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Abstract: Accurate estimation of growth rates from sparse and noisy concentration data is
a significant challenge in bioprocess modeling. This paper presents a method that utilizes a
modular non-linear interpolation framework combined with Bayesian parameter inference to
address this issue. By incorporating prior knowledge of cell culture dynamics with differentiable
basis functions, our approach generates credibility intervals for growth rates, enhancing the
reliability of predictions. We validated the performance of our method using growth rate data
generated in silico and demonstrated its application on two in vitro datasets, showcasing its
robustness across various measurement conditions and practical applicability. Results indicate
improvements in the reliability and credibility of predictions compared to traditional methods,
making this framework a valuable resource for accurate growth rate estimations.
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1. INTRODUCTION

Accurate estimation of growth rates is a critical aspect
of bioprocess modeling, yet it remains a significant chal-
lenge due to the sparse and noisy nature of concentration
data. In bioprocessing, data is collected through discrete
measurements from analytical devices, which introduce
noise. Cost constraints limit sampling frequency, leading
to sparse time series with few repeated measurements.
The stochastic nature of bioprocessing further complicates
reliable growth rate estimation (Sonnleitner et al., 2000;
Zahel et al., 2016; Bayer et al., 2020).

Traditional approaches, such as stepwise integral estima-
tions, assume constant growth rates between sampling
intervals (Wechselberger et al., 2013). While these ap-
proaches are straightforward, they oversimplify biological
processes and may introduce inaccuracies, especially in
non-linear fermentation systems where cell growth rates
exhibit variability over time. Moving average filters have
been employed to smooth such fluctuations, but they re-
duce the ability to capture dynamic transitions and can
propagate errors (Paulsson et al., 2014).

To address these challenges, Bayer et al. (2020) proposed
using cubic smoothing splines for continuous growth rate
estimates. This method fits a spline across noisy data
points, balancing smoothness and precision, and provides
reliable results even with varying sampling frequencies and
measurement noise. However, it requires careful parameter
tuning to prevent overfitting or oversmoothing (Swain
et al., 2016). Given the limitations of existing methods,
more robust approaches are needed to capture dynamic
changes in cell growth rates by accounting for non-linear
behavior and addressing data sparsity and noise.

In this work, we propose a Bayesian inference framework
to model cell growth using statistical models based on
non-linear basis functions. By applying inference through
Nested Sampling, we generate posterior distributions of
model parameters and facilitate model comparison by cal-
culating the Bayesian evidence, a reliable metric for model
selection. To validate the effectiveness of our method, we
first apply it to in silico data and subsequently demon-
strate its performance on in vitro datasets.

2. METHODS

Our approach utilizes an interpolation model with differ-
entiable basis functions tailored to discrete measurements
of viable cell density (VCD). By fitting the interpolation
directly to VCD data and differentiating the resulting
function, we estimate cell growth rates. We explore various
models by adjusting the number and type of basis func-
tions, and employ Bayesian evidence to rank these models.

2.1 Prior-Informed Interpolation Model

To incorporate prior assumptions about the growth rate,
we define interpolation models that translate our under-
standing of the growth rate behaviour into mathematical
constraints.

We aim to interpolate a set ofNt observations: {(ti, yi)}Nt
i=1,

where t denotes time and y represents the observations.

We define I(t) as a sum of basis functions {ϕj(t)}
Nf

j=1 to
approximate y:

I(ti) =
Nf∑
j=1

αjϕj(ti) ≈ yi, (1)



where αj are undetermined coefficients j = 1, 2, . . . , Nf for
Nf number of functions.

We evaluated several basis functions, including the Gaus-

sian function e−ρ(t−κ)2 , the hyperbolic tangent function
tanh(ρ(t−κ)), and the sigmoid function 2

1+e−ρ(t−κ) , where

ρ is introduced to modulate the function slopes, while κ
denotes the center, allowing the basis function to be shifted
by the direct distance t−κ. We chose these functions based
on the assumption that cell population growth typically
converges to plateau-like levels, representing growth states.
Although other functions could also represent this, we
selected a subset to showcase our framework’s capabilities.

