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Abstract:
Biochemical processes, characterized by nonlinear dynamics and uncertainties, pose significant
optimization challenges. This work explores Robust Predictable Control (RPC) as a Reinforce-
ment Learning (RL) algorithm to enhance a fed-batch penicillin production process utilizing
the simulation model IndPenSim. Unlike some RL implementations that constrain exploration
based on prior knowledge, the selected RPC approach allows the RL agent to explore freely and
identify optimal control strategies by itself. We trained the RL agent under disturbance-free
conditions and evaluated its performance against various unseen initial process conditions and
disturbances. Results show that RPC significantly outperforms other process control methods,
including other RL implementations, achieving higher yields with fewer necessary measurements
as input for the RL agent. Analyzing two reward functions - penicillin concentration and yield -
revealed that using concentration in the reward function improved agent training for maximizing
yield, highlighting the importance of reward design in RL. Additionally, the trained RL agent
effectively adapted to different action intervals, demonstrating robustness in dynamic environ-
ments without retraining. Our findings underscore RPC’s potential for optimizing biochemical
processes, especially in scenarios with few measurements, paving the way for AI-driven control
systems in industrial applications.
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1. INTRODUCTION

Optimizing biochemical processes is inherently complex
due to their nonlinear dynamics, stochastic behavior,
and variable operating points. Advanced Process Con-
trol (APC) techniques, such as Model Predictive Control
(MPC) and Nonlinear MPC (NMPC), have been widely
applied to fermentation processes like penicillin production
(Ashoori et al. (2008, 2009); Bolmanis et al. (2023)). These
methods perform well when accurate models of the process
and its uncertainties are available. For instance, Duran-
Villalobos et al. (2019) applied Model Predictive Control
(MPC) in the IndPenSim penicillin simulation (developed
by Goldrick et al. (2015)) to minimize batch-to-batch
variation by optimizing substrate feed. Similarly, Kager
et al. (2019) implemented Nonlinear Model Predictive
Control (NMPC) to enhance process yield by controlling
substrate, precursor, and nitrogen flow rates, while also
estimating unmeasured variables like oxygen uptake and
carbon evolution rates.

In a recent study by Li et al. (2024), NMPC with seven
control inputs was compared with reinforcement learning
(RL) in the IndPenSim process. Despite assumptions elim-
inating the use of state estimation, NMPC required 3 to
6 minutes to compute a control action for each 12-minute
step, while RL needed only 0.01 to 0.03 seconds. RL also
showed fewer oscillations in control trajectories. By inte-
grating historical operating data, RL agents, such as those
using Soft Actor-Critic (SAC) and Deep Deterministic
Policy Gradient (DDPG), improved sampling efficiency
and stability. SAC outperformed DDPG and traditional
PID controllers, improving yields by 14%, while NMPC
achieved 15%.
RL methods have proven to be effective in optimizing
fed-batch bioreactors, even under uncertain dynamics. A
two-stage RL framework, which initially trains on an ap-
proximate model before fine-tuning with real data, outper-
formed NMPC while reducing process evaluations, enhanc-
ing both time and cost efficiency (Petsagkourakis et al.



(2019)). In a polymerization process, RL combined with
Monte Carlo learning managed stochastic disturbances,
improving robustness and control accuracy (Haeun et al.
(2021)). Effective reward function design is crucial for en-
suring safe and efficient operation in RL, as demonstrated
in various control processes, including those with abrupt
phase transitions in which phase segmentation improved
performance (Haeun et al. (2021)).
In this work, we apply Robust Predictable Control (RPC),
an RL algorithm by Eysenbach et al. (2021), to the
IndPenSim process. Unlike prior approaches that limit
exploration by incorporating prior knowledge, our RL
agent explores freely to discover optimal strategies. We
trained the agent under disturbance-free conditions and
tested it against 26 unseen scenarios, including process
disturbances, batch-to-batch variations, and faults. We
also evaluate the impact of different reward functions. Our
results demonstrate that RPC not only achieves higher
yields under disturbances compared to SAC, DDPG, and
NMPC (implemented by Li et al. (2024)), but also requires
fewer measurements, highlighting its robustness and po-
tential for a broader application in biochemical process
optimization.

