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Abstract: Optimal control problems are used for many tasks such as model-based control,
state and parameter estimation, and experimental design for complex dynamic systems. The
solution to these problems can be divided into two tasks, where the first corresponds to the
enumeration of different arc sequences and the second is the computation of the optimal values
of the decision variables for each arc sequence. For the latter task, this paper proposes a method
to approximate the cost and constraints of the problem as polynomial functions of the decision
variables via computation of partial derivatives up to second order and multivariate Hermite
interpolation. This method allows reformulating the problem for an arc sequence as a polynomial
optimization problem, which is expected to enable efficiently solving optimal control problems to
global optimality. The method is illustrated by a simulation example of a reaction system.
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1. INTRODUCTION

Optimal control problems (OCPs) are widely applied to
design, analysis, and operation of many complex dynamic
systems. Efficient solution methods for OCPs are vital for
tasks such as state and parameter estimation, experimental
design, and model-based control. OCPs involve selecting
optimal time-varying functions over a time interval to opti-
mize a cost subject to constraints. OCPs are complex since
they involve infinitely many decision variables, and there
exist not only (terminal) constraints at the end of the time
interval but also (path) constraints along the trajectory
(Bryson and Ho, 1975). Specialized techniques for solving
OCPs have been developed, such as direct methods that
reformulate the original infinite-dimensional problem as a
finite-dimensional one via discretization, by dividing the
time interval into subintervals where the solution descrip-
tion is simpler (Teo et al., 1991; Biegler et al., 2002).

Traditional direct methods for OCPs only seek local op-
timality, but not global optimality. The local optima at-
tained by these algorithms may be suboptimal with respect
to the global optimum by a significant margin (Houska
and Chachuat, 2014). Alternatively, global optimization
algorithms can be used. Two approaches can be high-
lighted: branch-and-bound approaches and reformulation as
a convex problem. Branch-and-bound approaches estimate
bounds of the cost and constraints and divide the space
of decision variables until the global optimum is found
(Chachuat et al., 2006). The alternative is to reformulate
the original nonconvex problem, which can possess several
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local optima, as a convex problem with a single local opti-
mum that corresponds to the global optimum of the orig-
inal problem. For example, if the cost and constraints are
written in terms of polynomials, one can express the prob-
lem as a polynomial optimization problem (POP), which
can be reformulated as a hierarchy of convex semidefinite
programs (SDPs) via the concept of sum-of-squares (SOS)
polynomials (Lasserre, 2001; Parrilo, 2003). However, both
approaches to global optimization have exponential worst-
case complexity with respect to the number of decision
variables (Houska and Chachuat, 2014). In addition, con-
vergence to global optimality is challenging because the
number of decision variables in these problems is large even
after discretization via direct methods.

To reduce the number of decision variables for global op-
timization, the parsimonious input parameterization ap-
proach has been proposed (Rodrigues and Bonvin, 2020),
which consists of: (i) identifying all the arcs that can occur
in the solution, (ii) generating a finite set of arc sequences,
and (iii) describing each sequence by a small number of de-
cision variables. Then, for a given arc sequence, the optimal
values of the decision variables of the resulting problem can
be computed. This differs from switching time optimization,
which assumes that an analytical expression for each input
is available and is challenging for input-affine OCPs related
to complex nonlinear systems. The main advantage is that
the small number of decision variables enables efficient
global optimization for each arc sequence. This motivates
approximating the terminal cost and constraints as explicit
polynomial functions of the decision variables, resulting in
a POP for each arc sequence, for which the global solution
can be computed via reformulation as an SDP.

Previous work showed how to extend the parsimonious in-
put parameterization approach for efficient global solutions



to approximations of OCPs. A method for approximating
the problem for a given arc sequence as a POP via mul-
tivariate Hermite interpolation was presented, and it was
shown that the POP can be solved efficiently to global
optimality via the concept of SOS polynomials (Rodrigues
and Mesbah, 2022). However, this work focused on single-
input OCPs, approximated free/singular arcs as linear func-
tions of time, and used partial derivatives of the cost and
constraints with respect to the decision variables only up
to first order and multivariate Hermite interpolation to
approximate the problem for a given arc sequence as a POP.

The goal of this paper is to show how to represent the
cost and constraints of an OCP as explicit polynomial
functions of the decision variables for each arc sequence,
by taking advantage of the partial derivatives of the cost
and constraints with respect to the decision variables up
to second order. This way, the OCP is reformulated as a
set of POPs, one for each arc sequence. The paper shows
the OCP formulation, the structure of its solution, and how
to reduce the number of decision variables in the problem
for a given arc sequence by approximating the inputs in
free/singular arcs with low-degree polynomials. Then, it
presents a method to reformulate that problem as a POP
using partial derivatives of the cost and constraints up
to second order and multivariate Hermite interpolation.
Finally, the method is illustrated via a simulation example.