To represent changes in VCD, we used indefinite integrals
of the basis functions for interpolation, enabling us to
differentiate and achieve the desired form. The indefinite
integral of the Gaussian function does not have a simple
closed-form expression in terms of elementary functions.
However, it can be expressed in terms of the error function,
erf(t), as:∫

e−ρ(t−κ)2 dt =

√
π

4ρ
erf

[√
ρ(t− κ)

]
+ C, (2)

where C is an arbitrary constant of integration. Note that
the error function needs to be calculated using a separate
integral:

erf(z) =
2√
π

∫ z

0

e−x2

dx, (3)

The indefinite integrals of the hyperbolic tangent and the
sigmoid functions are respectively:∫

tanh
[
ρ(t− κ)

]
dt =

1

ρ
ln
[
cosh

(
ρ(t− κ)

)]
+ C, (4)

and ∫
1

1 + e−ρ(t−κ)
dt =

1

ρ
ln
(
1 + e−ρ(t−κ)

)
+ C. (5)

Finally, the interpolation function of VCD is defined as:

X̃ (ti) =

Nf∑
j=1

αjϕj(ti), (6)

where ϕ corresponds to one of the following functions:

ϕj(t) =



√
π

4ρj
erf

[√
ρj(t− κj)

]
+ C for Gaussian,

1

ρj
ln
[
cosh

(
ρj(t− κj)

)]
+ C hyperbolic tangent,

1

ρj
ln
(
1 + e−ρj(t−κj)

)
+ C for sigmoid.

(7)

For comparison purposes, we included the well-adapted
logistic model from Jolicoeur and Pontier (1989) with an
additional constant term:

X̂ (t) =
a

ebt − ce−dt
+ C, (8)

with derivative

dX̂ (t)

dt
= −aedt(bebt(b+d) + cd)

(c− et(b+d))2
. (9)

2.2 Statistical framework

To approximate the parameter distributions of the VCD
interpolation model, we developed a statistical framework

that employs Bayesian inference using the Nested Sam-
pling method.

Bayesian inference. Bayes theorem states that the pos-
terior probability of event A|B is equal to the product of
the likelihood P (B|A) and prior probability P (A), divided
by the marginal likelihood P (B):

P (A|B) =
P (B|A)P (A)

P (B)
. (10)

We seek to generate the posterior probability for a model
P (θ|D), given some parameters θ and some data D. Using
equation (10), the posterior can be stated as:

P (θ|D) =
L(D|θ)π(θ)

Z(D)
, (11)

where L represents the likelihood, π the prior and Z
the marginal likelihood or evidence. The evidence can be
calculated by integrating the entire parameter space Ωθ

as:

Z =

∫
Ωθ

L(D|θ)π(θ) dθ. (12)

The posterior predictive distribution for a new observation
at an arbitrary timepoint ỹ(t) given the data is defined as:

P (ỹ(t)|D) =

∫
L(ỹ(t)|θ)P (θ|D) dθ, (13)

where L(ỹ(t)|θ) is the likelihood of the new observation
given posterior parameters, in this case generated by
Nested Sampling (Sivia and Skilling, 2006).

Nested Sampling. Nested sampling is a computational
method used to estimate Bayesian evidence and generate
posterior parameter distributions (Skilling, 2004). The al-
gorithm iteratively replaces the least likely sample points
with new ones of higher likelihoods, while maintaining
a likelihood constraint. This process allows for the ex-
ploration of high-dimensional parameter spaces and the
precise estimation of Bayesian evidence.

To marginalize the integral in equation (12), we used the
dynamic Nested Sampling method proposed by Speagle
(2020) with the implementation by Sergey Koposov et al.
(2024). This requires defining the models’ log-likelihood
and transforming the prior from unit norm for each param-
eter. In our data, VCD measurements exhibit increasing
variance with higher values, indicating a proportional rela-
tionship between the variance and observations. Hence, we
used a log-normal distribution to account for the specific
nature of the observations:

y(t) ∼ lnN (ln(y(t)), σ). (14)

We define the log-likelihood as follows:

L(y) =


−1

2

Nt∑
i=1

[
2 ln(θNσ ) + ln(2π) + ln

(
X (ti, θ)

)
+

(
ln(X (ti, θ))− ln(yi)

θNθ

)2
]
if X (ti, θ) > 0,

−∞ otherwise.
(15)

Model parameters are denoted by θ for n = 1, 2, . . . , Nθ,
with Nθ being the total number of parameters. The mea-
surement noise σ is approximated by θNθ