2. ROBUST PREDICTABLE CONTROL

Reinforcement Learning (RL) is a closed-loop framework
where an agent learns to make sequential decisions by
interacting with its environment, in order to maximize
long-term rewards (Sutton and Barto (1998)). When the
environment can be simulated with high fidelity, the agent
can learn optimal strategies in a controlled setting, re-
ducing the risk of negatively impacting the real process
(Haeun et al. (2021)).
Robust Predictable Control (RPC) builds upon actor-
critic algorithms like SAC, emphasizing robustness, gener-
alization, and computational efficiency. It integrates con-
cepts from information bottlenecks, model-based RL, and
bits-back coding to learn a compressed policy in a latent
space.
The information bottleneck principle limits the amount of
information the RL agent can use, which helps prevent
overfitting to the training environment. This constraint
changes the agent’s behavior, driving it to states with
predictable dynamics by minimizing the information or
’bits’ needed (Eysenbach et al. (2021)).
RPC also focuses on temporally extended policies, where
information from one time step is used to predict sub-
sequent steps. When these predictions are accurate, the
agent relies on them instead of frequently querying the
environment. Furthermore, the distribution from which
actions are sampled can be adjusted to increase the like-
lihood of visiting states that are easier to compress, im-
proving learning efficiency (Eysenbach et al. (2021)).
The architecture of RPC involves training an encoder to
create a compact representation of the current state and a
high-level policy to decode this representation into actions.
The objective is to maximize rewards while minimizing the
number of bits used. Variational Information Bottleneck
(VIB) is applied to compress the sequence of states, en-
couraging the agent to prioritize states where its learned

model can accurately predict future states. Results indi-
cate that RPC can develop policies that are more robust
to missing observations and noise, while achieving compa-
rable or higher rewards than other actor-critic algorithms
(Eysenbach et al. (2021)).
In this work, we experiment with different levels of com-
pression by selecting the number of bits (a measure of how
much information from the observations is preserved after
compression) as a hyperparameter. We explored 1-bit, 10-
bit, and 15-bit configurations, while acknowledging that
other configurations could also be explored. Other hyper-
parameters, such as the number of neurons for the different
neural networks comprising the agent, batch sizes, and
learning rates were kept consistent with the experiments
in Eysenbach et al. (2021).

3. SIMULATION SETUP AND ENVIRONMENT
CONFIGURATION

The RL environment selected for this study is IndPenSim,
a validated simulation of an industrial-scale Penicillium
chrysogenum fermentation process, developed by Paul and
Thomas (1996). IndPenSim simulates fermenter volumes
up to 100,000 L and incorporates a structured model
accounting for key factors such as biomass growth, mor-
phology, and metabolic production/degeneration, provid-
ing a comprehensive representation of the fermentation
process. Originally implemented in MATLAB R2013B and
updated to MATLAB R2018B, the model was validated
with historical data, showing good agreement with the real
process (Goldrick et al. (2015)). Additionally, a standalone
dataset of 100 batches, including a Raman spectroscopy
device, was made available by Goldrick et al. (2019),
further enhancing simulation capabilities with options for
control strategies, concentration disturbances and inhibi-
tion effects. IndPenSim also simulates process faults such
as agitation, aeration issues, and sensor malfunctions.
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Fig. 1. Piping and Instrumentation Diagram (P&ID) of the
IndPenSim process, featuring a schematic representa-
tion of an RL agent, its observations, and actions.

To configure IndPenSim for RL, the simulation was
adapted to the OpenAI Gym format, a common standard



for RL environments (Brockman et al. (2016)). Figure
1 illustrates the closed-loop control of IndPenSim, with
the RL agent executing control actions (represented by
grey dashed lines). The six control actions selected in-
clude manipulation of substrate (sugar), oil, water, and
air flowrates, along with the setpoint for the PI controller
of Phenyl Acetic Acid (PAA) and vessel pressure.
The environment outputs 35 observations, but only 9 are
provided to the RL agent (represented by black solid lines):
temperature, dissolved O2, O2 outgas, CO2 outgas, PAA
concentration, viscosity, vessel weight, penicillin (PEN)
concentration, and pH. These observations are critical
for process control and can be measured in real-world
applications.
Although a Python implementation of IndPenSim exists,
testing showed it deviated from the original MATLAB
results. Therefore, we opted to use the MATLAB version
of the simulator while programming the RL agents in
Python. Communication between the MATLAB simula-
tor and Python agents was achieved using the MATLAB
engine API, enabling the execution of MATLAB scripts
within the Python environment. This approach increased
training times, but the improved accuracy of results justi-
fied the trade-off.

