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Abstract: To describe a quantitative relationship between the operating conditions of cooling 
crystallization process and product crystal size distribution (CSD), a surrogate modelling method based on 
the Gaussian process regression (GPR) is proposed by using only experimental data of batch crystallization 
process of β form L-glutamic acid (LGA). A modified design of experiments (DoE) is presented to reduce 
the number of batch crystallization experiments. Based on the surrogate model, an objective function 
reflecting the concentration of product CSD and desired yield is introduced to optimize these operating 
conditions. Experiments on the seeded cooling crystallization process of β-LGA are conducted to verify 
the effectiveness and advantage of the proposed method. 
Keywords: Batch crystallization process, surrogate modelling, crystal size distribution, Gaussian 
regression model, process optimization. 

 

1. INTRODUCTION 

Batch crystallization technology has been widely applied in 
pharmaceutical industry and fine chemistry, owing to its 
advantage for yielding crystal products with a specific size 
range (Nagy et al,, 2013). For batch optimization of cooling 
crystallization processes, the existing references were mainly 
dependent on the crystal growth kinetic model involved with 
crystal aggregation, breakage and agglomeration for process 
design and optimization. For instance, a size-dependent 
kinetic model was used to design the optimal cooling 
operation for a seeded cooling crystallization process of 
anticancer drugs (Seki & Su, 2015). Alternative population 
balance models (PBMs) were also explored for the optimal 
design of solution supersaturation during crystallization 
(Khan et al., 2011). In fact, it remains open as yet to 
simultaneously optimize the temperature and supersaturation 
profile for obtaining the desired product yield and CSD, based 
on the above process kinetic models. The developed multi-
objective optimization methods (Hemalatha & Rani, 2017) 
were primarily devoted to improve product yield and 
productivity. 
Since the developed PBMs are generally of partial-
differential equation and computationally demanding for 
numerical solution of CSD, surrogate modeling has been 
increasingly explored in the recent years (Zhong et al., 2019), 
based on approximating the process output response rather 
than the process kinetic mechanism. A modified polynomial 
chaos expansion (PCE) based surrogate modeling method 
was presented to design the optimal temperature profile for 
obtaining desirable product yield of batch cooling 
crystallization (Sanzida & Nagy, 2014). Another surrogate 
modeling method (Busschaert & Waldherr, 2022) was 
developed to infer the crystal growth rate of aspirin during 
cooling crystallization, by using the Gaussian kernel 
functions for model building. Nevertheless, a considerable 

number of experiments need to be carried out to generate 
sufficient process data for such surrogate modeling, since the 
data-driven modeling approach depends on the design of 
experiments (DoE) for obtaining informative batch run data. 
Only a small number of references addressed DoE for 
modeling and optimization of cooling crystallization 
processes, although it has been utilized in various engineering 
fields (Ljungberg et al., 2023).  
In this study, a novel surrogate modeling method is proposed 
to describe the nonlinear relationship between the operating 
conditions of crystallization process and product CSD, based 
on the Gaussian process regression (GPR). A sensitivity based 
DoE (herein named SDoE) is developed to save the number 
of batch experiments for acquiring informative crystallization 
process data, which adopts the information entropy of product 
CSD to evaluate its sensitivity with respect to the process 
operating conditions. Based on the GPR model, a 
comprehensive quality criterion is introduced to optimize the 
process operating conditions, which takes into account the 
information entropy of product CSD together with the desired 
product yield and size range. Experiments on the seeded 
cooling crystallization process of β form LGA are conducted 
to verify the effectiveness of the proposed modeling and 
optimization method. 

