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Abstract: Hybrid modelling utilizes advantageous aspects of both mechanistic (white box) and data-driven 

(black box) modelling. Combining the physical interpretability of kinetic modelling with the power of a 

data-driven Artificial Neural Network (ANN) yields a hybrid (grey box) model with superior accuracy 

when compared to a traditional mechanistic model, while requiring less data than a purely data-driven 

model. This study aims to construct a hybrid model for the predictive modelling of a high-cell-density 

microalgal fermentation process for lutein production under uncertainty. In addition, transfer learning is 

combined with the hybrid model to simulate new fed-batches utilizing alternative substrates operated under 

a different reactor scale. By comparing with experimental data, the hybrid transfer model was found to be 

able to simulate the new fed-batch processes that achieve heightened cell densities and higher product 

quantities. Overall, this work presents a novel digital model construction strategy that can be easily adapted 

to general bioprocesses for model predictive control and process optimization under uncertainty. 
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1. INTRODUCTION 

1.1 Motivation 

Bioprocesses connect a multitude of global research interests, 

including the generation of renewable plastics, fuels, and other 

valuable bioproducts. Economically speaking, the UK 

bioeconomy alone was worth around £220 billion in 2018, and 

is set to double by 2030, making the field lucrative for research 

(Harrington, 2018). Supporting the development of 

bioprocesses requires overcoming several challenges, 

including substantial batch-to-batch variation, introducing 

challenges associated with quality control, deficient metabolic 

and secretory phenotypes for the production of proteins, 

accumulation of by-products, leading to heightened separation 

costs and loss of product, and finally lower yields in the scale-

up of reactors. Tackling these challenges commences in 

several stages, including identifying suitable microbial strains 

and their optimal operating conditions, followed by the 

development of optimal operating and control strategies. 

Understanding how different strains interact with their 

environment is an essential step for uncovering these optimal 

operating conditions to overcome the aforementioned 

challenges that large-scale fermentation faces. 

With the evolution of the fourth industrial revolution, the 

transition towards digitalization is becoming increasingly 

prevalent. Utilizing digital twins, in which a process model is 

required, has huge potential in the application of process 

optimization and control, and design of experiments. The 

concept of machine learning is being continuously applied in 

new ways to unveil more economical, safer, efficient, and 

sustainable approaches to chemical processing. Due to the 

continuous growth of interest within the fields of both 

bioprocess engineering and artificial intelligence, it is an 

excellent period to harness and fuse the advantages of each. 

However, accounting for uncertainty is an equally important 

step the development of a model, as it provides information 

surrounding the achievability of a found control strategy or 

optimum. 

An example of where the combining of different modelling 

methodologies may be required is high-cell-density cultures 

(HCDCs). HCDCs can be capable of producing larger 

quantities of desired products, an example of which is lutein, 

a carotenoid pigment commonly used in the food industry. 

However, HCDCs can demonstrate self-inhibitory effects, 

where growth and/or substrate uptake is inhibited by the high 

cell density or high accumulation of products (Riesenberg et 

al., 1999). Gaining a better understanding of these inhibitory 

effects is pertinent for optimizing processes utilizing HCDCs. 

1.2 Aims 

This study aims to develop a predictive model to simulate a 

HCDC under various fed batch conditions. The dynamics of 

the HCDC are tackled by incorporating an Artificial Neural 

Network (ANN) where more in-depth physically derived 

biosystem kinetic models are challenging to identify. Once a 

suitable model is developed, uncertainty analysis and transfer 



     

learning can be conducted for the utilization of a different 

substrate, in this case the replacement of nitrate with urea. 

Ultimately, this model aspires to require minimal data and 

computational expense, while maximizing simulation 

accuracy for process optimization and control applications. 

This will make the modelling methodology described in this 

work applicable to other bioprocesses involving HCDCs, such 

as Akkermansia muciniphila which has received recent 

attention for its probiotic capabilities in the intestinal tract (Wu 

et al., 2024). With HCDCs being well suited to fed-batch and 

perfusion operation, they play a key role in moving towards 

the continuous operation of bioprocesses; such progression 

can be accelerated by the modelling and optimization strategy 

discussed in the recent study (Zinnecker et al., 2024).  