2. OPTIMAL CONTROL PROBLEM AND SOLUTION

2.1 Problem formulation

This paper concerns the solution to OCPs formulated as

min
u(·),tf

J
(
u(·), tf

)
= ϕ

(
x(t1), . . . ,x(tT ), tf

)
, (1a)

s.t. T
(
u(·), tf

)
= ψ

(
x(t1), . . . ,x(tT ), tf

)
≤ 0nψ , (1b)

ẋ(t) = f
(
x(t),u(t)

)
, x(t0) = x0, (1c)

g
(
x(t),u(t)

)
≤ 0ng , h

(
x(t)

)
≤ 0nh , (1d)

where: t0 is the initial time, t1 < · · · < tT are T times and
tf = tT ∈ [t0, tmax] is the final time, with t0, . . . , tT−1 fixed
and tmax a finite upper bound; u(t) is the nu-dimensional
vector of piecewise-continuous inputs for all t ∈ [t0, tf );
x(t) is the nx-dimensional vector of piecewise-continuously
differentiable states for all t ∈ [t0, tf ); f(x,u) and g(x,u)
are nx-dimensional and ng-dimensional vector functions,
smooth for all (x,u) ∈ Rnx×Rnu ; h(x) is an nh-dimensional
vector function, smooth for all x ∈ Rnx ; and ϕ(X, t)
and ψ(X, t) are a scalar function and an nψ-dimensional
vector function, smooth for all (X, t) ∈ RTnx × [t0, tmax].

It is assumed that g(x,u) and h(1)(x,u) := ∂h
∂x (x)f(x,u)

depend explicitly on u and h(x) is linear in x.

2.2 Solution structure

The solution to Problem (1) involves inputs composed of
several arcs. For each input uj , each arc is 1) bang-bang,
such that it is determined by an equality gk(x,u) = 0 for
some k = 1, . . . , ng, 2) active-state constraint, such that

it is determined by an equality h
(1)
k (x,u) = 0 for some

k = 1, . . . , nh, or 3) free, such that it is determined by
an equality that stems from the system dynamics given
by f

(
x(t),u(t)

)
, also labeled as singular in the case of

input-affine OCPs (Rodrigues and Bonvin, 2020). Hence,
arc sequences can be formed from a finite number of arc

types. If we consider as plausible only arc sequences with an
upper bound on the number of arcs, the number of plausible
sequences is also finite. The solution to the OCP relies
on determining (i) when and how the optimal switching
between arcs takes place for a given arc sequence, and (ii)
which sequence provides the optimal solution. This paper
focuses on (i) and assumes that the inputs in free/singular
arcs are approximated by low-degree polynomials described
by only a few parameters that correspond to the initial con-
ditions of these arcs. Once (i) is addressed for each sequence
via parallel computing, (ii) becomes straightforward.

The solution to (i) involves computing the optimal values
of the decision variables for a given plausible arc sequence.
It is then helpful to express the cost and constraints of
the OCP as explicit polynomial functions of the decision
variables, converting the OCP into a set of POPs, one for
each arc sequence. Hence, for a plausible arc sequence with
ns switching times to arcs of types 1 and 3 (excluding
t0 as a switching time), the inputs u(·) are fully defined
by the decision variables, which are the switching times
t̄1, . . . , t̄ns , the final time tf , and the initial conditions of
the free/singular arcs. In contrast to multi-point boundary
value problems and switching time optimization, both the
switching times and those initial conditions are decision
variables, which allows representing singular arcs in input-
affine OCPs related to complex nonlinear systems. The en-
try points in arcs of type 2 are given by the nη-dimensional
vector η, but the switching to these arcs cannot occur at
arbitrary times since it depends on the states x. Also, we
assume that the optimal sequence of arcs of types 1, 2, and 3
is known for each given sequence of arcs of types 1 and 3 for
simplicity, as explained by Rodrigues and Mesbah (2022).

Next, the inputs for a given arc sequence are described in
the ith time interval [t̄i−1, t̄i), for i = 1, . . . , ns + 1, with
t̄0 = t0, t̄ns+1 = tf . Then, suppose that, in the interval
[t̄i−1, t̄i), there are ñi switchings to different arcs of type 2,
and the arcs are described in the rith interval [t̄i,ri−1, t̄i,ri),
for ri = 1, . . . , ñi+1, with t̄i,0 = t̄i−1, t̄i,ñi+1 = t̄i. For each
input uj , with j = 1, . . . , nu, there is a degree ξj,i ≥ 0 for

which a feedback law gives u
(ξj,i)
j (t) at the beginning of the

interval [t̄i−1, t̄i) and a degree ξj,i ≥ ξj,i,ri ≥ 0 for which

a feedback law gives u
(ξj,i,ri )

j (t) in the interval [t̄i,ri−1, t̄i,ri)
as an explicit function of the states, the inputs, and an
optional parameter pj,i in the case of free/singular arcs.