2. PROBLEM DESCRIPTION 

Since the spontaneous nucleation could be neglected in a 
seeded cooling crystallization process owing to the use of 
crystal seeds, a one-dimensional PBE for describing the 
crystal growth kinetics of a seeded cooling crystallization 
process is generally in the form of 
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where ( , )nf L t  denotes the crystal number density function 
in a size range of L  , t   the time, ( , )G S L   the crystal 



growth rate, b( , )B tθ   the nucleation rate, bL  the 
characteristic size of nuclei, and b( )L Lδ −  the Dirac delta 
function. With the seeding operation, the initial process 
conditions are expressed by 
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The crystal growth kinetics during crystallization is typically 
modeled by a power-law rate equation, 
 g,2 g,4
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where ( ) ( )S C t C t∗= −   is the absolute supersaturation, C  
the solute concentration, and * 2

1 2 3C T Tα α α= + +   the 
solution solubility; Denote by 1α  , 2α  , 3α   the solubility 
coefficients, and by T  the solution temperature; L  denotes 
the one-dimensional crystal size. The kinetic model 
parameters are denoted by g g,1 g,2 g,3 g,4[ , , , ]k k k kθ = . 
Since the secondary nucleation has been well utilized in 
industrial seeded crystallization processes, it is regarded as 
the dominant behavior of crystal nucleation, as described by 
a function between the relative supersaturation and volume of 
all crystals (Hermanto et al., 2008), 
 b b r 3( , ) ( 1) ( )B t k S tθ μ= −  (4) 
where bk   denotes the kinetic nucleation parameter, 

r / *S C C=   is the supersaturation ratio and 3 ( )tμ   is the 
third order moment of CSD defined by 
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where iw  denotes the corresponding weights and iL  is the 
length coordinate, which could be solved by using the 
product-difference (PD) algorithm (Gimbun et al., 2009); 

qN  indicates the number of discretized points with regard to 
the crystal size range for evaluation. It should be noted that 

0μ  , 1μ  , 2μ  , 3μ   are related to the normalized number of 
crystals within per unit volume, the averaged crystal length, 
averaged surface area of crystals, averaged crystal volume (or 
mass), respectively. To estimate the mass of solute consumed 
by crystal growth and the birth of nuclei during cooling 
crystallization, the mass balance equation is expressed by 
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where cρ  is the solute density, and vk  is the volume shape 
factor. 
Because CSD could not be analytically solved from the above 
PBE in Eq.(1), the high resolution finite volume method 
(HRFVM) (Gunawan et al., 2004; Simone et al., 2017) was 
developed to solve this kind of hyperbolic partial differential 
equation and applied for reconstructing CSD (Aamir et al., 
2009). By discretizing the space domain, the HRFVM sets up 
a series of grid cells, where each grid point is specified by 
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where lζ   denotes the approximate number density in the 
- thl  grid cell, lh  the size of the - thl  grid cell. 

From the above review on the existing PBM and HRFVM 
methods, it is obvious that the product CSD of cooling 
crystallization could not be explicitly solved or precisely 
predicted with regard to the process operating conditions like 
the cooling temperature profile and solution supersaturation. 
Hence, it is motivated to establish a surrogate model to 
describe the mapping relationship between the above 
operating conditions and product CSD, based on only the 
batch data of cooling crystallization. To save the number of 
experiments for such data-driven modeling, an SDoE method 
is proposed for practical application. Based on the established 
mapping model, these operating conditions are optimized for 
batch run, by introducing a comprehensive quality criterion 
related to the information entropy of product CSD and desired 
product yield for process optimization. These contents are 
presented in the following sections, respectively. 

3. SURROGATE MODELLING 

3.1 Sensitivity based design of experiments (SDoE) 
To generate informative batch run data for surrogate modeling 
of the relationship between the process operating conditions 
and product CSD, while reducing the number of batch run 
experiments as much as possible, it is proposed to evaluate 
the sensitivity of product CSD with regard to the operating 
conditions, based on a few experiments under specified 
operating conditions in the permitted range. 
Note that the concentration degree of product CSD by seeded 
cooling crystallization could be evaluated by the information 
entropy defined by 
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where o   denotes the operating conditions of solution 
supersaturation ( SS  ) and cooling rate ( CR  ), 

kny   the 
k - thn   product crystal size, and 

k
( , )nyζ o   denotes CSD 

with respect to the operating conditions. 
To save the computational effort for estimating the traditional 
sensitivity indices, an estimation algorithm (Saltelli et al., 
2010) is adopted to estimate first-order sensitivity indices Sο  
and total-order sensitivity indices TSο , i.e., 
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where Aο  and Bο  are two independent sampling matrix of 
operating conditions with the dimension of S O[ , ]N N  ; the 
superscript O1, ,i N= …   indicates the number of operating 
conditions; ( )i

