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Abstract: Process optimisation and quality control are crucial in process industries to minimise
waste and enhance economics. However, common uncertainties ranging from feedstock variability
to human error can cause significant deviations in product quality leading to batch discards. This
study introduces a novel framework combining machine learning with optimisation strategies to
identify optimal operational spaces under uncertainty. Using a process model, the framework
screens a broad operational space, isolating promising sub-regions and control trajectories.
Machine learning techniques are used to cluster these sub-regions by displayed control patterns,
and a dynamic optimisation framework identifies the maximum operable design space, ensuring
constraints are met under uncertainty. Two case studies, involving a fermentation process and
a formulation manufacturing process, were conducted to demonstrate the high efficiency of the
proposed framework and to showcase its strong potential for industrial applications.
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1. INTRODUCTION

Product quality control is essential in industries such as
pharmaceuticals, specialty chemicals, and formulation pro-
cesses, where one aims to strictly regulate process con-
ditions for a myriad of reasons, ranging from ensuring
the safety and efficacy of process operations, to process
optimisation for improved economic performance and sus-
tainability (Hicks et al., 2021). In recent years, there has
been an increase in pressure for industries to attain tighter
control over their product qualities; this is primarily driven
by global and local governmental initiatives to reduce envi-
ronmental emissions, alongside increasing operation costs.
Due to this, it is highly desirable to eliminate any sources
of wasted product which is often in considerable volumes,
particularly in the pharmaceutical sectors (Amrih and
Damayanti, 2022).

In order to address such problems and maintain an advan-
tage in a competitive market, it is necessary that new for-
mulations and greener processes are developed (Hill, 2007).
Due to this, process optimisation and control becomes
a key focal point, especially in addressing inefficiencies,
reducing waste, and enhancing process flexibility to adapt
to manufacturing demands and constraints. Many existing
processes rely on traditional set-point control methods
which, whilst effective for maintaining specific process
conditions known to provide reliable operation, lack the
adaptability needed to respond effectively to uncertainties
and dynamic process requirements which may result in fre-
quent batch rejections. Furthermore, the identified optimal
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set-point strategy is, by definition, rigid in its control and
thus could require significant energy consumption.

Naturally, uncertainties pose a great challenge which re-
mains to be addressed in the implementation of the current
safety, economic and environmental directives, since the
quality of process control solutions are heavily influenced
by them. Uncertainties arise within standard processing
for a multitude of reasons, and although possible to mit-
igate certain sources, it is not possible to eliminate all
uncertainties so, it is good practice to identify and ac-
count for these when aiming to implement robust control
solutions (Geletu et al., 2013). Such sources of uncertainty
are inherent to operations, and can be exhibited through
variation of one’s ability to achieve a control action’s
set-point, changes in feed concentrations or compositions,
variability in measurements, and even operator actions.

A promising alternative to set-point control is operational
space control, which provides greater flexibility by defining
an operational space rather being bound to a single set-
point. This approach offers distinct advantages over set-
point control, as it enables processes to adapt dynamically,
within certain process constraints, to account for variabil-
ity and uncertainties.

1.1 Optimisation Under Uncertainty

Robust Optimisation Robust optimisation tackles un-
certainty in a deterministic manner, focusing on ensur-
ing that constraints remain satisfied even in the worst-
case scenarios corresponding to the most adverse oper-
ating conditions and uncertainties. This is achieved by
incorporating uncertainty sets, which define the ranges of
variability for both the objective function and constraints



(Garćıa and Peña, 2018). The goal is to develop an opti-
mal control strategy that performs adequately under all
possible conditions within these uncertainty sets, with a
particular emphasis on the worst-case outcome. While ef-
fective in maintaining feasibility, this often results in overly
conservative solutions, as the method prioritises reliability
over performance (Bomze and Gabl, 2023). This is usually
considered in the event that any probability of constraint
violation is unacceptable (Gabrel et al., 2014).

Stochastic Optimisation An alternative method used for
optimisation under uncertainty is stochastic optimisation.
It is a generic branch of optimisation which refers to the
use of random variables to represent uncertain parameters
(Zheng et al., 2014). The probability distributions can
be tailored to accurately account for different uncertainty
types, and their expected characteristics (e.g., Gaussian)
such that real operations are reflected. This can be used
to provide information about the expected performance of
a solution during an optimisation procedure. In practice,
it is intractable to optimise over the range of a probability
distribution. Hence, it is common that Monte Carlo and
scenario-based methods are implemented to reformulate
the problem into a deterministic one (Zheng et al., 2014).
Naturally, this usually revolves around unique sampling
methodologies. When dealing with optimisation under un-
certainty, stochastic optimisation is often chosen over ro-
bust optimisation because it offers more flexibility, better
application to non-convex optimisation of complex real
non-linear systems, and usually more practical solutions
for industrial use.