4. TRAINING PROCEDURE

Training an RL agent directly on a real chemical plant
poses risks, especially during exploration. Instead, the
agent can be trained using either plant data (offline RL)
or a simulated environment. Offline RL, which relies on
past experiences, limits exploration. Simulations, however,
allow for a wider variety of experiences through random
actions, enabling greater exploration while avoiding real-
world dangers. Using process simulators provides a safe
and realistic environment for training. However, a simula-
tion may not always accurately represent the real process.
Each gym environment used in training requires an action
and observation space. In our setup, the action space
consists of six actions, and the observation space includes
nine observations, both initialized as continuous due to the
nature of the simulation.
In our experiments, each batch run lasts 230 hours. For
the first 70 hours, the biomass remains in its rapid growth
phase, followed by 160 hours where the RL agent controls
the process, taking actions every hour (160 steps per
episode). While shorter action intervals could be used, as
in Li et al. (2024), we opted for hourly actions to reduce
training time. We also evaluated agent performance with
actions taken every two hours.
Figure 2 illustrates the interaction between the agent,
actions, observations, and rewards. The agent’s policy is
represented as a neural network that maps observations to
actions, aiming to maximize rewards. Each episode begins
with the environment running a predefined recipe for the
first 70 hours, after which the agent takes control.
During each training step, the agent’s action is sent to the
MATLAB simulation via the MATLAB engine API, which
serves new observations after one hour of simulated time.
This loop continues until either all 160 steps are completed
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Fig. 2. Relationship between actions, observations, and
rewards for RL agent training in this work.

or the episode terminates early due to constraint violations
or simulation errors. The reward is based on the obser-
vations: positive rewards are proportional to penicillin
concentration, while violations result in negative rewards
and termination of the episode. Penicillin concentration is
scaled by 1000 to ensure the agent recognizes incremental
improvements, critical for the batch process. Alternative
reward functions, such as yield, are discussed in Section 6.

5. RESULTS

As discussed in Section 2, the chosen RL algorithm uses
information bottlenecks to train compressed policies, with
the compression rate adjustable by the number of bits.
Experiments were conducted with 1-bit, 10-bit, and 15-bit
RPC agents to assess how bit selection affects training and
outcomes. In addition, the impact of two different reward
definitions was evaluated, one using penicillin yield and
the other using penicillin concentration. The relation of
these quantities can be seen in Equation 1,

yieldPEN,total = Vend × Cend +
n∑

i=1

yieldPEN,i︷ ︸︸ ︷
Vi × Ci . (1)

Vend and Cend represent the volume and penicillin concen-
tration in the reactor at the end of a batch, respectively.
For each reactor discharge during the batch, Vi and Ci

denote the corresponding volume and penicillin concentra-
tion, where n represents the total number of discharges.
Table 1 highlights the effect of reward function selec-
tion and bit compression on total penicillin yield. In all
cases, using penicillin concentration as the reward function
resulted in better overall performance. Each agent was
trained for 50,000 steps (approx. 312 episodes), with both
the 1-bit and 10-bit RPC agents outperforming the 15-
bit agent regardless of the reward function. Consequently,
further experiments focused on the 1-bit and 10-bit agents.
The goal of this study is not only to maximize yield but
also to minimize batch-to-batch variation by mitigating
process disturbances. The RPC agents (1-bit and 10-bit)
were trained under specific initial conditions and validated
on 26 unseen conditions. Figure 3 shows the performance



Reward function Penicillin yield at end of batch (Kg)
1 bit 10 bit 15 bit

Penicillin yield 4796 Kg 4940 Kg 3718 Kg
Penicillin concen-
tration

4820 Kg 4961 Kg 4657 Kg

Table 1. Comparison of penicillin yield at end
of batch for different reward functions and bit

resolutions.