BAοο  is a matrix where all columns come from 

Aο  except for the - thi  column from Bο . 
Accordingly, the interaction sensitivity index between the 



operating conditions of CR  and SS  is defined by 
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Figure 1. DoE with 2-factor and 4-level: (a) FFD; (b) Initial 
DoE; (c) SDoE 
 
To reduce the number of factors and their levels by the 
commonly used full factorial design (FFD) (Montgomery, 
2017) as shown in Figure 1 (a) in order to facilitate practical 
application, a sensitivity-based DoE (SDoE) approach is 
therefore proposed for designing α  -factor and β  -level 
(denoted by βα  ) experiments. In the DoE, the operating 
conditions could be encoded in a range of [0,1]   by 
normalization. For clarity, 2α =   and 4β =   4(2 )   are 
selected in this study, corresponding to CR  with the levels 
of [0.1,0.2,0.3,0.4]   and SS   with the levels of 
[1.0,1.1,1.2,1.3]  , both of which are encoded by 
[0,0.33,0.66,1]  , respectively. Considering that experiments 
for model building should be conducted within a permitted 
range of the operating conditions, a few specific experiments 
with the number of 4/ 2 / 4 4βα β  = =   , including the 
boundary, main or sub diagonal points, are initially chosen for 
model building and sensitivity analysis, as shown in Figure 1 
(b), so as to reduce the total number of experiments (i.e., βα ) 
required by FFD for parameter estimation. 
 
3.2 Surrogate modeling by GPR 
Based on the batch crystallization process data, a surrogate 
model is established herein by the GPR approach, for 
describing the nonlinear relationship between product CSD 
and the operating conditions of initial supersaturation and 
cooling rate. A GPR model is generally defined by a linear 
combination of N  kernel functions (Deringer et al., 2021) 
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where ( , )k L Ln  denotes a kernel function, L  the lengths of 
crystals, Ln   the characteristic lengths of crystals, and nw  

the related weights; ( )ζ L  is used to approximate the product 
CSD with respect to the characteristic lengths of crystals. 
Considering the complex dynamics of seeded cooling 
crystallization processes, it is important to take appropriate 
kernel functions to build up the GPR model for reflecting the 
mapping relationship between these operating conditions and 
product CSD. The Matérn (MT) kernel function (Williams & 
Rasmussen, 2006) is therefore adopted owing to its bimodal 
distribution for versatile approximation, expressed by 
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where M , Mσ  and εσ  are three hyperparameters referred 
to the characteristic width of kernel, variance of kernel, and 
the fitting residual. To overcome the issue that 
hyperparameter optimization through the traditional 
maximum likelihood estimation method likely fall into local 
minimum, a global optimization algorithm called BWO 
(Zhong et al., 2022) is adopted herein for searching out the 
optimal hyperparameter setting. 
Hence, the above hyperparameters are optimized by the 
following minimization program, 
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where pζ   and pζ̂   denote the prediction dataset and the 
correspondingly estimated values, respectively. 

4. OPTIMAL DESIGN OF THE OPERATING 
CONDITIONS 

To facilitate quality-by-design (QbD) of seeded cooling 
crystallization process operation, an optimal input design is 
proposed herein to achieve high quality crystal products with 
narrow CSD with regard to the target mean crystal size, based 
on the above surrogate modeling. 
In view of that the information entropy in Eq.(8) is a common 
index to evaluate the flatness or sharpness of a distribution 
curve, it is adopted herein to assess the concentration degree 
of product CSD. Note that the desired sizes of crystal products 
are generally in a range of the target size in practice, rather 
than only the target size. It is therefore proposed to define a 
ratio of the desired crystal product yield with regards to the 
target crystal size over the total crystal products, i.e., 
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where DS  denotes the desired product crystal size. 
Taking into account the above information entropy in (8) and 
ratio in (15) for assessing crystal product quality, a 
comprehensive criterion is therefore proposed as 
 q= Ω + (1/ )Q w A  (16) 