In this work, the term hybrid modelling relates to the 

combination of a physically derivable (white-box) model, with 

a data-driven (black-box) model to yield an overall hybrid 

(grey-box) model. The term transfer learning refers to the 

transfer of information from one model to another in the form 

of penalizing deviations in parameters or simulated dynamics. 

1.3 Case study 

The case study at hand looks at the production of lutein from 
Chlorella sorokiniana under fed-batch conditions using 

sodium nitrate or urea as the source of nitrogen, depending on 

the case, and glucose as the carbon source. The dataset 

available also includes a preliminary batch using sodium 

nitrate as the nitrogen source. Experiments were run for 144 

hours with measurements of biomass density and lutein 

content taken every 12 hours. For fed-batch operation, 

substrates were consumed until depletion, which was indicated 

by rising dissolved oxygen content in the medium. Further 

detail of the experiments can be found in a previous study (Xie 

et al., 2022). 

2. METHODOLOGY 

2.1 Overall approach 

Initially, a single batch process in a 250 mL flask (with 100 

mL of working volume) was conducted using sodium nitrate 

as the nitrogen source, to which a preliminary kinetic model 

was fitted. This model was then applied to a fed-batch process 

operating from the same initial conditions but in a 5 L 

bioreactor. Next, transfer learning was applied to simulate the 

fed-batch process with urea as an alternative nitrogen source 

to sodium nitrate. Uncertainty analysis was then conducted 

using bootstrapping to quantify the uncertainty in the model 

stemming from the experimental data.  

2.2 Macro-scale kinetic modelling 

For the initial batch experiment, Monod-inspired kinetics were 

utilized. The extracellular medium concentrations of the 

substrates glucose (𝐺) and nitrate (𝑁), as well as cell density 

(𝑋) and lutein content (𝐿𝐶), are described by the system of 4 

Ordinary Differential Equations (ODEs) as in 

𝑑𝑋

𝑑𝑡
= 𝜇 ⋅ 𝑋 − 𝑑𝑋 ⋅ 𝑋, (1) 

𝑑𝐺

𝑑𝑡
= −𝑣max𝐺

⋅
𝐺

𝐾𝐺 + 𝐺
⋅ 𝑋, (2) 

𝑑𝑁

𝑑𝑡
= −𝑣max𝑁

⋅
𝑁

𝐾𝑁 + 𝑁
⋅ 𝑋, (3) 

𝑑𝐿𝑐

𝑑𝑡
= 𝑌𝐿𝑋 − 𝑑𝐿 ⋅ 𝐿𝐶 − 𝜇 ⋅ 𝐿𝐶 , (4) 

𝜇 = 𝜇max ⋅
𝐺

𝐾𝐺 + 𝐺
⋅

𝑁

𝐾𝑁 + 𝑁
, (5) 

where 𝜇max refers to the maximum specific growth rate of 

biomass, with 𝑣max𝑖
 being the maximum specific uptake rate 

for a given substrate 𝑖, 𝐾𝑖   being the affinity constant for a 

given substrate 𝑖, 𝑌𝐿𝑋 being the specific production rate of 

lutein from biomass, and 𝑑𝑖 representing a decay term for a 

given product 𝑖. It should be noted that 𝐿𝐶  represents an 

intracellular concentration measured in mg g-1 which is why 

dilution must be accounted for in Equation (4). To consider the 

overall lutein concentration in the reactor, product rule can be 

used with equations (1) and (4) to give the result as in 

𝑑𝐿

𝑑𝑡
= 𝑌𝐿𝑋 ⋅ 𝑋 − 𝑑𝑋 ⋅ 𝐿 − 𝑑𝐿 ⋅ 𝐿. (6) 