. Each parameter
uses uniform bounded priors, θ ∼ Unif[θl, θu], which are



transformed from uniformly distributed variables un ∼
Unif[0, 1] to the desired ranges [θln, θ

u
n] as follows:

θn = θln + un(θ
u
n − θln). (16)

If the measurement noise interval is known, prior bounds
for σ are set as θNσ

∼ [θlNσ
, θuNσ

]. If the noise is unknown,
we have applied a fallback heuristic by solving the inverse
of equation (8) using a quasi-Newton gradient optimiza-
tion scheme (Fletcher, 1987). Since we are assuming log
normally distributed noise on our measurements, we let
the standard deviation of the log residuals between the ob-
servations and the Logistic model define the upper bound.

Error Propagation. Nested sampling accounts for er-
ror propagation by incorporating parameter uncertainties
and measurement errors in the likelihood function. The
resulting posterior distributions inherently reflect these
uncertainties. When generating posterior predictive distri-
butions, these errors are propagated through subsequent
analyses, thereby influencing predictions and further infer-
ences (Sivia and Skilling, 2006).

We used Nested Sampling to estimate the model’s parame-
ter distributions. By applying the log-likelihood (eq. (15))
and the prior transform (eq. (16)), we created instances of
the models defined by equations (6) and (8). This approach
allowed us to obtain Ns sampled parameter vectors for
each model, effectively capturing the parameter distribu-
tions. For the model defined by equation (6), the vector of

parameters θ̃ is given by:

θ̃ =
(
{αj}

Np

j=1, {ρj}
Np

j=1, {κj}
Np

j=1, θC , σ
)
∈ RNs×(3Np+2).

(17)
For the model described by equation (8), the collected

parameters θ̂ are given by:

θ̂ = (θa, θb, θc, θd, θC , σ) ∈ RNs×6, (18)

where θC represents the constant parameter C in both
models. The posterior predictive trajectories of the VCD

can then be produced by evaluating X̃ (ti, θ̃) or X̂ (ti, θ̂).

2.3 Standard rate approximation methods

For comparison, we have included two common rate ap-
proximation methods. The first method is a logarithmic
constant rate approximation, defined as follows:

f(t, y) =

ln(yi) + ln

(
yi

yi+1

)
(t− ti)

(ti+1 − ti)
for t ∈ [ti, ti+1],

0 otherwise.
(19)

The second method is a cubic spline model (Dierckx,
1993; Bayer et al., 2020), a piecewise polynomial function
composed of recursively defined basis splines of order 3
(see Appendix A).

2.4 Dynamic cell growth model

We generated in silico data using a cell growth model
to test our rate estimation method (Richelle et al.,
2022). This model comprises ordinary differential equa-
tions (ODEs) that describe the dynamics of cell popula-
tions across three phases: live cells, dead cells, and lysed
cells, as defined below.

dXv

dt
= (µeff − µd −

F

V
)Xv, (20)

dXd

dt
= µdXv − (kl +

F

V
)Xd, (21)

dXl

dt
= klXd −

F

V
Xl, (22)

where Xv is the VCD, Xd and Xl are the dead and lysed
cells concentration. F is the feed flow rate and V is the
bioreactor volume. µeff is the effective growth rate, µd is
the effective death rate, and kl is the lysis rate constant.
The model also includes a “biomaterial”variable, ∅b, rep-
resenting a bulk set of metabolic byproducts secreted by
the cells:

d∅b
dt

= k∅b
Xv −

F

V
∅b, (23)

where k∅b
is the biomaterial secretion rate constant. To

ensure identifiability, we set this parameter to 1. The cell
growth rate, µeff, is represented as:

µeff = µmax
1

( ∅b

KI,∅b
)3 + 1

, (24)

where µmax is the maximum growth rate and KI,∅b
is the

inhibition constant for the biomaterial. The effective death
rate, µd, is modeled as: µd = kd + ktXl, where kd is the
base death rate and kt is the toxicity rate constant. The
parameter values used to simulate the growth model were
taken from Richelle et al. (2022).

3. RESULTS

In the next sections, we present the results of fitting
VCD data using the models from Section 2. We label the
models in equations (7) as Gaussian, Tanh, and Sigmoid,
the model in equation (19) as Constant, and the one in
Appendix A as Spline.

