜃𝜃𝑠𝑠,𝑘𝑘

� = [𝜅𝜅𝑢𝑢,𝑠𝑠 𝜅𝜅𝜃𝜃,𝑠𝑠] �
𝑢𝑢𝑠𝑠,𝑘𝑘
𝜃𝜃𝑠𝑠,𝑘𝑘

� = 0                                      (34) 

This 𝜅𝜅𝑑𝑑,𝑠𝑠 is called the data-driven realization of SKR.  
  According to the residual generator (13), we have 

𝑟𝑟 = 𝑀𝑀�(𝑧𝑧)𝜃𝜃(𝑧𝑧) − 𝑁𝑁�(𝑧𝑧)𝑢𝑢(𝑧𝑧) = [−𝑁𝑁� 𝑀𝑀�] �𝑢𝑢𝜃𝜃�                      (35) 

Based on Equations (34) and (36),  

𝜅𝜅𝑑𝑑,𝑠𝑠 = [−𝑁𝑁� 𝑀𝑀�]                                                                      (36) 

They just express it differently. 

On this basis, define the Hankel matrix as: 

𝑍𝑍𝑝𝑝,𝑁𝑁 = �
𝑈𝑈𝑝𝑝,𝑁𝑁
𝜃𝜃𝑝𝑝,𝑁𝑁

� = �
𝑈𝑈𝑘𝑘−𝑠𝑠𝑝𝑝−1,𝑠𝑠
𝜃𝜃𝑘𝑘−𝑠𝑠𝑝𝑝−1,𝑠𝑠

�                                                    (37) 

where SP is the forward-truncated signal length, indicating the 
past data.  

For 𝜅𝜅𝑑𝑑,𝑠𝑠  given by Algorithm 1 (Ding, 2014), the 
Luenberger diagnostic observer is  

𝑥𝑥𝑧𝑧(𝑘𝑘 + 1) = 𝐴𝐴𝑧𝑧𝑥𝑥𝑧𝑧(𝑘𝑘) + 𝐵𝐵𝑧𝑧𝑢𝑢(𝑘𝑘) + 𝐿𝐿𝑧𝑧𝜃𝜃(𝑘𝑘) 

𝜃𝜃�(𝑘𝑘) = 𝐶𝐶�̅�𝑧𝑧𝑧(𝑘𝑘) + 𝐷𝐷�𝑧𝑧𝑢𝑢(𝑘𝑘) + �̅�𝐺𝑧𝑧𝜃𝜃(𝑘𝑘) 

𝑟𝑟0(𝑘𝑘) = 𝐺𝐺𝜃𝜃(𝑘𝑘) − 𝐶𝐶𝑧𝑧𝑥𝑥𝑧𝑧(𝑘𝑘) − 𝐷𝐷𝑧𝑧𝑢𝑢(𝑘𝑘) (38) 

where  

𝐴𝐴𝑧𝑧 = �
0 0 … 0
1 0 … 0
⋮
0

⋱
…

⋱
1

⋮
0

� , 𝐿𝐿𝑧𝑧 = �

𝛼𝛼𝑠𝑠,0
⋮
⋮

𝛼𝛼𝑠𝑠,𝑠𝑠−1

� ,𝐺𝐺 = 𝛼𝛼𝑠𝑠,𝑠𝑠 

𝐵𝐵𝑧𝑧 = 𝑇𝑇𝐵𝐵 − 𝐿𝐿𝑧𝑧𝐷𝐷,𝐷𝐷𝑧𝑧 = 𝐺𝐺𝐷𝐷,𝐶𝐶𝑧𝑧 = [0 0 … 1] 

      𝑇𝑇 =

⎣
⎢
⎢
⎡
𝛼𝛼𝑠𝑠,1 𝛼𝛼𝑠𝑠,2  … 𝛼𝛼𝑠𝑠,𝑠𝑠−1 𝛼𝛼𝑠𝑠,𝑠𝑠

𝛼𝛼𝑠𝑠,2 𝛼𝛼𝑠𝑠,3 …    𝛼𝛼𝑠𝑠,𝑠𝑠   0
⋮
𝛼𝛼𝑠𝑠,𝑠𝑠

⋯
0

…
…      ⋮     ⋮

… 0    ⎦
⎥
⎥
⎤
�

𝐶𝐶
𝐶𝐶𝐴𝐴
⋮

𝐶𝐶𝐴𝐴𝑠𝑠−1
� 

The parity vector 𝛼𝛼𝑠𝑠 is a row of 𝜅𝜅𝑦𝑦,𝑠𝑠 in Equation (34). 