For a bang-bang or active-state constraint arc for input uj ,
ξj,i,ri = 0 since this arc is determined by an equality

uj(t) = c̄rij,i
(
x(t), u1(t), . . . , uj−1(t), uj+1(t), . . . , unu(t)

)
.(2)

For a free/singular arc for input uj , ξj,i,ri ≥ 0 since uj(t)
is described in this arc by the differential equation

u
(ξj,i,ri )

j (t) = pj,i, (3)

with initial conditions u
(ξj,i,ri−1)

j (t̄i,ri−1), . . . , uj(t̄i,ri−1).

Hence, the parameter pj,i is of dimension bj,i, where bj,i is a
binary constant that specifies whether uj(t) is free/singular
at the beginning of the ith time interval, for t ∈ [t̄i−1, t̄i).

3. OCP WITH NEW DECISION VARIABLES

The dynamic feedback in the case ξj,i > 0 can be handled
by defining the following nz,i := ξ1,i+b1,i+. . .+ξnu,i+bnu,i
new states and initial conditions:



zi(t) :=


[
ũ0
1,i(t) ··· ũ

ξ1,i−1

1,i
(t) p̃1,i(t)

]T
...[

ũ0
nu,i

(t) ··· ũ
ξnu,i

−1

nu,i
(t) p̃nu,i(t)

]T
 , (4a)

zi,0 :=


[
u0
1,i ··· u

ξ1,i−1

1,i
p1,i

]T
...[

u0
nu,i

··· u
ξnu,i

−1

nu,i
pnu,i

]T
 , (4b)

which describes the inputs for a given arc sequence in the
ith time interval [t̄i−1, t̄i), for i = 1, . . . , ns + 1. Then, one
can combine all the states into augmented vectors with a
dimension nz := nx + nz,1 + . . .+ nz,ns+1, as follows:

z(t) :=
[
x(t)T z1(t)

T · · · zns+1(t)
T
]T
. (5)

with corresponding initial conditions z0.

The dynamics of the states zi(t) are given by

żi(t) = qi
(
z(t)

)
, zi(t̄i−1) = zi,0, (6)

where, for t ∈ [t̄i−1, t̄i),

qi
(
z(t)

)
=

[
q1,i

(
x(t), zi(t)

)T · · · qnu,i
(
x(t), zi(t)

)T]T
, (7)

with, for j = 1, . . . , nu and for t ∈ [t̄i,ri−1, t̄i,ri),

qj,i
(
x(t), zi(t)

)
=

[
ũ1
j,i(t) ··· ũ

ξj,i−1

j,i
(t) p̃j,i(t) 0

]T
(8)

if ξj,i,ri > 0, and

qj,i
(
x(t), zi(t)

)
= 0ξj,i+bj,i (9)

if ξj,i,ri = 0, and, for t /∈ [t̄i−1, t̄i),

qi
(
z(t)

)
= 0nz,i . (10)

This allows using the control laws u(t) = c̃
(
z(t)

)
, where,

for j = 1, . . . , nu and for t ∈ [t̄i,ri−1, t̄i,ri),

c̃j
(
z(t)

)
=

{
ũ0j,i(t), ξj,i,ri > 0

crij,i
(
x(t), zi(t)

)
, ξj,i,ri = 0

, (11)

with crij,i
(
x(t), zi(t)

)
= p̃j,i(t) if the arc is free/singular for

uj and c
ri
j,i

(
x(t), zi(t)

)
obtained from (2) otherwise.

For example, if uj is approximated by a linear function and
the arcs are not free/singular for the other inputs, then

zi(t) =
[
ũ0
j,i(t)

p̃j,i(t)

]
and zi,0 =

[
u0
j,i
pj,i

]
are of dimension ξj,i +

1 = 2, where u0j,i and pj,i are the initial value and derivative

of the input uj and ũ0j,i(t) is its value at time t, which

implies that c̃j
(
z(t)

)
= ũ0j,i(t) and qi

(
z(t)

)
=

[
p̃j,i(t)

0

]
.

Then, upon eliminating input dependencies and rewriting
Problem (1) in terms of the extended states z, one refor-
mulates Problem (1) in terms of the new decision variables
τ := (t̄1, . . . , t̄ns , tf , z1,0, . . . , zns+1,0) as

min
τ

ϕ̂(τ ) := ϕ̃
(
z(t1), . . . , z(tT ), tf

)
, (12a)

s.t. ψ̂(τ ) := ψ̃
(
z(t1), . . . , z(tT ), tf

)
≤ 0nψ , (12b)

ż(t) = f̃
(
z(t)

)
, z(t0) = z0, (12c)

t̄i−1 ≤ t̄i, i = 1, . . . , ns + 1, (12d)

g̃
(
z(t)

)
≤ 0ng , h̃

(
z(t)

)
≤ 0nh , (12e)

where

χ̃
(
z(t1), . . . , z(tT ), tf

)
:=

[
ϕ̃
(
z(t1), . . . , z(tT ), tf

)
ψ̃
(
z(t1), . . . , z(tT ), tf

)] , (13)

with ϕ̃
(
z(t1), . . . , z(tT ), tf

)
= ϕ

(
x(t1), . . . ,x(tT ), tf

)
and

ψ̃
(
z(t1), . . . , z(tT ), tf

)
defined similarly, the dynamics

f̃
(
z(t)