It is essential for parameters in the Monod model to remain 

positive in value to retain physical feasibility, as in 

𝛃 ≥ 𝟎, (7) 

where 𝛃 is the vector of Monod model parameters. Parameters 

were identified using a stochastic optimization algorithm 

called Particle Swarm Optimization (PSO) (Wang et al., 2017) 

that minimizes a mean squared error objective function, as in 

    min
1

𝑛
⋅ ∑ ∑ (

𝐶𝑖𝑡
− 𝐶𝑖meas𝑡

𝜎𝑖  
)

2

𝑖𝑡meas

(8) 

where 𝑛 is the number of datapoints. The objective function in 

Equation (8) minimizes the difference between the simulated 

extracellular concentration profiles and the measured averages 

at each timepoint 𝑡; each term 𝑖 is weighted by its experimental 

measurement standard deviation; 𝜎𝑖. 

2.3 Hybrid modelling 

Despite good fitting of the initial batch process, the parameters 

identified could not capture the entire fed-batch process. The 

most noticeable process-model mismatches can be seen later 

in the process during high cell densities, particularly once the 

culture reaches a cell density over 10 times that seen in the 

preliminary batch experiment. This indicates that substrate 

uptake and growth are being inhibited by high cell density, 

which can be due to poorer mass transfer of substrates to the 

cells due to their close proximity. The close proximity, or even 

contact, of cells can also inhibit growth and substrate uptake 

(Ruhe et al., 2013). Therefore, three time-varying parameters 

were introduced: two capture the respective substrate uptake 



     

inhibition of glucose and nitrate (𝜃𝐺(⋅) and 𝜃𝑁(⋅), 

respectively); and the other captures biomass growth 

inhibition (𝜃𝑋(⋅)). These time-varying parameters are 

functions of state variables, in the form of an ANN. Equations 

(1), (2), and (3) are therefore rewritten as in 

𝑑𝑋

𝑑𝑡
= 𝜃𝑋(𝑋, 𝐺, 𝑁) ⋅ 𝜇 ⋅ 𝑋 − 𝑑𝑋 ⋅ 𝑋, (9) 

𝑑𝐺

𝑑𝑡
= −𝜃𝐺(𝑋, 𝐺, 𝑁) ⋅ 𝑣max𝐺

⋅
𝐺

𝐾𝐺 + 𝐺
⋅ 𝑋, (10) 

𝑑𝑁

𝑑𝑡
= −𝜃𝑁(𝑋, 𝐺, 𝑁) ⋅ 𝑣max𝑁

⋅
𝑁

𝐾𝑁 + 𝑁
⋅ 𝑋, (11) 

where the remaining parameters in Equations (4)-(5) and (9)-

(11) take the same value as those previously identified. In 

order to train the ANN, time-varying parameter profiles are 

initially identified as functions of time, during which their 

deviations are penalised to try to follow the kinetic model 

dynamics as closely as possible. Penalisation is done using a 

penalty term, that is added to the objective function shown in 

Equation (8), as in 

min
1

𝑛
⋅ ∑ ∑ (

𝐶𝑖𝑡
− 𝐶𝑖meas𝑡

𝜎𝑖  
)

2

𝑖𝑡meas

+𝜌 ⋅ ∑ ∑(𝜃𝑖(𝑡) − 𝜃𝑖(𝑡 − 1))
2

𝑖𝑡TVP

(12)

 

where 𝜌 is a hyperparameter to be tuned, 𝑡meas illustrates the 

timepoints at which measurements are taken, and 𝑡TVP 

illustrates the timepoints at which time-varying parameters are 

discretized. Discretization of time-varying parameters is 

conducted, at most, as frequently as measurements are taken. 