Fig. 1. Diagram of an example scenario tree.

Scenario tree optimisation, a form of stochastic optimisa-
tion, can be employed to transform complex probabilistic
problems into more manageable deterministic ones, thus
avoiding the computational challenges of directly solving
probabilistic systems. In this approach, uncertainties are
propagated across an entire process, with multiple differ-
ent realisations of these uncertainties considered (Silvente
et al., 2019; Kammammettu and Li, 2023). Each full tra-
jectory of the process, defined by a unique combination
of uncertainty realisations, is referred to as a scenario.
One can represent all considered uncertain trajectories as
a single system named a scenario tree where uncertainty
unfolds stagewise, an example of this is shown in Fig. 1.

This method provides a structured way to account for a di-
verse range of time-varying uncertainties, enabling better
decision-making across a set of potential future outcomes.

In this paper, we propose a novel scenario tree optimi-
sation framework that combines the concepts of flexible
and optimal operational spaces to simultaneously enhance
process adaptability, robustify the process to uncertainties
and achieve operational optimality, therefore, representing
a novel advancement in process quality control.

1.2 Process Description

We assume a mathematical model is available to describe
the process dynamics:

ẋxx(t) = FFF (t,xxx(t),uuu(t), θθθ, ξξξ), (1)

where, xxx(tj) ∈ Rn is the vector of state variables, tj ∈
[0, tf ] is a time instance of the operational time horizon,
and ẋxx(tj) is the corresponding time derivative. uuu(tj) ∈ Rm

is the vector of control actions. θθθ ∈ Rp is the vector of
fixed parameters, and ξξξ ∈ Rr is the vector of uncertain
parameters. In this work, each uncertainty sources, ξi,
for i = 1, . . . , r, is approximated as a random variable,
and assigned a unique Gaussian distribution, i.e., ξi ∼
N (µi, σ

2
i ), with mean value, µi, equal to its nominal

value, and standard deviation, σi, equal to the deviation
one might expect during operations. Both, µi and σi, are
assumed to be known. The goal is to identify a practical,
optimal, and flexible operational space for uuu(t), ensuring
that product quality is consistently maintained despite the
uncertainties introduced by ξξξ.

2. METHODOLOGY

The proposed methodology is described in Fig. 2. In
general, the approach can be split into 4 steps, which are
detailed in the following subsections.

Fig. 2. Proposed methodology for optimal space identifi-
cation.



2.1 Step 1: Uncertainty Sampling

We adopt the scenario tree analysis, as described in Section
1.1, to represent the possible range of uncertainties one
may experience in processing. The entire scenario tree can
be realised by sampling each uncertainty source ξξξi from
their corresponding distributions.

It is important to note that a good representation of
uncertainty is necessary to achieve a robust control action.
Hence, it is recommended that a large enough number of
uncertainty samples is taken from each source of uncer-
tainty. However, this must be considered in conjunction
with the increased computational cost one faces when
increasing the size of the scenario tree. In practice, it is
common to find a trade-off between the two. Once the
scenario tree is realised, all optimisation strategies will
be optimised over the entire scenario tree such that any
defined constraints are satisfied for any of the considered
uncertainty realisations.

2.2 Step 2: Filling out the Optimal Region

Since different pathways may exist to achieve control goals,
in Step 2, we focus on narrowing the broad search space to
identify specific operating spaces that are likely to contain
the optimal control actions. These selected spaces will be
further reduced to identify the operational regions in Step
4. The optimal operational space is characterised by con-
trol trajectories that meet a predefined standard of process
optimality while also adhering to process constraints under
any considered uncertainties realised in the scenario tree.
Specifically, we want to minimise some process cost, C,
while maintaining tight control over end product quality,
ytf , close to the desired set point, ySP. In addition, we
aim to locate different operational spaces, if they exist, to
characterise the process.

