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Abstract: We explore batch-to-batch optimization of a simulated semi-batch process, which
represents an important industrial process at BASF. Our primary objectives are to ensure safe
batch operations, to produce within specifications, and to increase the throughput. To achieve
these goals, Modifier Adaptation with Quadratic Approximation (MAWQA) is employed to
optimize key operational parameters iteratively over a sequence of batches. By integrating
modifier adaptation with the quadratic approximation used in derivative-free optimization,
sensitivity to noise is reduced, and the speed of convergence is improved. A challenging feature of
the case considered here is that the constraints involve the maximum temperature and pressure
over the batch, which depends on the interaction of feedback controllers with the plant, and
that the product quality can only be determined at the end of the batch.
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1. INTRODUCTION

In the industrial process control hierarchy, the real-time
optimization (RTO) layer connects the production plan-
ning and the control layer. An RTO algorithm computes
economically optimal setpoints that are passed to the
control layer such that product specifications and plant
constraints are met. The successful implementation of
RTO algorithms depends strongly on the quality of the
model used. To improve the model quality, usually the two-
step approach proposed by Jang et al. (1987) is applied.
Building and maintaining an accurate process model can
be challenging and comes with a significant effort. Roberts
(2000) first proposed a combination of model-based and
data-based optimization. The proposed Integrated System
Optimization and Parameter Estimation (ISOPE) modi-
fies the objective function alongside correcting model pa-
rameters. Gao and Engell (2005) suggested modifying the
objective function and the constraints iteratively, calling
the technique Iterative Gradient-Modification Optimiza-
tion (IGMO). Marchetti et al. (2009) conducted a detailed
analysis of the IGMO approach, referring to it as Mod-
ifier Adaptation (MA). MA schemes handle plant-model
mismatch by applying bias and gradient corrections to
the objective and constraint functions. These corrections
are computed from the gradients of the value function
and of the constraints of the plant with respect to the
optimized variables. Estimating these gradients is a key
step in the method. Gao et al. (2016) proposed to use
Quadratic Approximation (QA) for process gradient es-
timation, leading to the development of Modifier Adap-
tation With Quadratic Approximation (MAWQA). The

algorithm fits a surrogate model to measurements of the
objective and constraints of the real plant, which reduces
the effects of measurement noise while capturing the cur-
vature of the functions.

In this paper an improved version of MAWQA is presented,
where a new perturbation method to design plant trials in
the case where the available data are not well distributed
is employed so that the process optimum is reached faster
and more smoothly. Additionally, a stopping criterion
based on this new perturbation method is proposed. To
demonstrate the performance of the proposed algorithm,
we present a process model that replicates an industrial
semi-batch production process of high economic relevance
to BASF. The behaviour of the model mimics the real
plant but some elements are modified for confidentiality
reasons. Our focus is on the dosing phase of the batch,
as this phase is the most critical and presents significant
opportunities for improvement, in particular by reducing
the batch time and thus increasing the productivity. The
parametric and structural mismatch between the real plant
and the available model is represented by using the plant
model which is described below as a virtual plant and using
a simplified model in the optimization.

2. MODEL OF THE INDUSTRIAL REACTOR

Figure 1 shows a sketch of the reactor with the PI
controllers. The reactant, denoted by A, is present in the
gas and liquid phases represented by Ag and Al. The
product is referred to as B and the undesired by-product
is denoted by D. The batch process goes through the
following phases:
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Fig. 1. Semi-batch reactor with control loops.

• Filling Phase: The batch begins by filling the re-
actor with a precharge mass mO and the catalyst C
with mass mC .

• Heating Phase: The reactor is heated to 400K.
• Dosing Phase: During this phase, the gaseous re-
actant Ag is continuously dosed, ensuring a steady
supply for the reaction. The temperature is main-
tained at the reaction temperature setpoint Trx by
a PI controller.

• Post Reaction Phase: After 30 tonnes of Ag have
been dosed, the feeding stops and the reaction con-
tinues.

• Cooling Phase: Once the reaction has slowed down,
the reactor is cooled to 370K.