where qw  is a coefficient factor for scaling. 
Hence, the above operating conditions are optimized by 
minimizing Q  in (16), i.e., 
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where minCR   and maxCR   indicate the lower and upper 
bounds of cooling rate, respectively; minSS   and maxSS  
denote the lower and upper bounds of initial solution 
supersaturation, respectively. 

5. CASE STUDY ON LGA COOLING 
CRYSTALLIZATION PROCESS 

A number of seeded β form LGA cooling crystallization 
experiments were performed based on the experimental setup 
shown in Figure 2. 
The crystallizer consists of a 1L jacketed glass reactor, a 
thermostatic circulator (made by Julabo company), and a 
PTFE four-paddle agitator. The chord length distribution 
(CLD) of crystals is measured by a focused beam reflectance 
measurement (FBRM) instrument (Mettler-Toledo company). 
The solution concentration is measured by the attenuated total 
internal reflection-Fourier transform infrared (ATR-FTIR) 
spectroscopy (Mettler-Toledo company). 

FBRM PC

ATR-FTIR

LED 
illuminators

Monitoring PCLight controller

Binocular cameras
1L reactor

Agitator

ATR-FTIR 
PC

FBRM

 
Figure 2. Experimental set-up for LGA crystallization 
 
In this study, the solute is taken as the β-LGA crystals with a 
purity of 99%, and the solvent is distilled water. In each 
experiment, the batch time of each experiment was taken as 
90 minutes. The initial solution supersaturation were set as 
1.0, 1.1, 1.2, and 1.3 along with the linear cooling rates of 0.1, 
0.2, 0.3, and 0.4 °C/min for each batch experiment. 

 
Figure 3. Sensitivity plot of product CSD with regard to the 
operating conditions based on initial GPR model 

It is seen in Figure 3 that the information entropy of product 
CSD defined in Eq.(8), from which high sensitivity ( ,CR SSS > Δ ) 
could be found around R-1, 3, 4, 5, 7, 9, 10, 12, 14, 15, and 
16. Hence, a sensitivity threshold 0.4Δ =   is taken for 
selecting the operating conditions to generate batch run data 
for surrogate modeling. The selection result is listed in Table 
1. 

Table 1. Batch run design by SDoE for surrogate modelling 

/CR SS  1.0 1.1 1.2 1.3 
0.1 R-1 / R-3 R-4 
0.2 R-5 / R-7 / 
0.3 R-9 R-10 / R-12 
0.4 R-13 R-14 R-15 R-16 

 
For clarity, the FFD and SDoE for β-LGA crystallization 
under the permitted range of operating conditions are 
indicated in Figure 1. To assess the performance of 
constructed models, the R2 defined below are used, 
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where ζ̂  is the predicted CSD in each experiment, and ζ  
is the mean vector. 

Table 2. Comparison of R2 and RMSE indices for GPR 
modeling by MLE and BWO 

Optimized by MLE 
GPR modeling R2 RMSE 

FFD 0.992 5.59e-4 
SDoE 0.997 4.14e-4 

Optimized by BWO 
FFD 0.999 2.58e-4 

SDoE 0.999 2.15e-4 
 
It is seen that the hyperparameters setting of GPR model 
optimized by BWO could obtain better prediction results in 
comparison with MLE, as listed in Table 2. 
The proposed GPR model and the recently developed double-
layer (DL) modeling method (Song et al., 2022) are applied 
for comparison. Based on the product CSD measured by 
microscopy and the operating conditions of CR   and SS  
listed in Table 1, a prediction model of product CSD is built 
by the proposed surrogate modeling method. 
It is seen in Figure 4 that the product CSD (solid black line) 
is effectively fitted by the GPR models built by FFD (dash 
line) and SDoE (dot line), in comparison with the recently 
developed DL modeling method. 
To demonstrate the effectiveness of the proposed method, 
Figure 5 shows the prediction results of product CSD by using 
the GPR model built by SDoE under additional batch run 
named R-11. It can be found that both GPR models built by 
FFD and SDoE could evidently improve prediction accuracy 



on the product CSD, compared with the DL modeling method. 