We discretise the operation time horizon into N inter-
vals, with the control actions, uuu(t), assigned as piecewise
constants within each time interval, i.e., uuu(t) = uuuk, for
t ∈ [tk, tk+1), ∀k ∈ [0, N − 1], where tk = k∆t and

∆t =
tf
N . We assume that the system states, xxxk = xxx(tk),

are fully observable, and the initial states, xxx0, are known.
Often, the process is subject to constraints, which are
denoted as ggg(xxxk). Additionally, the control actions are
bounded by physical limitations, denoted as uuuk and uuuk for
k = 0, . . . , N − 1. The problem formulation is summarised
as follows:

min
uuuk

k=0,...,N−1

λ1 · obj1 + λ2 · C

s.t. obj1 =

S∑
s=1

(ytf ,s − ySP)
2

xxxk+1 = fff(∆t,xxxk, uuuk, θθθ, ξξξ)

x0x0x0 = xxx(0)

ggg(xxxk) ≤ 0

uuuk ≤ uuuk ≤ uuuk,

(2)

where λ1 and λ2 represent the weighting parameters for
each objective; S is the number of uncertain scenarios
considered in the scenario tree; and fff(·) is the selected
numerical integrator (e.g., implicit/explicit Euler, Runge-
Kutta, etc.).

Since we want to identify a diverse set of plausible control
trajectories to find different operational spaces (if multiple
exist), once an initial optimisation of Problem (2) is
complete, we can identify the next control trajectory by re-
optimising Problem (2), with a penalty function, p, added
to the original objective function (i.e. λ1 ·obj1+λ2 ·C+p),
to maximise the differences between the existing control
trajectories and the ones to be identified. The form of such
a penalty could be

p = λ3 ·
Dcurr∑
d=1

m∑
j=1

N−1∑
k=0

(uj,k − u∗
j,k,d)

∆uj,k
, (3)

where, λ3 is the weighting parameter used to dictate the
strength of the penalty function, for which larger values
aim to identify more varied optimums and so, a larger
optimal region. Dcurr is the number of identified control
trajectories thus far. u∗

j,k,d represents the discretised con-
trol actions from an identified trajectory, and uj,k is the
corresponding control action within the current optimisa-
tion. ∆uj,k is the maximum range of control action uj,k

among identified ones, which is used to normalise the
values for each control variable which may otherwise be
of different orders of magnitude.

Using this methodology, with a large enough number of
optimal solutions, Dmax, it is possible to approximate
regions of optimal solutions (control strategies) which
satisfy all the feasibility constraints under uncertainty.

2.3 Step 3: Clustering Optimal Regions

Following Step 2, different operational spaces may be iden-
tified. Clustering algorithms are applied to identify and
characterise these spaces. As clustering is an unsupervised
learning approach, validating the results across different
clustering algorithms and analysing cluster characteristics
is essential to assess distinctions in control strategy be-
haviours.

In this work, multiple clustering algorithms: k-means (Na
et al., 2010), DBSCAN (Khan et al., 2014), and spectral
clustering (Jia et al., 2014), were employed and compared
to ensure consistency in the recommended number of
clusters.

2.4 Step 4: Nominal Control and Bound Estimation
Strategy

In Steps 2 and 3, we have approximations for a number of
distinct optimal spaces (clusters). We can now determine
the optimal control action for each cluster, as well as their
corresponding operational regions. Specifically, the opera-
tional region of an optimal control trajectory is defined by
upper and lower bounds for each control action, such that,
if we operate within, the process is feasible under consid-
ered uncertainties. The optimal set-points are established
using the dynamic optimisation formulation described in
(2), where the search space is now restricted to that of
the chosen optimal region to ensure that the solution does
indeed fall within the correct cluster, i.e., uuuk and uuuk in (2)
are updated to reflect the cluster characteristics.

Once the nominal (optimal) set-points have been found,
we propose a two step algorithm to identify the upper and



lower bounds independently by maximising the distance
between the two whilst satisfying process constraints. Eqn.
(4) shows the optimisation strategy to find the lower
bound:

max
uuulb

k
k=0,...,N−1

m
min
j=1

N−1
min
k=0

wj,k · (unominal
j,k − ulb

j,k)

s.t. wj,k =
1

unominal
j,k − uj,k

xxxk+1 = fff(∆t,xxxk, uuu
lb
k , θθθ, ξξξ)

x0x0x0 = xxx(0)

ggg(xxxk) ≤ 0

uuuk ≤ uuulb
k ≤ uuunominal

k ,

(4)

where, (4) aims to maximise the distance between the
control actions at the lower bound, ulb

j,k, and the nominal

control actions, unominal
j,k , across each control action, j, for

each time-step, k. wj,k is used to normalise the magnitude
of the objective contribution for different control actions.
In order to ensure that the area of the bounds is spread
as evenly as possible across the entire control trajectory
for each variable, the objective function is designed such
that the minimum distance between uuunominal and uuulb is
maximised. This way, it is more likely that the resultant
bounds will be useful in operation since there will be
no individual time-step for which set point control is
effectively required.