• Emptying Phase: Finally, the reactor content is
transferred to the next stages for further processing.

During the batch, the reactor temperature T̃R, the pres-
sure P̃R, and the reactant flow F̃A are continuously mea-
sured. These measurements are corrupted with noise. After
the batch ends, samples of the reactor content are collected
and the component concentrations are measured in the lab.

Initially, the reactor contains only nitrogen in the gas
phase, which is assumed to be present in all batches with
the same number of moles, nN2

. The cooling phase begins
when the partial pressure of the nitrogen pN2

equals 98%

of the measured reactor pressure P̃R.

pN2
(t) :=

nN2 ·R · T̃R
Vg

> 0.98 · P̃R(t), (1)

where Vg denotes the volume of the gas phase, and R is
the molar gas constant. To avoid the creation of the side
product and to facilitate the transfer of the material after
the batch has ended, the reactor is cooled down after the
dosing is finished and after the mass transfer from the
gas to the liquid phase has concluded. The temperature
setpoint TSP assumes two values, as described by

TSP (t) =

{
370, if (1) holds,

Trx, otherwise,
(2)

where Trx is the temperature setpoint in the dosing phase,
which is an output of the RTO scheme. All parameters are
listed in table 1.

2.1 Control loops

For this reactor, two control loops are important. The
first loop controls the reactor pressure by manipulating
the feed rate of the reactant A. This structure was chosen
because the pressure reflects the reactant hold-up within
the reactor. The setpoint PSP is set to 19.6bar to ensure
a safe operation below the pressure safety constraint of

Table 1. Parameters of the virtual plant

Name Value [Unit] Name Value [Unit]

mO 20[t] nN2
900[mol]

R 8.314[J/mol/K] TS 15[s]

KT 0.002 TT 1000
KP 0.05 TP 180
F̄A 20[t/h] TFA

283.15[K]

Q̇l −5000[kW] Q̇h 5000[kW]

ρAl
700[kg/m3] ρB 1400[kg/m3]

ρC 1000[kg/m3] ρD 1400[kg/m3]
ρO 1000[kg/m3] VR 50[m3]
cp,A 3.8[kJ/kg/K] cp,Ag 1.0[kJ/kg/K]

cp,B 2.1[kJ/kg/K] cp,C 0.93[kJ/kg/K]
cp,D 4.0[kJ/kg/K] cp,O 2.5[kJ/kg/K]
cp,N2 1.0[kJ/kg/K] mN2 25.2[kg]

k1o 260[m3/s/mol] E1 6000[K]
k2o 2.835 · 10−13[m9/s/mol3] E2 800[K]
k3o 3.5[m3/s/mol] E3 7000[K]
∆H1 −60[kJ/mol] ∆H2 −70[kJ/mol]
∆H3 −250[kJ/mol] An 8.6941[-]
Bn 266.8665[K] Cn −215.8753[K]
ksp0 −2.59[-] kBsp 0.15[-]

kTsp 0.007[1/K] kV LE 0.006[-]

MWA 50[g/mol] MWB 50[g/mol]
MWC 200[g/mol] MWD 150[g/mol]

k̂1o 453[m3/s/mol] Ê1 6150[K]

k̂2o 1.71 · 10−12[m9/s/mol3] Ê2 1300[K]

∆Ĥ1 −50[kJ/mol] ∆Ĥ2 −490[kJ/mol]

k̂sp0 0.42[-]

20bar. The pressure controller has a gain and an integral
time denoted by KP , TP . The maximum permissible feed
is denoted by F̄A. The feed enters the reactor at a temper-
ature TFA

. The energy added to the system through FA,

denoted by Q̇FA
, is computed by

Q̇FA
= cp,Ag

· FA · (TFA
− TR) , (3)

where cp,Ag
denotes the specific heat capacity of Ag.

The second control loop controls the reactor temperature.
For simplicity, the dynamics of the jacket are not explicitly
modeled. Instead, the input power Q̇ is used as a manipu-
lated input, considering the available cooling and heating
powers that are bounded by the limits Q̇l and Q̇h. The
heat flow is set by a PI controller, which aims to track
TSP in (2). The temperature controller gain and integral
time are denoted by KT and TT .