The time-varying parameters are then regressed as a function 

of state variables in the form of an ANN. The ANN is trained 

using the profiles of state variables and time-varying 

parameters generated by the objective function in Equation 

(12). The ANN is embedded within the system of ODEs as 

illustrated in Fig. 1, which shows a series hybrid model, as 

described in a previous study (Mowbray et al., 2021). State 

variables update the ANN which updates the time-varying 

parameters, which can be used in the system of ODEs to 

update the state variables, thus generating state variable 

profiles. Comparing the performance of several ANN 

architectures allowed the identification of the most appropriate 

ANN structure. The Akaike Information Criterion with 

correction for small sample sizes (𝐴𝐼𝐶𝑐) was employed to 

quantify the performance of each ANN structure, as in 

𝐴𝐼𝐶𝑐 = 𝑛 ln 𝑍 + 2 𝑘 +
2 𝑘2 + 2 𝑘

𝑛 − 𝑘 − 1
, (13) 

where 𝑘 is the number of parameters with a correction for the 

small sample size 𝑛. The ANN architecture with the lowest 

𝐴𝐼𝐶𝑐 score was chosen as the best trade-off between minimal 

overfitting and accuracy. 

2.4 Transfer learning 

In order to simulate fed-batch operation using a different 

nitrogen source, in this case urea, transfer learning was 

employed. The same kinetic model parameters were used as 

those found in the preliminary kinetic model fitting; only the 

time-varying parameters were updated. For the fitting of the 

urea-fed fed-batch process, a penalty term was introduced to 

penalise deviations between the time-varying parameters in 

the different systems, alongside Equation (12), as in 

min
1

𝑛
⋅ ∑ ∑ (

𝐶𝑖𝑡
− 𝐶𝑖meas𝑡

𝜎𝑖 
)

2

𝑖𝑡meas

+𝜌 ⋅ ∑ ∑ (𝜃𝑖𝑢𝑟𝑒𝑎
(𝑡) − 𝜃𝑖𝑢𝑟𝑒𝑎

(𝑡 − 1))
2

𝑖𝑡TVP

+ 𝜆 ⋅ ∑ ∑ (𝜃𝑖𝑁𝑂3
(𝑋, 𝐺, 𝑁) − 𝜃𝑖𝑢𝑟𝑒𝑎

(𝑡))
2

𝑖𝑡TVP

(14)

 

where 𝜃𝑖𝑁𝑂3
(𝑋, 𝐺, 𝑁) and 𝜃𝑖𝑢𝑟𝑒𝑎

(𝑡) are the time-varying 

parameters associated with the inhibition of phenomena 𝑖 for 

the fed-batch operation utilizing nitrate  and urea, respectively, 

and 𝜆 is a hyperparameter referred to, in this study, as the 

transfer learning factor. Increasing the value of 𝜆 increases the 

transfer of information from the nitrate-fed system to the urea-

fed system. The hyperparameters (or penalty weights) were 

tuned iteratively to take the maximum possible value that 

maintained acceptable model fitting. The form of transfer 

learning represented in the objective function in Equation (14) 

is referred to as regularization-based transfer learning, due to 

the presence of a penalty term (Weiss et al., 2016). For the 

transfer learning model, 𝜃𝑖𝑢𝑟𝑒𝑎
(⋅) is preliminarily a function of 

time to be used to train an ANN to reformulate the parameter 

as a function of state variables, as has already been done with 

𝜃𝑖𝑁𝑂3
(⋅) in the original hybrid model. Although a higher value 

of lambda can mean less data is required to re-train the ANN, 

using a value that is too large can reduce the accuracy of the 

transfer learning model. An ANN of the same architecture was 

then re-trained using the updated time-varying parameters, 

thus generating a new hybrid model through transfer learning.  

2.5 Uncertainty Analysis 

Uncertainty analysis was conducted using bootstrapping 

which involved taking samples of the training dataset and 

Fig. 1. Hybrid model structure: Simulation of time-varying 

parameters based on system components using an ANN. 