The upper bounds can be identified with similar strategies
as follows:

max
uuuub

k
k=0,...,N−1

m
min
j=1

N−1
min
k=0

wj,k · (uub
j,k − unominal

j,k )

s.t. wj,k =
1

uj,k − unominal
j,k

xxxk+1 = fff(∆t,xxxk, uuu
ub
k , θθθ, ξξξ)

x0x0x0 = xxx(0)

gxk
gxkgxk

≤ 0

uuunominal
k ≤ uuuub

k ≤ uuuk.

(5)

Using this two-step algorithm, one can obtain an upper
and lower bound that each accommodate uncertainties
whilst respecting process constraints which, provides an
optimal operational region in which control of the design
variables can be loosened, and still achieve good process
performance and reach desired product quality require-
ments.

Because the two-step algorithm addresses the upper and
lower bounds independently, each bound is guaranteed to
meet all constraints individually. However, this does not
ensure that any control trajectories sampled between these
bounds will also comply. Therefore, it is essential to vali-
date these bounds by randomly sampling control actions
within them and recording any instances that violate the
constraints. These recorded samples can then be returned
to the framework using a well designed penalty, which can
be added to the objective function in (4) and (5), to reduce
the bounds such that these violating control trajectories
cannot be sampled. Specifically, the penalty function, q, is
defined as follows:

q =

m∑
j=1

N−1∑
k=0

cv∑
z=1

Qj,k,z, (6)

where, cv is the total number of violating control trajec-
tories recorded in the validation step, and Qj,k,z is the
penalisation parameter, which equals 0, if uub

j,k ≤ uj,k,z,
and equals 1, otherwise, ∀j, k, z. As noted in Fig. 2, we
terminate the process if the violation of the validation set
is less than or equal to 1%.

3. CASE STUDIES

3.1 Fed-batch Bioprocess Optimisation

The proposed method is first examined with a case study
of astaxanthin production in a fed-batch bioprocess under
parameter uncertainty (Vega-Ramon et al., 2021), i.e., the
source of uncertainty arises from the model parameters.

The kinetic model of the process is taken from Vega-
Ramon et al. (2021), which is converted to a fed-batch
model by including the feed flow rate Fin(t) as the control
input:

dV (t)

dt
= Fin(t)

dX(t)

dt
= µm(t)X(t)− µdX(t)− X(t)

V (t)
Fin(t)

dS(t)

dt
=

Fin(t)

V (t)
Sin − YSµm(t)X(t)− S(t)

V (t)
Fin(t)

dP (t)

dt
= αµm(t)X(t) + βX(t)− kdX

2(t)

(
P (t)

P (t) + 0.01

)
− P (t)

V (t)
Fin(t),

where µm(t) = µm
S(t)

S(t)+KcX(t) . Here, X(t) is the biomass

concentration (g/L), S(t) is the substrate concentration
(g/L), Sin is the substrate concentration in the feed flow,
P (t) is the product concentration (mg/L), t is the time (h),
and V (t) is the volume of the reactor. Model parameters
µm,Kc, µd, YS , α, β, and kd are uncertain, whose nominal
values are shown in Table 1. The standard deviations of
the parameters are taken as 2% variations around their
nominal values.