)
:=

f(x(t), c̃(z(t)))T
 q1

(
z(t)

)
...

qns+1

(
z(t)

)

T

T

, (14)

g̃
(
z(t)

)
:= g

(
x(t), c̃

(
z(t)

))
, and h̃

(
z(t)

)
:= h

(
x(t)

)
, which

is more convenient for numerical optimization since there
are only N := ns+1+nz,1+. . .+nz,ns+1 decision variables,
in contrast to infinite-dimensional variables in Problem (1).
For this reason, the input parameterization is terms of
τ has been labeled parsimonious (Rodrigues and Bonvin,
2020). For any τ , the terminal cost and constraints χ̂(τ ) :=[
ϕ̂(τ ) ψ̂(τ )T

]T
are computed via numerical integration and

evaluation of χ̃
(
z(t1), . . . , z(tT ), tf

)
.

For each entry point η̂j(τ ) := ηj , there exists k = 1, . . . , nh
such that h̃k

(
z(η̂j(τ )

−)
)
< 0, h̃k

(
z(η̂j(τ ))

)
= 0, which

means that h̃k
(
z(t)

)
≤ 0 becomes active at t = η̂j(τ ).

4. REFORMULATION AS A POLYNOMIAL
OPTIMIZATION PROBLEM

We aim to reformulate the OCP for each arc sequence as a
POP that is more amenable to global optimization, which
entails expressing every function χ̂(τ ) in the terminal cost
and constraints and in the constraints that place each entry
point η̂j(τ ) in arcs of type 2 with respect to t̄1, . . . , t̄ns
according to the optimal sequence of arcs of types 1, 2, and
3 as a polynomial function. To this end, we can compute
higher-order partial derivatives of that function χ̂(τ ) with
respect to τ and use a multivariable series expansion to
represent χ̂(τ ) as a polynomial in τ , as shown next.

4.1 Computation of partial derivatives

Suppose that there exists τ̄ such that, for all ∆τ ∈ R,

χ̂(τ ) =
∑

k∈KNn
(cχ̂)k ∆τ

k +Rχ̂(τ ), (15)

with (cχ̂)k := 1
k!
∂kχ̂
∂τk (τ̄ ), k the vector of monomial powers in

the set KNn := {(k1, . . . , kN ) ∈ NN0 : 0 ≤ k1 + . . .+ kN ≤ n}
in the case of a polynomial of degree n, ∆τ := τ − τ̄
the deviation of τ around τ̄ , k! := k1! . . . kN !, ∆τk :=

(τ1 − τ̄1)
k1 . . . (τN − τ̄N )

kN , ∂k

∂τk := ∂k1+...+kN

∂τ
k1
1 ...∂τ

kN
N

.

Next, we show how to compute the partial derivatives
in (15). For this, it is essential to consider not only the
extended states z(t) and the adjoint variables

ζ(t) :=
[
λ(t)T ζ1(t)

T · · · ζns+1(t)
T
]T
, (16)

but also their partial derivatives with respect to τ , as well
as the concept of modified Hamiltonian function

H̃
(
z(t), ζ(t), z(t1), . . . , z(tT ), tf

)
= ∂χ̃

∂tf

(
z(t1), . . . , z(tT ), tf

)
+ f̃

(
z(t)

)T
ζ(t) (17)

and its partial derivatives with respect to τ .

Appendix A shows the description of the states, adjoint
variables, and their partial derivatives with respect to τ .
All the equations in Appendix A can be obtained from the
concept of states and adjoint variables and the application
of the chain rule and the triple product rule.

Furthermore, the first-order partial derivatives of the mod-
ified Hamiltonian function with respect to τ correspond to



∂H̃
∂τ

(
z(t), ζ(t), z(t1), . . . , z(tT ), tf

)
= ∂2χ̃

∂t2
f

(
z(t1), . . . , z(tT ), tf

)∂tf
∂τ

+
T∑
l=1

∂2χ̃
∂tf∂z(tl)

(
z(t1), . . . , z(tT ), tf

) (
∂z
∂τ (tl) +

dz
dt (tl)

∂tl
∂τ

)
+ f̃

(
z(t)

)T (
∂ζ
∂τ (t) +

dζ
dt (t)

∂t
∂τ

)
+ ζ(t)T ∂ f̃

∂z

(
z(t)

) (
∂z
∂τ (t) +

dz
dt (t)

∂t
∂τ

)
. (18)

With these results, one can obtain the first-order partial
derivatives of χ̂(τ ) with respect to τ

∂χ̂
∂t̄i

(τ ) = H̃
(
z(t̄−i ), ζ(t̄i), z(t1), . . . , z(tT ), tf

)
− H̃

(
z(t̄i), ζ(t̄i), z(t1), . . . , z(tT ), tf

)
=

(
f̃
(
z(t̄−i )