     

training the model on each sample separately, generating a 

distribution of model outputs, as illustrated in Fig. 2. A 95% 

confidence interval (𝑧𝐶𝐼) of each component 𝑧 was generated 

by sampling from the resulting output distribution, as in  

𝑧𝐶𝐼 = 𝑧̅ ± 𝑐 ⋅
𝜎𝑧

√
𝑛𝑧 − 1

𝑛𝑧

, (15)
 

where 𝑧̅ is the mean of the component 𝑧, 𝑐 is the confidence 

level, 𝑛𝑧 is the number of samples of the component 𝑧, and 𝜎𝑧 

is the standard deviation of the component 𝑧. In this study, 

bootstrapping was conducted by removing 48-hour segments 

of data, a third of the fed-batch time horizon.  

3. RESULTS AND DISCUSSION 

3.1 Results of hybrid modelling 

The purely mechanistic macro-scale kinetic model was first fit 

with Equations (1)-(5) with no time-varying parameters. The 

fitting of the preliminary kinetic model has a mean R2 value of 

0.991 and is shown in Fig. 3. Parameter estimation converged 

after 50 iterations using a derivative-free Particle Swarm 

Optimization (PSO) algorithm. The selected algorithm has 

strong exploratory capabilities for parameter estimation in the 

stiff fed-batch system simulated in this study. The problem 

was run 5 times, each with 100 particles, to confirm the same 

optima was being found, increasing the confidence in it being 

a global optimal solution.  

The application of this kinetic model to a 5 L fed-batch 

process, where the cell density reaches levels in excess of 10 

times higher than the batch process, illustrated significant 

process-model mismatch, particularly in the latter stages at the 

highest cell densities, which is evident in the resulting near-

zero R2 value of 0.072 for biomass and lutein. This motivated 

the introduction of time-varying parameters to better fit the 

more challenging dynamics seen in the latter stages of the fed-

batch process. Time-varying parameters were first introduced 

to a fed-batch operation that reinstated the same initial 

substrate concentrations as the preliminary batch process after 

each injection of concentrated medium. Time-varying 

parameters were initially simulated as a discretized function of 

time. Parameter estimation converged after 200 iterations 

using the same derivative-free PSO algorithm. The updated 

problem was also run 5 times, each with 100 particles.  

The resulting time-varying parameter profiles were then used 

to train the feed-forward ANN. The most appropriate ANN 

architecture was that with the nitrogen source concentration 

and cell density as the inputs, with three nodes in a single 

hidden layer and sigmoid activation functions. The ANN was 

trained over 1700 epochs using data augmentation, following 

the method described in a previous study (Rogers et al., 2020). 

The fitting of the hybrid model is shown in Fig. 4, with the 

profiles of the corresponding time-varying parameters shown 

in Fig. 5. The introduction of time-varying parameters 

increased the mean R2 value for cell density and lutein content 

from 0.072 to 0.961. The decreasing trend of all three time-

varying parameters simulated by the ANN highlights the 

inhibitory effects that the high-cell-density has on substrate 

uptake and growth. It is observable that all parameters 

decrease over time, with negligible growth and nitrate uptake 

in the latter stages of the process, and only some glucose 

uptake. 

3.2 Results of transfer learning 

The production of lutein from C. sorokiniana can utilize an 

alternative nitrogen source in the form of urea. Since the same 

cell line and medium content is utilized (with the exception of 

the nitrogen source), transfer learning can be employed to 

maximize the passage of knowledge from the source domain 

to the target domain, thus minimizing the data requirement to 

accurately capture the dynamics of the urea-fed system 

through the re-training of the ANN. It should be noted that urea 

Fig. 3. Kinetic model (KM): Plots of substrates glucose and 

nitrate, biomass and lutein content fitted to the original 

nitrate-fed batch. 

Fig. 2. Bootstrapping: Schematic. 



     

was added so that the resulting nitrogen concentration was the 

same as that within the nitrate-fed process. 

The comparison between the original hybrid model (trained on 

the nitrate system) and a subsequent transfer learning model 

for the urea-fed system is shown Fig. 6. It should be noted that 

‘Nitrate eq.’ refers to the nitrate-equivalent concentration of 

urea. The R2 value in the fitting of cell density was improved 

from 0.704 to 0.967 due to the implementation of transfer 

learning, thus demonstrating the power of transfer learning in 

HCDC applications utilizing different nitrogen sources. 