The process begins with an initial volume, V (0), of 0.4
L, an initial biomass concentration, X(0), of 0.1 g/L,
an initial substrate concentration, S(0), of 6 g/L, and
an initial product concentration, P (0), of 0 mg/L. The
substrate concentration in the feed, Sin, is set to 12 g/L,
and the reactor’s volume is 2 L (Vreactor). The process
is run for 168 hours (T ), The feed flow rate, Fin(t), is
adjusted every 12 hours, leading to 14 discretised time
segments, (N). The control goal in this case is to ensure
that the mass production of astaxanthin at the end of
the time horizon is higher than 58 mg, i.e., ySP = 58
in Eqn. (2). Several path constraints are involved: (i)
all the state variables are nonnegative, i.e., xxx(t) ≥ 0,
for t ∈ [0, T ], where xxx(t) = [V (t), X(t), S(t), P (t)]⊤; (ii)
maximum working volume should not exceed 95% of the
reactor’s volume, i.e., V (t) ≤ 0.95Vreactor; (iii) no feed
in the first and last days (24 hours), i.e., uk = 0, for
k ∈ {0, 1, N − 3, N − 2}; (iv) the substrate concentration

should not change dramatically, i.e., dS(t)
dt ≤ 3 g/L; and

(v) the mass of the product astaxanthin should increase

throughout the process, i.e., dP (t)
dt ≥ 0.



Table 1. Model parameters for astaxanthin
production (Vega-Ramon et al., 2021).

Parameter Nominal Value

µm (h−1) 0.43
Kc 63.7
µd (h−1) 0.0021
YS (g/g) 2.58
α (mg/g) 7.88
β (mg/g h−1) 0.236
kd (mg L g−2 h−1) 0.0648

In this case, 1,000 samples are used to construct the
scenario tree. One cluster is identified, whose identified
operational region is shown in Fig. 3. The identified oper-
ational region is validated with 10,000 samples, where no
violation was observed. The proposed method effectively
identifies the operational space for the feed flow rate,
Fin(t), under parameter uncertainties, optimising both the
lower and upper control bounds. This approach ensures
that the process constraints are satisfied across all sampled
uncertainties while maximising the optimal and flexible
operational space.

Fig. 3. Designed operational space (shaded) using the
proposed method.

3.2 Formulation Product Quality Control

In order to examine the applicability of the framework
to more complex, non-linear systems, we make use of a
model proposed in (Rogers et al., 2024) which describes
the material transformation between liquid products in a
batch dynamic mixing process. The formulated product
is constructed over time through a series of ingredient
additions made to the process. The product composition
is described through a series of 3 equations (material
transformations) as functions of 3 operating conditions
(control variables), and 11 inherent process states. A full
description of the model is found in (Rogers et al., 2024).

The main challenge in this case study was the difficul-
ties in reaching the desired end product quality subject
to a myriad of process uncertainties that one faces in
standard operation. The main sources of uncertainty were
characterised into three classes; the first being variation
in the input feed composition, which would be reflected
in the estimated parameters of the model proposed by
(Rogers et al., 2024). The second source of uncertainty

is identified as human error, this is introduced to the
systems primarily through difficulties in exactly following
the times at which ingredient additions should be made to
the process as indicated by the plant process flow diagram.
The final source of uncertainty is system control error, that
is deviations in the value of control variables from the set-
points at which they are required to reach. The uncertainty
levels assumed for these variables are 10%, 20% and 5%
per standard deviation respectively. It should be stated
that 100 uncertain scenarios were taken to assemble the
scenario tree.

Specifically, one has access to dynamic control over 3
control variables, each of which are allowed to change 5
times, in order to maintain consistent product qualities.

The methodology displayed in Section 2 was applied in full,
with 40 optimal set-points being established in step 2. In
step 3, it was found that 2 clusters, containing distinct
control pathways, were derived. The resulting control
variable 1’s nominal control actions and corresponding
bounds for each cluster are shown in Fig. 4, alongside their
reduced bounds (right) after refining them as described in
step 4. Similarly, Fig. 5 shows the results for the control
of control variable 2.

Fig. 4. Control variable 1 nominal set-point and bounds
for cluster 1 (blue) and cluster 2 (red).

Fig. 5. Control variable 2 set-point and bounds for cluster
1 (blue) and cluster 2 (red).

The bounds (before refinement) were validated for both
clusters by randomly sampling 1000 control trajectories



from between the control variables’ bounds for 100 unseen
uncertain scenarios (i.e., 100,000 simulations). When these
sampled control trajectories were simulated through the
process model, it was found that cluster 1 had a product
quality violation rate of 22% whilst cluster 2 possessed
one of 9.5%. However, it should be noted that for each
the maximum and mean number of scenarios violating for
a given control action (only considering those that did
violate) was 3 and 1.1 (out of 100) respectively. This is
supportive that the initial bounds estimated are indeed
robust to uncertainties. Once the bounds were refined,
these violation rates dropped to 0% and 0.9% respectively.