2.2 Physical properties

The temperature of the gas and liquid phases are assumed
equal. It is also assumed that N2 and Ag behave as ideal
gases, hence their partial pressures can be computed from
the ideal gas law: piVg = niRTR. Therefore, the reactor
pressure results as PR = pN2

+pAg
. The volume of the gas

phase Vg = VR − Vl is computed from Vl =
∑

i
mi

ρi
, ∀i ∈

{Al, B,C,D,O} where Vl is the volume of the liquid phase,
and VR is the total volume of the reactor. The masses of the
components are denoted by mi, where the subscript indi-
cates the component. Similarly the densities are denoted
by ρi. The total mass in the liquid phase is denoted by
Ml :=

∑
imi, ∀i ∈ {Al, B,C,D,O}. The heat capacity

of the reactor content, denoted as Cp, is calculated by
Cp =

∑
imi · cp,i, i ∈ {Al, Ag, B,C,D,N2, O} where cp,i

denotes the specific heat capacity.



2.3 Virtual plant

In this subsection, the virtual plant dynamics is intro-
duced, which results from the following reaction mecha-
nism:

Al
k1−→ B Al + 2B

k2−→ D B
k3−→ 1

3
D,

The reaction rate constants ki depend on the reactor
temperature according to the Arrhenius law

ki = kio · e
−
Ei

TR , i ∈ [1, 3]. (4)

The reaction rates are calculated by considering the molar
concentrations of the components, denoted by ci, and the
corresponding reaction rate constants, as shown in (5).

ci =
mi

MWi · Vl
, r1 = k1 · cAl

· cC , (5a)

r2 = k2 · cAl
· c2B · cC ·XB , r3 = k3 · cB · cC , (5b)

where MWi denotes the molar weight of the components

and XB :=
mB

Ml
refers to the mass fraction of B. The

reactions are exothermic, and the total heat of reaction
Q̇r =

∑3
i=1 −ri · Vl ·∆Hi. The liquid-vapor equilibrium

of the reactant A is computed from its solubility in the
product-precharge mixture and the equilibrium pressure
of A in the gas phase. First the equilibrium pressure is
calculated from the Antoine equation log10 p

eq
A = An −

Bn

Cn + TR
. The solubility of A is a function of the reactor

temperature and of XB as described by ksp = ksp0 + kTsp ·
TR + kBsp ·XB . Finally, the mass transfer rate is computed
from (6).

qA = kV LE(ksp ·
pAg

peqA
− mAl

Ml
). (6)

The states are the masses in kg of the components;
mAg

,mAl
,mB ,mD and the reactor temperature TR in K.

The effects of condensation and vaporization in the energy
balance is neglected. The resulting dynamic equations that
describe the virtual plant are shown in (7).

dmAg

dt
= FA − qA ·Ml, (7a)

dmAl

dt
= qA ·Ml − (r1 + r2) · Vl ·MWA, (7b)

dmB

dt
= (r1 − 2r2 − r3) · Vl ·MWB , (7c)

dmD

dt
= (r2 +

1

3
r3) · Vl ·MWD, (7d)

Cp ·
dTR
dt

= Q̇+ Q̇r + Q̇FA
. (7e)

2.4 Optimization model

It is assumed that the reaction scheme of the plant is
not well understood. The third reaction does not exist
in the optimizer model, i.e. r̂3 := 0. The notation (̂·)
denotes quantities related to the optimization model. The
reaction rate constants of the optimization model with the
corresponding reaction rates are

k̂i = k̂io · e
−
Êi

TR , i ∈ [1, 2], (8a)

r̂1 = k̂1 · cAl
· cC , r̂2 = k̂2 · cAl

· c2B · cC . (8b)

Since only two reactions are assumed in the optimiza-

tion model, the heat of reaction is computed by
˙̂
Qr =∑2

i=1 −r̂i · Vl ·∆Ĥi. In addition, the solubility is assumed
to be constant in the optimization model, which yields the
mass transfer rate

q̂A = kV LE

(
k̂sp0 ·

pAg

peqA
− mAl

Ml

)
. (9)