)
− f̃

(
z(t̄i)

))T
ζ(t̄i),

i = 1, . . . , ns, (19)
∂χ̂
∂tf

(τ ) = H̃
(
z(t−f ), ζ(tf ), z(t1), . . . , z(tT ), tf

)
= ∂χ̃

∂tf

(
z(t1), . . . , z(tT ), tf

)
+ f̃

(
z(t−f )

)T
ζ(tf ),(20)

∂χ̂
∂zi,0

(τ )T = ζi(t0), i = 1, . . . , ns + 1, (21)

and its second-order partial derivatives with respect to τ
∂2χ̂
∂t̄i∂τ

(τ ) = ∂H̃
∂τ

(
z(t̄−i ), ζ(t̄i), z(t1), . . . , z(tT ), tf

)
− ∂H̃

∂τ

(
z(t̄i), ζ(t̄i), z(t1), . . . , z(tT ), tf

)
=

(
f̃
(
z(t̄−i )

)
− f̃

(
z(t̄i)

))T (
∂ζ
∂τ (t̄i) +

dζ
dt (t̄i)

∂t̄i
∂τ

)
+ ζ(t̄i)

T
(
∂ f̃
∂z

(
z(t̄−i )

)
− ∂ f̃

∂z

(
z(t̄i)

))(
∂z
∂τ (t̄i) +

dz
dt (t̄i)

∂t̄i
∂τ

)
,

i = 1, . . . , ns, (22)

∂2χ̂
∂tf∂τ

(τ ) = ∂H̃
∂τ

(
z(t−f ), ζ(tf ), z(t1), . . . , z(tT ), tf

)
= ∂2χ̃

∂t2
f

(
z(t1), . . . , z(tT ), tf

)∂tf
∂τ

+
T∑
l=1

∂2χ̃
∂tf∂z(tl)

(
z(t1), . . . , z(tT ), tf

) (
∂z
∂τ (tl) +

dz
dt (tl)

∂tl
∂τ

)
+ f̃

(
z(t−f )

)T (
∂ζ
∂τ (tf ) +

dζ
dt (tf )

∂tf
∂τ

)
+ ζ(tf )

T ∂ f̃
∂z

(
z(t−f )

) (
∂z
∂τ (t

−
f ) +

dz
dt (t

−
f )

∂tf
∂τ

)
, (23)

∂2χ̂
∂zi,0∂τ

(τ ) = ∂ζi
∂τ (t0) +

dζi
dt (t0)

∂t0
∂τ , i = 1, . . . , ns + 1. (24)

These equations are useful to handle entry points in arcs of
type 2, which is difficult if automatic differentiation is used.

In addition, the higher-order partial derivatives of z(t), ζ(t),

H̃
(
z(t), ζ(t), z(t1), . . . , z(tT ), tf

)
, and χ̂(τ ) with respect to

τ could be computed. However, the computation of higher-
order partial derivatives with respect to τ would become
complex due to the need to perform consecutive symbolic
differentiation, which would result in increasingly complex
expressions for increasing differentiation order. Polynomial
interpolation is used next to deal with this issue.

4.2 Polynomial interpolation

A more efficient approach consists of (i) computing the
partial derivatives of every function χ̂(τ ) in the cost and
constraints up to second order with respect to τ and
(ii) using multivariate Hermite interpolation to obtain a
polynomial of degree n > 2 such as the one in (15) that
fits the value χ̂(τ l) and the first-order and second-order

partial derivatives ∂χ̂
∂τ (τ l),

∂2χ̂
∂τ2 (τ l) at the sample points τ l,

for l = 1, . . . ,mτ (Lorentz, 2000). Note that this requires no
more than computing the extended states z(t) and adjoint
variables ζ(t) for every χ̂(τ ) and their first-order partial

derivatives ∂z
∂τ (t),

∂ζ
∂τ (t) that correspond to each point τ l,

which amounts to solving nχ + 1 systems of nz (N + 1)
differential equations for each l = 1, . . . ,mτ .

Hence, instead of computing the partial derivatives ∂kχ̂
∂τk (τ̄ )

in (15) directly, one can compute the coefficient vector ĉχ̂

that minimizes
∑

κ∈KN2

(
σ2
χ̂,κ

)−1||yχ̂,κ − Aτ,κĉχ̂||2, where
(ĉχ̂)k is an approximation of (cχ̂)k s

k, for all k ∈ KNn ,(
yχ̂,κ

)
l
= sκ ∂

κχ̂
∂τκ (τ l), κ ∈ KN2 , l = 1, . . . ,mτ , (25)

(Aτ,κ)l,k =

{
k!

(k−κ)!