Algorithm 1: Obtaining the SKR 
1. Collect input and output data and build 𝜃𝜃𝑘𝑘,𝑠𝑠, 𝑈𝑈𝑘𝑘,𝑠𝑠 and 𝑍𝑍𝑝𝑝,𝑁𝑁. 
2. Perform a LQ decomposition 

�
𝑍𝑍𝑝𝑝,𝑁𝑁
𝑈𝑈𝑘𝑘,𝑠𝑠
𝜃𝜃𝑘𝑘,𝑠𝑠

� = �
𝐿𝐿11 0 0
𝐿𝐿21 𝐿𝐿22 0
𝐿𝐿31 𝐿𝐿32 𝐿𝐿33

� �
𝑄𝑄1
𝑄𝑄2
𝑄𝑄3
� 

3. Perform SVD 

�𝐿𝐿21 𝐿𝐿22
𝐿𝐿31 𝐿𝐿32

� = [𝑈𝑈1 𝑈𝑈2] �Σ1 0
0 Σ1

� �𝑉𝑉1
𝑇𝑇

𝑉𝑉2𝑇𝑇
� 

4. 𝜅𝜅𝑑𝑑,𝑠𝑠 = [𝜅𝜅𝑢𝑢,𝑠𝑠 𝜅𝜅𝜃𝜃,𝑠𝑠] = 𝑈𝑈2𝑇𝑇  

 Using a Luenberger diagnostic observer (38), an equivalent 
residual generator can be constructed by 

𝑟𝑟(𝑘𝑘) = 𝜃𝜃(𝑘𝑘) − 𝐶𝐶𝑓𝑓𝑥𝑥𝑧𝑧(𝑘𝑘) − 𝐷𝐷𝑓𝑓𝑢𝑢(𝑘𝑘)                                        (39) 

where 𝐶𝐶𝑓𝑓 = 𝐺𝐺−1𝐶𝐶𝑧𝑧 ,𝐺𝐺𝑓𝑓 = 𝐺𝐺−1𝐷𝐷𝑧𝑧 

It can be seen from Equation (35) that 𝑀𝑀�  is the transfer 
function between the signal 𝑟𝑟(𝑧𝑧)  and 𝜃𝜃(𝑧𝑧)  and 𝑁𝑁�  is the 
transfer function between the signal 𝑟𝑟(𝑧𝑧) and 𝑢𝑢(𝑧𝑧).  

 Combine Equations (38) and (39), the transfer function for 
SKR can be written as 

𝑀𝑀� = �𝐴𝐴𝑧𝑧,  𝐿𝐿𝑧𝑧 ,−𝐶𝐶𝑓𝑓 , 𝐼𝐼�;  𝑁𝑁� = �𝐴𝐴𝑧𝑧,𝐵𝐵𝑧𝑧 ,𝐶𝐶𝑓𝑓 ,𝐷𝐷𝑓𝑓� (40) 

Since the SKR of the faulty soft sensor can be recognised 
by Equation (40), the PMM can also be calculated by the 
Equation (29). The required 𝑅𝑅∗can be found by Equation 
(30). Q* can be obtained using Equation (26). Thus, the new 
control signal u(z) in Equation (20) is obtained. 

Algorithm 2 summarises the computation of the updated 
control signal u(z). 
Algorithm 2: Computing the updated control signal 
1. If the PCI detects that the performance has changed to an 
unacceptable level, calculate 𝑀𝑀�  and 𝑁𝑁� using Equation (40). 
2. Compute 𝑅𝑅∗ using Equation (30). 
3. Obtain 𝑄𝑄∗ using Equation (26). 
4. Realise the updated control signal u(z) in Equation (20) to 
restore the performance of the soft sensor. 