When fitting a model, we used Nested Sampling to es-
timate the Bayesian evidence Z, which quantifies the
model’s fit relative to its complexity. For each model type,
we tested several configurations with varying numbers of
basis functions, selecting the one with the superior logZ
score. This approach ranks models by penalizing excessive
complexity, ensuring a balance between fit and simplicity.
Table 1 presents the final number of parameters used and
the corresponding logZ scores for each model type.

3.1 In Silico Data Application

We simulated the VCD evolution using the cell growth
model (Section 2.4) and sampled observation points to
generate data for analysis. The simulation was integrated
using an explicit fifth-order Runge-Kutta method with
fourth-order error correction. Absolute and relative tol-
erances were both set to 1e-6. To account for measure-
ment noise, we added log-normally distributed noise to
the sampled data points, defining each noisy observation
as follows:

ỹi = yie
ϵi , (25)

with ϵi ∼ N (0, σ2) and σ representing the noise level (set
to 0.1), for i = 1, 2, . . . , Nη, with Nη denoting the number
of sampled points. Finally, we encapsulated these noisy



Table 1. Model Performance Comparison

Dataset Model Parameters logZ SSE Time [s]

In Silico Logistic 6 -25.93 6.68 282
Gaussian 4·3 + 2 -23.23 9.06 22
Tanh 8·3 + 2 -31.04 379.17 88
Sigmoid 5·3 + 2 -22.79 3.53 7
Spline - - 1116.85 -
Constant - - 34.24 -

Low Logistic 6 -18.37 - 592
Gaussian 3·3 + 2 -17.32 - 20
Tanh 5·3 + 2 -32.69 - 23
Sigmoid 4·3 + 2 -14.92 - 18

High Logistic 6 -21.56 - 331
Gaussian 3·3 + 2 -14.83 - 31
Tanh 7·3 + 2 -24.85 - 98
Sigmoid 3·3 + 2 -2.04 - 21

Fig. 1. VCD estimates (A), growth rate estimates (B) and
in silico observations sampled from cell growth model.

data points in a discrete observation set {(ti, ỹi)}
Nη=15
i=1 as

seen in Figure 1A.

VCD is recovered from the observed growth rate by in-
tegrating equation (20). To address the non-identifiability
between the effective growth rate and the cell death rate,
we introduced the parameter µ to represent the total
growth rates recovered in our posterior predictions. For
clarity, equation (20) is thus rewritten as dXv

dt = µXv,
where µ = µeff − µd.

Figure 1 presents the estimated VCD and growth rates
for all models. Table 1 reports the calculation time and
sum of squared errors (SSE) for the growth rates. Figure
1B shows that the Tanh, Sigmoid, Gaussian, and Logistic
models provide similar growth rate estimates, calculated
using the mean of their posterior predictive distributions.
The Sigmoid model effectively captures growth rate dy-
namics with minimal oscillation. In contrast, the Tanh
and Gaussian models show oscillations in the initial days,
conflicting with our assumptions about cell growth. The
Logistic model initially overestimates and subsequently

Fig. 2. Posterior predictive distributions of VCD and
growth rates derived from in silico data generated
with cell growth model.

underestimates the growth rate in the latter half of the
period. The Spline method shows significant oscillatory
behavior, while the Constant rate model consistently mis-
estimates growth due to the sparsity of measurements.

In Figure 2, the posterior predictive distributions for
growth rate and VCD are shown for Logistic, Gaussian,
Tanh and Sigmoid models. The Sigmoid model shows the
best overall fit to the true growth rate (Figure 2H). All
interpolation models place the true rate trajectory in close
proximity to credibility bounds except for the Gaussian
model which overestimates the growth rate between days
1-2. The Logistic model, while approximating the VCD
trajectory well, misestimates the growth rate indicating it
is not adapted to the cell model (Figure 2B).

3.2 In Vitro Data Application

We utilized two in vitro experimental datasets from fed-
batch CHO cell cultures, both generated using Sartorius’
proprietary CHO cell line under the same operating con-
ditions. The High Frequency Experiment dataset includes
31 VCD measurements over 12 days, using Sartorius pro-
prietary media. The Low Frequency Experiment dataset
consists of 12 VCD measurements over 15 days, with a
slightly altered media formulation. We chose these datasets
to test our approach’s ability to capture growth evolution
under different sampling frequencies and media conditions,
despite using the same cell line and consistent operating
conditions.