An important note to make is that the first cluster, when
refined, loses much of its operability and reaches somewhat
of a set-point control status. In contrast, the second cluster
retains it’s operability in large, only reducing its control
area by 24% and 39% for control variables 1 and 2,
respectively, in comparison to the decrease in area of
51% and 79% for the first cluster. Therefore, there is an
argument to be made for allowing a small violation rate,
as is 0.9% for cluster 2, in order to improve the operability
of the process.

4. CONCLUSION

In conclusion, operational space design offers a unique so-
lution to accommodate uncertainties into the development
of robust controls when one wishes to reliably meet key
process constraints. The combination of flexibility and op-
timality into the development of operational spaces allows
for both reliable and high-performance control strategies.
The increase in operability was shown to be a key advan-
tage over classic set-point control, where one is restricted
to the operation of a process within tight guidelines. Fur-
thermore, the systematic approach of identifying different
operating regions within the entire optimal space provides
a distinct advantage over traditional set-point control, in
which one may overlook the existence of such regions.
This way, the methodology can be also used for knowledge
gain about how a process may be operated; which can
provide benefits for process operators to identify regions
in which the process may be more stable and easier to
control within.

The proposed framework’s effectiveness was demonstrated
using case studies on dynamic batch processes, including
a fed-batch fermentation process and the production of
a consumer goods formulation product. Results indicate
that our approach effectively manages uncertainties, of-
fering economically advantageous process designs and op-
erational strategies while upholding critical process con-
straints on top of improving process operability. Overall,
this work demonstrates the novel combination of optimal
and flexible design space identification and dynamic op-
timisation under uncertainty. Moreover, the potential of
the methodology for situations in which consistent vio-
lations of process constraints exist due to unmanageable
uncertainties, or in cases where it is difficult to achieve
consistent product quality has been demonstrated.
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Geletu, A., Klöppel, M., Zhang, H., and Li, P. (2013).
Advances and applications of chance-constrained ap-
proaches to systems optimisation under uncertainty.
International Journal of Systems Science, 44(7), 1209–
1232.

Hicks, A., Johnston, M., Mowbray, M., Barton, M., Lane,
A., Mendoza, C., Martin, P., and Zhang, D. (2021). A
two-step multivariate statistical learning approach for
batch process soft sensing. Digital Chemical Engineer-
ing, 1, 100003.

Hill, K. (2007). Industrial development and application of
biobased oleochemicals. Pure and Applied Chemistry,
79(11), 1999–2011.

Jia, H., Ding, S., Xu, X., and Nie, R. (2014). The
latest research progress on spectral clustering. Neural
Computing and Applications, 24, 1477–1486.

Kammammettu, S. and Li, Z. (2023). Scenario reduction
and scenario tree generation for stochastic programming
using sinkhorn distance. Computers & Chemical Engi-
neering, 170, 108122.

Khan, K., Rehman, S.U., Aziz, K., Fong, S., and Saras-
vady, S. (2014). Dbscan: Past, present and future. In
The fifth international conference on the applications
of digital information and web technologies (ICADIWT
2014), 232–238. IEEE.

Na, S., Xumin, L., and Yong, G. (2010). Research on k-
means clustering algorithm: An improved k-means clus-
tering algorithm. In 2010 Third International Sympo-
sium on intelligent information technology and security
informatics, 63–67. Ieee.

Rogers, A.W., Lane, A., Mendoza, C., Watson, S., Kowal-
ski, A., Martin, P., and Zhang, D. (2024). Integrating
knowledge-guided symbolic regression and model-based
design of experiments to accelerate process flow diagram
development. IFAC-PapersOnLine, 58(14), 127–132.

Silvente, J., Papageorgiou, L.G., and Dua, V. (2019). Sce-
nario tree reduction for optimisation under uncertainty
using sensitivity analysis. Computers & Chemical Engi-
neering, 125, 449–459.

Vega-Ramon, F., Zhu, X., Savage, T.R., Petsagkourakis,
P., Jing, K., and Zhang, D. (2021). Kinetic and hybrid
modeling for yeast astaxanthin production under un-
certainty. Biotechnology and Bioengineering, 118(12),
4854–4866.

Zheng, Q.P., Wang, J., and Liu, A.L. (2014). Stochastic
optimization for unit commitment—a review. IEEE
Transactions on Power Systems, 30(4), 1913–1924.