The parameters of the optimization model were fitted
to simulations of the virtual plant at Trx = 430K, and
mC = 60kg. This operating point is safe and meets the
required specifications. Continuous measurements during
the batch and the lab measurements taken after the end
of the batch were used to fit the model parameters as
it is done in industrial practice. Table 1 contains the
fitted parameters of the optimization model. The dynamic
equations of the optimization model are given below.

dmAg

dt
= FA − q̂A ·Ml, (10a)

dmAl

dt
= q̂A ·Ml − (r̂1 + r̂2) · Vl ·MWA, (10b)

dmB

dt
= (r̂1 − 2r̂2) · Vl ·MWB , (10c)

dmD

dt
= r̂2 · Vl ·MWD, (10d)

Cp ·
dTR
dt

= Q̇+
˙̂
Qr + Q̇FA

. (10e)

Figure 2 shows a comparison of the behaviour of the
virtual plant and of the optimization model. Despite the
structural mismatch, the first part of the batch is described
with good accuracy. However, the decaying pressure is
not reproduced perfectly. The optimization model was
fitted with a focus on accurately capturing both the profit
function and the constraints. This precision is crucial for
MA algorithms, as noted by Srinivasan and Bonvin (2019).
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Fig. 2. Batch trajectories of the virtual plant (in black) and
of the optimization model (in green) for Trx = 430K,
and mC = 60kg and the optimum batch run shown in
red for Trx = 451.1K, and mC = 94.6kg.

2.5 Batch-to-batch optimization

The main goal of the application of batch-to-batch opti-
mization is to increase the capacity of the plant by produc-
ing in-spec products as fast as possible. However, achieving
this objective may result in increased usage of cooling
and heating power, as well as an increased amount of the
catalyst, which is assumed to be expensive. The product
must meet the required specifications, specifically the mass
fraction of component D must be kept below 5%. There



Fig. 3. Surface plot of the noise-free profit function.

are critical temperature and pressure limits that have to
be respected to avoid any potential thermal runaway. The
high-pressure limit is set at 20bar. The maximum toler-
ated temperature is a function of the specified reaction
temperature setpoint, i.e., TH = Trx × 1.05. However, the
optimization uses a conservative back off from the limit
TH as shown in (11c). The degrees of freedom, denoted by
u, are the setpoint of the reaction temperature Trx and
the mass of catalyst mC , which is dosed at the beginning
of the batch. The optimization problem is formalized in
(11), which specifies the profit function, constraints:

max
Trx,mC

V(u) := 3mB(tf )− 0.4E − 50mC

tf
, (11a)

s.t. XD(tf ) ≤ 0.05, (11b)

T̃R(t) < Trx × 1.025, P̃R(t) < P+
Z , (11c)

Trx ∈ [400, 500], mC ∈ [50, 150], (11d)

where tf represents the time from the start of dosing until
the reactor is ready for emptying. This occurs when 30
tonnes of A have been dosed and the reactor temperature
has been cooled down to 373K. Equation (12) formalizes
the definition of tf .

tf := min t | TR(t) ≤ 373 ,

∫ t

0

FA(τ)dτ ≥ 3× 104. (12)

The energy consumption during the batch, denoted as E
is computed by integrating Q̇ and is computed in kWh.
Whether the constraints defined in (11c) are met depends
on the performance of the temperature and pressure PI
controllers and the chosen values of u. The fact that the
product amount mB and the side product mass fraction
XD can only be measured after the batch has been finished
motivated the application of batch-to-batch optimization.
The input power Q̇ and the dosing profile FA are de-
termined through the actions of the PI controllers. The
surface of the profit function V, without measurement
noise, is depicted in figure 3. The range of feasible op-
eration is represented by solid contour lines. Although the
fitted parameters represent the virtual plant well at the
reference point, the optimum that results when employing
the optimization model leads to off-spec product and an
unsafe operation. The optimum depends on the tuning of
the PI controllers and time discretization.