∆τk−κ
l

sk−κ , k ≥ κ
0, otherwise

, κ ∈ KN2 ,

l = 1, . . . ,mτ , k ∈ KNn , (26)

σ2
χ̂,κ =

mτ∑
l=1

((
yχ̂,κ

)
l
−

mτ∑
l′=1

(yχ̂,κ)l′
m

)2

, κ ∈ KN2 , (27)

and s is a vector of scaling factors for τ .

Note that the coefficient vector ĉχ̂ is of dimension
(
N+n
N

)
,

while the number of value vectors yχ̂,κ of dimension mτ is(
N+2
N

)
. This means that the number mτ of sample points

must be at least 2(N+n)!
n!(N+2)! , which is polynomial in N since

n is typically bounded to avoid an overfitting polynomial.
In addition, recall that N is typically small owing to the
parsimonious nature of the input parameterization.

This yields the polynomial representation of χ̂(τ )

pχ̂(τ ) =
∑

k∈KNn
(ĉχ̂)k

∆τk

sk
. (28)

Hence, when the cost and constraints are expressed as
polynomials in τ for a given arc sequence, the OCP for
that arc sequence can be reformulated as a POP. This
problem can then be solved efficiently to global optimality
via reformulation as a hierarchy of convex SDPs using the
concept of SOS polynomials if global optimality is certified
for some small relaxation order (Lasserre, 2001; Rodrigues
and Mesbah, 2022). However, methods to solve this problem
to global optimality are out of the scope of this paper.

5. SIMULATION EXAMPLE

The simulation example corresponds to a problem of pro-
duction maximization in an acetoacetylation reaction sys-
tem with the species pyrrole A, diketene B, 2-acetoacetyl
pyrrole C, dehydroacetic acid D, and oligomers E (Ro-
drigues and Bonvin, 2020). This OCP is formulated math-

ematically with the states x(t) :=
[
xr(t)

T xin(t)
]T

as:

max
uin(·),tf

J
(
uin(·), tf

)
= nC(tf ), (29a)

s.t. T
(
uin(·), tf

)
=

nB(tf )− cBV (tf )
nD(tf )− cDV (tf )

tf − tf

 ≤ 03, (29b)

ẋ(t) = f
(
x(t), uin(t)

)
=

[
rv(t)
uin(t)
1000

]
,

x(t0) = 0R+1, (29c)

g
(
x(t), uin(t)

)
=

[
uin(t)− uin
uin − uin(t)

]
≤ 02, (29d)



where uin = 0 and uin = 2 mL min−1, tf = 250 min,

cB = 0.025 mol L−1, and cD = 0.15 mol L−1, the R =

3 reaction rates are given by rv,1(t) = k1
nA(t)nB(t)

V (t) ,

rv,2(t) = k2
n2
B(t)
V (t) , rv,3(t) = k3nB(t), with the rate constants

k1 = 0.053 L mol−1 min−1, k2 = 0.128 L mol−1 min−1,
and k3 = 0.028 min−1, and the volume is given by
V (t) = V0 + xin(t) and the numbers of moles by

n(t) = NTxr(t) + cinxin(t) + n0, with V0 = 1 L, N =

[n1 n2 n3]
T
, n1 = [−1 −1 1 0 0]

T
, n2 = [0 −2 0 1 0]

T
,

n3 = [0 −1 0 0 1]
T
, cin = [0 5 0 0 0]

T
mol L−1, n0 =

[0.72 0.05 0.08 0.01 0]
T

mol. The numerical values for this
example are listed in Table 1.

Table 1. Numerical values used in OCP (29).

Variable Value Units

k1 0.053 L mol−1 min−1

k2 0.128 L mol−1 min−1

k3 0.028 min−1

cin,B 5 mol L−1

nA,0 0.72 mol
nB,0 0.05 mol
nC,0 0.08 mol
nD,0 0.01 mol
V0 1 L
cB 0.025 mol L−1

cD 0.15 mol L−1

tf 250 min
uin 0 mL min−1

uin 2 mL min−1

It was shown by Rodrigues and Bonvin (2020) that, when
linear polynomials are used to approximate free/singular
arcs, a locally optimal solution consists of 3 arcs: in the
first arc, u∗in(t) = uin; the second arc is free/singular
with uin < u∗in(t) < uin, for which a linear function is
used; and in the third arc, u∗in(t) = uin. This results in
the input trajectory shown in Fig. 1 that is described by
the 5 decision variables t̄1, t̄2, u

0
1,2, p1,2, tf . The optimal

switching times are t̄∗1 = 5.96 min, t̄∗2 = 230.26 min, and
the optimal final time is t∗f = 250 min. The optimal initial
value and derivative of the linear function that describes
u∗in(t) in the second arc are u0∗1,2 = 1.262 mL min−1, p∗1,2 =

−1.13 × 10−3 mL min−2. The optimal cost is n∗C(t
∗
f ) =

0.51373 mol, and all the terminal constraints are active.
The local optimality of this solution is indicated by the
fact that the gradients (19), (20), and (21) are equal to zero
and the solution satisfies the necessary conditions given by
Pontryagin’s maximum principle (Pontryagin et al., 1962).