Additionally, the fact that the production of lutein did not 

require the implementation of an additional time-varying 

parameter (to the time-varying parameter for specific growth 

rate) for either model indicates that the kinetic model 

adequately describes the dynamics of lutein content within the 

cells under batch and fed-batch conditions for both nitrate-fed 

and urea-fed systems. The structure of the hybrid model 

implies that, for the system at hand, lutein production is 

dependent solely on the growth of biomass, and not the 

nitrogen substrate used, which is evidenced by the model 

simulation result.  

3.3 Uncertainty Analysis 

Uncertainty analysis was successfully applied through 

bootstrapping to both the original hybrid model and the 

transfer learning updated hybrid model. The original hybrid 

model uncertainty is illustrated in Fig. 4 and Fig. 5, and the 

transfer-learning generated model uncertainty is illustrated in 

Fig. 7 and Fig. 8 The narrow confidence intervals in Fig. 4 

suggest that the data is not a significant source of uncertainty. 

Low model uncertainty from the experimental data is likely 

due to the high frequency and precision at which 

measurements were taken. The only inflations in uncertainty 

are observed in the latter stages of the process, beyond the 110-

hour mark, which is likely due to the increased sensitivity of 

substrate uptake to the heightened cell density seen in the latter 

stages of the process, resulting in more complex inhibition 

mechanisms. 

Despite the removal of 48-hour intervals of data to generate 

different ANNs through bootstrapping, the confidence 

intervals for both models remain narrow (as seen in Fig. 4 and 

Fig. 7), highlighting the capability of hybrid modelling to 

maintain low model uncertainty. 

4. CONCLUSIONS 

In this study, two hybrid models were constructed to simulate 

two fed-batch HCDCs for lutein production. Transfer learning 

was employed to construct a hybrid model using an alternative 

nitrogen source, in the form of urea, to compensate for the 

reduced availability of data. The introduction of time-varying 

parameters facilitated the capture of increasingly inhibited 

system dynamics during the latter stages of fed-batch 

operation. The varying system dynamics were accurately 

captured, thus maximizing the model’s applicability to 

Fig. 4. Hybrid model (HM): Plots of substrates glucose and 

nitrate, biomass and lutein content for fed-batch simulation.  

Fig. 5. Hybrid model: Time-varying parameters. 

Fig. 6. Comparison between the original hybrid model (HM) 

the transfer learning model (TL). 



     

simulate fed-batch processes under alternate operating 

conditions. Time-varying parameter values were also 

penalized, which assisted in reducing model overfitting by 

avoiding dramatic changes between subsequent time-varying 

parameter values. The kinetic backbone used for the hybrid 

model construction incorporated as much physical information 

as possible, which meant that minimal additional data was 

required to train the ANN for both the original hybrid model 

and the transfer learning updated hybrid model. The ANN 

allowed the hybrid model to remain a function of observable 

state variables while being able to capture nonlinear dynamics 

that cannot be considered by the kinetic backbone. The use of 

transfer learning allowed for the optimal transfer of 

information to minimize the data requirement in training a 

hybrid model for the application to an alternative domain. 

Hyperparameters were fine-tuned iteratively to minimalize the 

overfitting of data and optimize the transfer of knowledge 

between the two domains. Uncertainty analysis was 

successfully conducted, facilitating future optimization and 

control strategies that ensure output quality and feasibility.  

Overall, the transfer learning-based hybrid model showed 

good fitting capabilities, despite a low abundance of 

experimental data. The success of this modelling strategy 

paves the way towards the development of an effective digital 

twin for the modelling of fed-batch systems utilizing different 

substrates to identify an optimal control under uncertainty 

strategy for maximizing lutein production and yield for future 

fed-batch HCDC operation. The ability of this framework to 

incorporate a data-driven model and transfer learning with 

minimal data gives it substantial potential in applications to 

novel bioprocesses, where both experimental data and 

mechanistic understanding are limited. 
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