3. THE IMPROVED MAWQA ALGORITHM

In Modifier Adaptation, the optimization problem is
adapted with modifiers to ensure that the KKT conditions
of the plant are satisfied upon convergence. The adapted
inputs uad,k in the kth iteration are computed from (13).

uad,k := argmax
u

(
V̂(u) + ϵVk + (ψV

k )
T (u− uk)

)
, (13a)

s.t. Ĝ(u) + ϵGk + (ψG
k )

T (u− uk) ≤ 0, (13b)

where V̂(u) represents the profit function which is com-

puted using the optimization model. Similarly Ĝ(u) de-
notes the constraints that are evaluated using the op-
timization model. The measured process objective and
constraints are denoted by Ṽ(uk) and G̃(uk). To reduce
the effect of errors in the estimation of the gradients of
the real plant, the inputs can be filtered according to

u∗ad,k+1 = K · uad,k+1 + (I −K) · u∗ad,k, (14)

where K is a gain matrix (Marchetti et al., 2009).

A challenge in MA lies in accurately estimating the plant
gradients online, particularly when dealing with noisy
measurements.

3.1 Modifier adaptation with quadratic approximation

In MAWQA, it is proposed to estimate the gradients
based on quadratic surrogate models that are fitted to
the data that was collected at the previous data points.

A minimum number p = (nu+1)(nu+2)
2 of measurements

is needed, where nu is the dimension of u. The choice of
the regression set, denoted here as Uk ⊆ Uk, where Uk

is the set with all data points, plays an important role
in the quality of the fitted model as discussed in Conn
et al. (2009). The regression set is identified by screening
all the available data points in Uk. Generally Uk should
consist of well-distributed distant data points, denoted as
Uk,dist, which serve as anchor points and all neighboring
points near the current best iterate u∗k, denoted as Uk,nb

with ∥u − u∗k∥ ≤ δk for all u ∈ Uk. Model adequacy can
be considered while fitting the quadratic model by the
method proposed by Gottu Mukkula and Engell (2020),
where the Hessian matrix of the fitted surrogate model
is forced to be positive semi-definite. The fitted functions
are denoted by Vϕ(u) and Gϕ(u). As the fitted model is
only a local approximation of the original function around
the point u∗k, a trust region is defined while searching for
uk+1. The trust region is computed from the inverse of
the covariance matrix of the regression set, denoted by
cov(Uk).

u∗ϕ,k+1 := argmin
u

Vϕ(u) (15a)

s.t. Gϕ(u) ≤ 0 (15b)

(u− uk)
T cov(Uk)(u− uk) ≤ γ2, (15c)

where γ is a tuning factor used to enlarge or shrink the
trust region. To monitor the quality of the surrogate model
compared to the known optimization process model a
quality check step is performed as described in Gao et al.
(2016) to determine whether the modified optimization
problem (13) is solved or the optimization is performed
using the quadratic approximation (15).

3.2 The improved MAWQA algorithm

In this paper, the MAWQA algorithm is enhanced by
integrating a perturbation method and proposing a new
stopping criterion. As shown by Conn et al. (2009), the
condition number is closely related to the so-called Λ



poisedness. We here utilize this measure of well-poisedness
as the basis of a new perturbation method. The algorithm
improves the distribution of the available data points in
the input space using an adapted version of a method
proposed by Conn et al. (2009). The goal is to obtain test
inputs utp that improve the Λ−poisedness of Uk, while
respecting the constraints of the optimization problem.
The basis of Lagrange polynomials, denoted by ℓ(·), of
the p best distributed points in Uk. A set Uk is called
Λ-poised in a ball with radius ∆ if and only if Λ ≥
max1<i<p maxu∈∆ |ℓi(u)| for the corresponding basis of
Lagrange polynomials. Algorithm 1 computes trial points
utp,i such that the regression set becomes at least Λ̄ poised.
One can compute only one trial point at a time or find all
trial points and then define a criterion for selecting the
best one. Different criteria can be chosen, such as: the
furthest point from u∗k or the point that would give the
best value of Λ. The algorithm starts by computing the
Lagrange polynomials for the first p points in Uk, which is
assumed to be {u∗k} ∪ Uk,dist. It then improves the point
distribution to enhance the Λ−poisedness of the setpoints,
while respecting the constraints. Due to the constraints
(16b), it may not be possible to reach the desired value of
Λ̄, instead the algorithm computes points that yield the
best feasible value. utp is searched for in a ball of radius
∆k around the current optimum u∗k. A simple choice is
∆k = δk. The best achievable poisedness value is Λ = 1.