 
Figure 4. Fitting results by different modeling methods based 
on FFD and SDoE: (a) R-4; (b) R-7; (c) R-13 
 

 
Figure 5. Prediction results of product CSD by different 
modeling methods under R-11 for verification 
 
To maximize the product yield and enhance the concentration 
of product CSD around the desired crystal size of 350 mμ , 
the optimal cooling rate and initial solution supersaturation 
are determined as =0.39CR  (℃/min) and =1.06SS   by the 
above GPR modeling with SDoE, corresponding to 

1=8.3349Q   and 1 =33.36%A  . In contrast, the optimal 
operating conditions are determined as =0.34CR  (℃/min) 
and =1.21SS  for GPR modeling with FFD, corresponding to 

2 =8.5743Q   and 2 =27.04%A  . Similarly, they are 
determined as =0.26CR  (℃/min) and =1.06SS   by the DL 
modeling with the above SDoE, corresponding to 

3 =9.1328Q  and 3 =28.35%A . 
Figure 6 shows that the optimized CSD based on FFD and 
SDoE are more concentrated around the target size of 
350 mμ  , compared with the previous DL modeling and 
optimization method based on the proposed SDoE. Moreover, 
the proposed optimization method based on the SDoE for 
GPR modeling acquires evidently higher product yield in the 

desired product crystal size range, compared with that of FFD. 

 
Figure 6. Experimental verification of the optimized product 
CSDs by different modeling methods 
 
Table 3 lists the crystal product yields in (15) by different 
methods, which indicates that the proposed method obviously 
enhances the concentration of product CSD as well as the 
product yield around the desired product size. Note that the 
product crystal yield by SDoE in the desired size range of 
[90,110]% 350×  μm is over 12% higher than that of FFD 
based on the same optimization method, and almost 30% 
higher than the previous DL modeling and optimization 
method. 

Table 3 Comparison of crystal product yields by different 
modeling methods 

 DL-SDoE GPR-FFD GPR-SDoE 
Yield 28.35% 27.04% 33.36% 

 
Figure 7 shows the microscopic images of crystal products 
with a mean length of 350 mμ   acquired by the proposed 
optimization method based on SDoE and FFD, respectively, 
along with the previous DL modeling and optimization 
method (Song et al., 2022). It can be seen that needle-like β-
form LGA crystals with a higher aspect ratio are obtained by 
the proposed optimization method based on SDoE, and 
meanwhile, fine crystals are apparently reduced in the 
products. 

(a)

(b) (c)

 
Figure 7. Microscopic view of the optimal experimental 
results: (a) DL-SDoE; (b) GPR-FFD; (c) GPR-SDoE 
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6. CONCLUSIONS 

A GPR based surrogate modelling method has been proposed 
in this paper to reflect the nonlinear mapping relationship 
between the operating conditions of β form LGA seeded 
cooling crystallization and product CSD. A modified DoE has 
been presented to save the number of real experiments for 
building up the surrogate model, which could obtain similar 
or even better performance on predicting the product CSD 
than that of FFD. Moreover, a comprehensive quality 
criterion that combines the information entropy of product 
CSD with the desired product crystal size range has been 
introduced for the optimization of operating conditions, 
which could effectively enhance the concentration of product 
CSD along with the product yield in the target crystal size 
range. Experiments on seeded β form LGA crystallization 
verified that the optimized operating conditions by the 
proposed SDoE and GPR model could evidently improve the 
concentration of product CSD together with the product yield 
with regard to the target crystal size, in comparison with the 
traditional DoE of FFD and a recent DL modelling method 
for the optimal input design. 
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