Next, the described arc sequence is investigated. The goal
is not to show computational advantages over state-of-the-
art methods for optimal control since these methods can
only solve OCPs to local optimality. In contrast, the aim
is to show that an accurate polynomial representation of
the cost and constraints for a given arc sequence can be
obtained since this is expected to be useful to solve OCPs to
global optimality via reformulation as POPs. As shown by
Rodrigues and Mesbah (2022), the difference between the
resulting cost and the globally optimal cost of the original
problem depends on the polynomial approximation errors.

Hence, we now describe how the 5 decision variables τ =
(t̄1, t̄2, tf , u

0
1,2, p1,2) affect the cost and constraints via poly-

nomial functions. To this end, we set tf = t∗f and con-
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Fig. 1. Trajectories of the states and inputs for the op-
timal solution to OCP (29) with the parsimonious
input parameterization and the approximation of the
free/singular arc using linear functions.

struct a polynomial pχ̂(τ ) of degree n = 6 in the N = 4
variables t̄1, t̄2, u

0
1,2, p1,2 for every function χ̂(τ ) in the cost

and constraints via multivariate Hermite interpolation us-
ing partial derivatives up to second order at mτ = 400
points τ l, for l = 1, . . . ,mτ , and the scaling factors s =
(10, 10, 10, 1, 10−3), as in (28). Note that the number mτ of

points needs to be at least 2(N+n)!
n!(N+2)! = 14. The points τ l are

randomly chosen within the intervals t̄1 ∈ [0, 250] min, t̄2 ∈
[0, 250] min, u01,2 = [0.0, 2.0] mL min−1, p1,2 = [−10, 10]×
10−3 mL min−2 and evaluated in 109.2 s on an Intel Core
i7 3.4 GHz processor. While it is intractable to check if
every function pχ̂(τ ) approximates χ̂(τ ) accurately for all
τ , one can verify it for a number of validation points,
including the relevant case of τ ∗ = (t̄∗1, t̄

∗
2, t

∗
f , u

0∗
1,2, p

∗
1,2).

Although the points τ l are sampled from large intervals for
each variable, the polynomial representation of the cost and
constraints predicts correctly their true value at τ ∗. More

precisely, ϕ̂(τ ∗) = 0.51373 mol, ψ̂1(τ
∗) = ψ̂2(τ

∗) = 0 mol,
while pϕ̂(τ

∗) = 0.51384 mol, pψ̂1
(τ ∗) = −5.9 × 10−4 mol,

pψ̂2
(τ ∗) = −3.1× 10−4 mol. Accurate predictions (with an

error in the order of 10−4 mol) are also obtained for other
validation points around the points τ l. Using partial deriva-
tives up to first order as Rodrigues and Mesbah (2022)
at mτ = 5000 points, which are evaluated in 107.2 s, one
obtains pϕ̂(τ

∗) = 0.51393 mol, pψ̂1
(τ ∗) = −7.6×10−4 mol,

pψ̂2
(τ ∗) = −3.1× 10−4 mol, which is generally worse.



6. CONCLUSIONS

This paper has presented a solution method for OCPs that
relies on the enumeration of plausible arc sequences and
has shown that the cost and constraints for a given arc
sequence can be represented as explicit polynomial func-
tions of the decision variables. These polynomial functions
are computed via the knowledge of the partial derivatives
of the cost and constraints with respect to the decision
variables up to second order from the computed states,
adjoint variables, and their partial derivatives.

In future work, it will be investigated whether the reformu-
lation as POPs presented in this paper contributes to an
efficient implementation of global solutions to OCPs. This is
expected since any POP can be reformulated as a hierarchy
of convex SDPs via the concept of SOS polynomials.
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Appendix A. DESCRIPTION OF THE STATES,
ADJOINT VARIABLES, AND PARTIAL DERIVATIVES

As shown in Problem (12), the extended states z(t) are
described by the differential equations

dz
dt (t) =

∂H̃
∂ζ

(
z(t), ζ(t), z(t1), . . . , z(tT ), tf

)T
= f̃

(
z(t)

)
, z(t0) = z0.

This implies that the first-order partial derivatives of z(t)
with respect to τ correspond to
d
dt

(
∂z
∂τ (t)

)
= ∂ f̃

∂z

(
z(t)

) (
∂z
∂τ (t) +

dz
dt (t)

∂t
∂τ

)
,

∂z
∂τ (t̄i) +

dz
dt (t̄i)

∂t̄i
∂τ = ∂z

∂τ (t̄
−
i ) +

dz
dt (t̄

−
i )

∂t̄i
∂τ , i = 1, . . . , ns,

∂z
∂τ (t0) +

dz
dt (t0)

∂t0
∂τ = ∂z0

∂τ ,

and, for each entry point η such that h̃k
(
z(t)

)
≤ 0 becomes

active at t = η for some k = 1, . . . , nh, it holds that
∂z
∂τ (η) +

dz
dt (η)

∂η
∂τ = ∂z

∂τ (η
−) + dz

dt (η
−) ∂η∂τ ,

∂η
∂τ = −

(
h̃
(1)
k

(
z(η−)

))−1
∂h̃k
∂z

(
z(η−)

)
∂z
∂τ (η

−).