Algorithm 1 Surrogate Model Improvement

Require: Uk, which has u∗k as the first entry, the desired
well poisedness value denoted by Λ̄, and a radius ∆k

Start: Compute ℓi(u) for {u∗k} ∪ Uk,dist.
Improve point distribution
for i ∈ {1, ..., p} do

if maxu∈∆k
|ℓi(u)| > Λ̄ OR i = p then

utp,i = argmax
u

|ℓi(u)| (16a)

s.t. Gϕ(u) ≤ 0 (16b)

∥u− u∗k∥ < ∆k, (16c)

if utp,i /∈ Uk return uk+1 = utp,i.
end for

The improved MAWQA algorithm is initiated with p data
points. If Uk is not well poised or if p points are not
available, Uk is completed using algorithm 1. Another
improvement over the original MAWQA is that if the
calculated input is close to u∗k, a trial input computed by
algorithm 1 is applied then the search space ∆k as well
as δk, which is used for constructing Uk, are reduced. The
plant trials are computed to reach the specified poisedness
Λ̄ or until it cannot be improved further. The search
radius is reduced until it reaches a termination threshold
ϵ, signaling convergence.

4. RESULTS

In this section, the results of applying the improved
MAWQA algorithm to the case study introduced in section
2 is presented. The starting point is the reference point of
u0 := [430, 60]. From this starting point, two perturbations
are executed, with step sizes of +10K and +10kg. The first
p points required to start algorithm 2 are generated using
(13) with (14). For these steps, the condition number of the

Algorithm 2 Improved MAWQA

Require: p well poised points with u∗0 as the current best
iterate, set k = 0, and choose values for Λ̄,∆k, and δk.
repeat
Step 1. Construct Uk as outlined by Gao et al. (2016).
Step 2. Compute the next input uk+1 after applying the
quality check from Gao et al. (2016) to compute uk+1

from (13) or (15).
If ∥u∗k − uk+1∥ > δk/2, go to Step 4.
Step 3. Apply algorithm 1 to get a different value of
uk+1 and set δk = δk/2,∆k = ∆k/2.
Step 4. Apply the input uk+1 to the plant.

Step 5. Measure Ṽ(uk+1) and G̃(uk+1) and set

u∗k+1 =

{
uk+1, G̃(uk+1) ≤ 0, Ṽ(uk+1) > Ṽ(u∗k)
u∗k, otherwise.

(17)

Step 6. Set k = k + 1
until ∆k ≤ ϵ

previous set of inputs is monitored. If cond−1(Uk) < 0.2
or if ∥u∗k − u∗ad,k+1∥ < δk/2, algorithm 1 is applied to
compute a geometry improving input. This replaces the
optimization of the condition number in IGMO.

The profit function V(u) is corrupted with measurement
noise of ±0.05. Lab measurement ofXD has an accuracy of
0.1%. The pressure and temperature sensor accuracies are
±0.02bar and ±0.1K. All measurement errors are assumed
to be uniformly distributed within these limits. Measure-
ment noise in the temperature and pressure readings influ-
ences the actions of the PI controllers during the batch, in-
troducing stochastic behavior that disturbs the RTO algo-
rithm. When the optimization starts at t = 0, the reactor
is already filled with the precharge mO and the specified
catalyst amountmC , and heated to a temperature of 400K.
The initial state vector is x0 := [0, 0, 0, 0, 400].

Table 2. Tuning parameters of the improved
MAWQA algorithm for the batch case study

γ = 0.2 K = 0.15 δ0 = 0.05 ∆0 = 0.05 ϵ = 0.01 Λ̄ = 5
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Fig. 4. Result of applying the improved MAWQA algo-
rithm to the semi-batch process. Successful iterations
are depicted by solid lines marked with x, while the
trial points are marked with o and dashed lines.