4. SIMULATION RESULTS 

 
Figure 3: The structure of the three-tank system 



The three-tank system, shown in Figure 3, is a typical 
nonlinear process that consists of three tanks T1, T2, and T3 
with the same cross-sectional area A. The water level of T1 is 
the measurable state vector, while pump 1 is a continuous input 
to T1 with a mass flow rate Q1. Linearising the model about 
the setting position h1 = 45 cm and h2 = 15 cm to obtain the 
linear state-space model that can work as the soft sensor: 

𝐴𝐴 = �
−0.0085 0 0.0085

0 −0.00195 0.0084
0.0085 0.0084 −0.0169

� ;  𝐵𝐵 = �
0.0065

0
0

�   

𝐶𝐶 = [1 0 0];                        𝐷𝐷 = 0  

The controller is given by Equation (8) with Q = 0 and  

𝐵𝐵 = [5.0231 14.7418 7.8584];  

𝐿𝐿 = [0.0926 0.8163 0.3416]𝑇𝑇;            

Assume that the simulation time is 14,000 s and the 
disturbance variable follows a Gaussian distribution with 
mean 0 and variance 1. The sampling time is 1 s. The threshold 
Jth = 1.15 (Zhai & Shardt, 2024). PMM is simulated from the 
3000th sample, resulting in a change of approximately 25% in 
the S(z) matrix, that is, 

𝐴𝐴𝑝𝑝 = Δ × 𝐴𝐴,∆= �
1,                                             𝑖𝑖 ≤ 3000
𝑖𝑖 − 3000

4000
× 0.25, 3000 <  𝑖𝑖 ≤ 7000                                                

To compare the effect of the PMM accuracy between the 
real model and the assumed process model on performance 
recovery, we can change how the PMM r(z) is calculated. 
Therefore, the control signal remains the same:  
𝑢𝑢(𝑘𝑘) = 𝐵𝐵𝑥𝑥�(𝑘𝑘) − 𝑄𝑄(𝑧𝑧)𝑟𝑟(𝑧𝑧) + �̅�𝑣(𝑧𝑧)                                      (41) 

and different PMM calculation methods are simulated 
separately: 

Case 1: 𝑟𝑟(𝑘𝑘) = 𝜃𝜃(𝑘𝑘) − 𝜃𝜃�(𝑘𝑘);  

       Case 2: 𝑟𝑟(𝑘𝑘) = 𝜃𝜃(𝑘𝑘) − 𝑦𝑦(𝑘𝑘)                                                      

where y(k) is the output of the real model, including external 
disturbance. 𝜃𝜃�(𝑘𝑘) is the output of the state observer. 

As shown in Figure 2, we can compare the effects of the two 
residual generation methods on the performance-change 
recovery algorithm by closing the switch. 

 
Figure 4: Performance change for Case 1 

 
Figure 5: Performance change for Case 2 

 
Figure 6: Output change for Case 1 

 
Figure 7: Output change for Case 2 

Figure 4 shows the simulation results for the case where the 
residual generator is used. The blue line represents the 
performance evaluation of the soft sensor, while the red line 
represents the threshold. It can be seen that the performance 
changes to an unacceptable level around 7,000 s. At this point, 
the parameter Q begins to be calculated, and at 7,230 s, the 



optimal Q is obtained for continuously sending a 
compensation signal. At about 7,800 s, the performance is 
restored to normal levels. 

Comparing Figure 4 and Figure 5 shows that Case 1 is faster 
than Case 2 to restore the changed performance, which saves 
about 400 s. Since in Case 2, we calculate the residual using 
the real output y(z), but the real output contains disturbance 
d(z), which affects the accuracy of the residual calculation and 
therefore affects the accuracy of the optimal Q calculation and 
compensation effect of the new control signal. Figure 6 and 
Figure 7 show the change of the output level in the different 
cases. Figure 6 indicates that the liquid level rises to the 
maximum value at 7,000 s, then begins to fall under the 
influence of compensation signals and returns to the normal 
height at 7,180 s. A comparison of Figure 6 and Figure 7  
shows that the liquid level in Case 1 returns to the correct 
height faster. 

5. CONCLUSIONS 

This paper proposes a performance-change recovery 
algorithm for linear soft sensors based on the Youla-Kučera 
parameter Q. By identifying the SKR of the unknown model, 
the Youla-Kučera parameter Q can be calculated, which 
updates the control signal, releases the compensation signal, 
and cancels the effect of PMM. A three-tank model is used to 
construct a soft sensor to verify the effectiveness of the 
proposed method and compared the effects of different 
residual generation methods on performance change recovery.                                         
In the future, we will work on how to extend the proposed 
approach to nonlinear system, how to distinguish and isolate 
the effects of different kinds of PMMs on the performance 
change of the soft sensor and study other control performance 
change recovery methods. For example, the control method of 
system tracking performance, weighted fusion of control 
performance indicators and system performance indicators 
according to the expected control effect and use this as the 
optimization object to improve the control performance of the 
closed-loop system to restore system performance. 
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