Likewise, the extended adjoint variables ζ(t) are described
by the differential equations

dζ
dt (t) = −∂H̃

∂z

(
z(t), ζ(t), z(t1), . . . , z(tT ), tf

)T
= − ∂ f̃

∂z

(
z(t)

)T
ζ(t),

ζ(tf ) =
∂χ̃

∂z(tf )

(
z(t1), . . . , z(tT ), tf

)T
,

ζ(tk) = ζ(t
+
k ) +

∂χ̃
∂z(tk)

(
z(t1), . . . , z(tT ), tf

)T
,

k = 1, . . . , T − 1,

and, for each entry point η such that h̃k
(
z(t)

)
≤ 0 becomes

active at t = η for some k = 1, . . . , nh, it holds that

ζ(η−) = ζ(η)− ∂h̃k
∂z

(
z(η−)

)T (
h̃
(1)
k

(
z(η−)

))−1
dχ̂
dη (τ ),

dχ̂
dη (τ ) = H̃

(
z(η−), ζ(η), z(t1), . . . , z(tT ), tf

)
− H̃

(
z(η), ζ(η), z(t1), . . . , z(tT ), tf

)
+ ∂

∂η

(
χ̂(τ )

)
=

(
f̃
(
z(η−)

)
− f̃

(
z(η)

))T
ζ(η) + ∂

∂η

(
χ̂(τ )

)
.

This implies that the first-order partial derivatives of ζ(t)
with respect to τ correspond to

d
dt

(
∂ζ
∂τ (t)

)
= − ∂ f̃

∂z

(
z(t)

)T (
∂ζ
∂τ (t) +

dζ
dt (t)

∂t
∂τ

)
− ∂2H̃

∂z2

(
z(t), ζ(t), z(t1), . . . , z(tT ), tf

) (
∂z
∂τ (t) +

dz
dt (t)

∂t
∂τ

)
,

∂ζ
∂τ (t̄

−
i ) +

dζ
dt (t̄

−
i )

∂t̄i
∂τ = ∂ζ

∂τ (t̄i) +
dζ
dt (t̄i)

∂t̄i
∂τ , i = 1, . . . , ns,

∂ζ
∂τ (tf ) +

dζ
dt (tf )

∂tf
∂τ = ∂2χ̃

∂z(tf )∂tf

(
z(t1), . . . , z(tT ), tf

)∂tf
∂τ

+
T∑
l=1

∂2χ̃
∂z(tf )∂z(tl)

(
z(t1), . . . , z(tT ), tf

) (
∂z
∂τ (tl) +

dz
dt (tl)

∂tl
∂τ

)
,

∂ζ
∂τ (tk) +

dζ
dt (tk)

∂tk
∂τ = ∂ζ

∂τ (t
+
k ) +

dζ
dt (t

+
k )

∂tk
∂τ

+ ∂2χ̃
∂z(tk)∂tf

(
z(t1), . . . , z(tT ), tf

)∂tf
∂τ

+
T∑
l=1

∂2χ̃
∂z(tk)∂z(tl)

(
z(t1), . . . , z(tT ), tf

) (
∂z
∂τ (tl) +

dz
dt (tl)

∂tl
∂τ

)
,

k = 1, . . . , T − 1,

and, for each entry point η such that h̃k
(
z(t)

)
≤ 0 becomes

active at t = η for some k = 1, . . . , nh, it holds that
∂ζ
∂τ (η

−) + dζ
dt (η

−) ∂η∂τ = ∂ζ
∂τ (η) +

dζ
dt (η)

∂η
∂τ

− ∂h̃k
∂z

(
z(η−)

)T (
h̃
(1)
k

(
z(η−)

))−1
∂
∂τ

(
dχ̂
dη (τ )

)
+ ∂h̃k

∂z

(
z(η−)

)T (
h̃
(1)
k

(
z(η−)

))−2
dχ̂
dη (τ )

∂h̃
(1)

k

∂τ

(
z(η−)

)
,

∂h̃
(1)

k

∂τ

(
z(η−)

)
= ∂h̃k

∂z

(
z(η−)

)
∂ f̃
∂z

(
z(η−)

) (
∂z
∂τ (η) +

dz
dt (η)

∂η
∂τ

)
,

∂
∂τ

(
dχ̂
dη (τ )

)
=

(
f̃
(
z(η−)

)
− f̃

(
z(η)

))T (
∂ζ
∂τ (η) +

dζ
dt (η)

∂η
∂τ

)
+ ζ(η)T

(
∂ f̃
∂z

(
z(η−)

)
− ∂ f̃

∂z

(
z(η)

))(
∂z
∂τ (η) +

dz
dt (η)

∂η
∂τ

)
.