As illustrated in figure 4, the iterations of the inputs suc-
ceed in identifying the plant optimum while respecting the
constraints along the trajectory. The vicinity of the virtual
plant optimum is reached within 10 steps. The algorithm
was able to determine good plant trials that improve the
accuracy of the fitted surrogate models. In figure 2 the
trajectories for the optimal parameters are shown together



Fig. 5. Extensive simulation of the improved MAWQA
algorithm. The black lines represents the optimal
values achieved at each iteration. The red crosses
indicate slight violation of the constraints.

with those of the reference batch. The optimum batch
is completed faster than the reference batch while also
meeting the safety limits and product specifications, with
XD = 4.22% at the end of the optimum batch run. No-
tably, utilizing this software solution significantly improves
the performance of the system even though the starting
point is far away from the reference; such as the one used
in this simulation run u0. For the optimized batch, the
temperature controller does not track the temperature
setpoint tightly. Therefore the RTO scheme has to cope
with a point-wise active constraint. This issue can be
attributed to the inherent limitations of the PI controllers.
In the setup considered here, the feed rate results from
the controlled pressure, neglecting the influence on the
temperature. Ideally, the feed should be slowed down when
TSP cannot be met due to cooling power limitations. A
single PI controller cannot adequately handle this task.
The RTO scheme considers these limitations of the SISO
PI controllers. Several key performance indicators (KPIs)
were computed to evaluate the algorithm:

(1) Optimum Proximity KPI: This KPI assesses
whether the point of convergence is near the optimum
of the virtual plant, which has a value of 6.25. The
vicinity is defined as reaching a final value ≥ 6.1.

(2) Average steps KPI: This indicator provides the
average number of iterations needed to approach the
vicinity of the optimum, if it is reached.

(3) Violation KPI: This KPI quantifies the percentage
of iterations that violate the constraints.

(4) Convergence KPI: This KPI indicates the average
number of iterations needed until the stopping crite-
rion of algorithm 2 is met.

A total of 200 simulation runs were performed with the
same initial point while varying only the noise. All simula-
tions were conducted twice, using the proposed algorithm
and the original MAWQA algorithm. Table 3 summarizes
the results for the KPIs defined above. The values of the
original MAWQA algorithm are shown in parentheses. The
execution time for algorithm 2 is orders of magnitude less
than the time required to simulate a single batch.

Table 3. Results of the improved MAWQA.

Optimum Proximity 99% (87%) Average steps 11.3 (18.2)
Violation 0.25% (0.11%) Convergence 16.1

Despite the plant-model mismatch, the true optimum was
successfully identified. The stopping criterion enabled the
algorithm to terminate within the first 22 iterations, with a
minimum of 10 including all perturbation steps as depicted
in figure 5. The remaining 1% that did not converge to the
optimum was due to measurement noise, which caused
early convergence of the algorithm. Navigating near the
optimum was particularly challenging due to the presence
of a flat surface in that region as depicted in figure 3.
The measurement noise significantly impacted the first p
points, which contributed to a slower convergence rate in
some instances. The tuning parameters were chosen such
that only small steps are performed, resulting in an average
of 11 steps to reach the neighborhood of the optimum.
While more aggressive steps could be performed to accel-
erate the convergence this leads to constraint violations of
TH due to the limitations of SISO PI controllers.

5. CONCLUSION

We presented a model of an industrial case study for
batch-to-batch optimization and an improved version of
the MAWQA algorithm for optimization. The goal is to
increase the capacity of the plant by adjusting the reaction
temperature setpoint and the amount of catalyst used.
The improved version of MAWQA incorporates a novel
perturbation strategy, which led to the establishment of a
stopping criterion. Despite using a structurally incorrect
model, the algorithm was able to find the correct process
optimum in 99% of the cases. The instances with early con-
vergence require further investigations. Since p increases
quadratically with nu, the proposed method proves prac-
tical up to nu = 5. It is recommended to implement a
multi-variable control e.g. NMPC to expand the feasible
domain, potentially leading to greater productivity gains.
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