Fig. 3. VCD estimates (A and C) and growth rate esti-
mates (B and D), derived from the Low and High
Frequency Experiments, respectively.

In the High Frequency Experiment (Figure 3C), VCD es-
timates show that most models generate similar responses,
except for the Logistic model, which is noticeably shifted.
Regarding growth rates (Figure 3D), the models generally
agree, except for the Spline model, which exhibits oscil-
lation, and the Constant model, which displays periodic
transitions. Figure 4 demonstrates that while all models
provide satisfactory VCD estimates, the Sigmoid model
most closely aligns with our assumptions for growth rates,
particularly in terms of convergence when data frequency
is high.

The Low Frequency Experiment challenges the models
with sparse data as seen in Figure 3A. Consequently the
Spline model’s oscillations are more pronounced when
inspecting the growth rates in Figure 3B. In Figure 5,
the Gaussian model displays large initial swings, while
the Logistic and Tanh models maintain confidence bounds
that anticipate a small error, possibly being overly confi-
dent. The Sigmoid model provides a similar growth rate
approximation to the Logistic model but with a more
conservative confidence interval during the initial period
where there is very little information.

Overall, the Sigmoid model proves robust for both experi-
ments, supported by its strong evidence value and low SSE.
In the High Frequency Experiment, we observe consistent
model behavior, while the Low Frequency Experiment
highlights the challenges of data sparsity and the need for
balanced model confidence.

4. CONCLUSIONS

The proposed method provides a robust way to esti-
mate credibility-bounded growth rates from sparse and
noisy data. The Sigmoid model aligned well with our
assumptions and showed high Bayesian evidence, offering
more flexibility due to its ability to accommodate varying
growth dynamics compared to the Logistic model. The
estimates generated by the Tanh model tended to diverge
significantly in areas of sparse data, highlighting its limita-
tions in such conditions. The Gaussian model represented
a middle ground and may prove useful in scenarios where
moderate flexibility is required.

Fig. 4. Posterior predictive distributions of VCD and
growth rates derived from the High Frequency Ex-
periment data.

We noted inconsistencies during repeated sampling, espe-
cially in areas with large credibility bounds, mainly due to
balancing effective regularization from measurement noise.
To address this, refining prior distributions with domain-
specific knowledge, such as typical growth patterns or
environmental conditions, can improve accuracy. Addi-
tionally, using models with more interpretable parameters
can enhance the reliability of predictions.

While our framework is based on established statistical
techniques, its novelty lies in the integration of prior bi-
ological knowledge and the use of Nested Sampling for
efficient parameter space exploration. This sets it apart
from traditional methods that rely on constant growth
rate assumptions, providing a more dynamic approach to
modeling. Our method can be applied to a wide range of re-
action networks but may struggle with extreme non-linear
behaviors. The computational complexity of Bayesian in-
ference and Nested Sampling could affect scalability and
practical implementation in real-time bioprocess moni-
toring. Future work could focus on optimizing compu-
tational efficiency, additional basis functions, exploring
hybrid models, include additional bioprocess covariates,
such as volume change, to enhance its applicability.

In conclusion, our Bayesian inference framework offers a
promising alternative for estimating growth rates from
sparse, noisy data. With potential for further refinement,
it can improve accuracy and reliability in bioprocess mod-
eling.



Fig. 5. Posterior predictive distributions of VCD and
growth rates derived from the Low Frequency Exper-
iment data.
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Appendix A. B-SPLINE RECURSION

S(t) is represented by a linear combination of basis splines
Bj,k(t): S(t) =

∑
j αjBj,k(t), where αj are the coefficients.

The basis splines Bj,k(t) are defined recursively over a
sequence of knots rj . For k = 0 :

Bj,0(t) =

{
1 if rj ≤ t < rj+1

0 otherwise
, and for k > 0:

Bj,k(t) =
t−rj

rj+k−rj
Bj,k−1(t) +

rj+k+1−t
rj+k+1−rj+1

Bj+1,k−1(t).

To fit the coefficients αj , the objective function includes
a second-order derivative regularization term controlled
by a smoothing parameter λ. The objective function to
minimize is:

∑
i(yi − S(ti))

2 + λ
∫
(S′′(t))2 dt where yi

are the observed data points, ti are the corresponding
positions, and S′′(t) is the second derivative of the spline
function S(t).