Fig. 3. Penicillin yield for 1-bit and 10-bit RPC agent at
different action intervals.

of 1-bit and 10-bit RPC for the train conditions versus
one of the 26 test conditions. The agents were trained
to take actions every hour. Between the 1- and 10-bit
RPC agent, the 1-bit did not violate any constraints and
thus completed the required batch length of 230 hours.
Under test conditions, the 1-bit RPC terminated the batch
prematurely due to a violation of the viscosity constraint.
Interestingly, when the same agent, trained to take actions
every hour, was instructed to act every two hours during
evaluation, it performed better under those conditions
without requiring any retraining. The reasoning behind
this behaviour is discussed in Section 6.

Fig. 4. Effect of different initial PAA concentrations on
the penicillin yield for the trained 10-bit RPC agent
during tests.

Based on the sensitivity analysis by Goldrick et al. (2019),
PAA was identified as the most critical parameter in the
process. Therefore, 26 different initial PAA concentrations
were used to evaluate the performance of the 10-bit RPC
with 1-hour and 2-hour action intervals. As shown in
Figure 4, the impact of varying initial PAA concentrations
on batch yield is clear. Although all PAA concentrations
resulted in yields above the minimum yield of 2000 kg

(Goldrick et al. (2019)), the 1-hour action intervals showed
greater variability, with some batches deviating signifi-
cantly from the mean. In contrast, the 2-hour action inter-
vals produced superior performance with more consistent
yields. The performance differences between the 10-bit
RPC agent acting every hour versus every two hours are
discussed in detail in Section 6.

Fig. 5. Individual process faults and their impact on the
performance of the 10-bit RPC agent taking actions
every hour.

In a real process, disturbances to the process in the form
of sensor noise and faults can affect the overall process. To
see how a 10-bit RPC agent behaves under such conditions,
it is tested against the faults (which are taken from a real
process by Goldrick et al. (2019)) shown in Figure 5.
Figure 5 shows individual faults in the process and the
performance of the 10-bit RPC agent when all faults are
activated simultaneously. Despite the drop in the yield, it
still meets the minimum yield requirement. Even with all
the faults activated, the 10-bit RPC agent can complete
the entire batch without any violation of the constraints
and still achieve yields much higher than the minimum
requirement.

6. DISCUSSION

Three versions of RPC agents—1-bit, 10-bit, and 15-
bit—were trained using two types of reward functions. The
choice of reward function is critical for training an RL
agent. In this study, we utilized penicillin concentration
and penicillin yield as reward functions, which are related
as shown in Equation 1. The RL agent performed better
when penicillin concentration was used as the reward func-
tion. To understand this, we analyzed the plots of penicillin
yield and concentration. As illustrated in Figure 6, the
penicillin yield profile exhibits small dips and appears
noisier compared to penicillin concentration. These dips
occur due to vessel discharges implemented to prevent
overflow; while they do not affect penicillin concentra-
tion, they impact the mixture volume, which is related
to penicillin yield (as shown in Equation 1). This results
in a smoother reward function for penicillin concentration,
enhancing training performance.



Fig. 6. Profile comparison of the penicillin yield and
concentration for a 10-bit RPC agent taking hourly
actions during a test batch.

Fig. 7. Impact of the choice of action interval length for
10-bit RPC agent.

During tests under one set of initial conditions, the 10-bit
RPC agent, trained to take actions every hour, exhibited
inferior performance compared to when it was configured
to take actions every two hours. This observation can
be explained by analyzing Figure 7: When actions were
taken every hour, the batch process failed to complete
due to a violation of the viscosity constraint. In contrast,
when actions were taken every two hours with the same
agent and process conditions, significantly higher penicillin
yields were achieved without violating any constraints.

The reason for this disparity can be understood by ex-
amining the discharge rates depicted in Figure 7. With
longer action intervals, the vessel discharge was delayed
for a longer period, allowing for more available volume for
biomass growth and extending the residence time in the
vessel. Given the slow dynamics of biochemical processes,
it takes time for the effects of the agent’s actions to
become observable. With a longer residence time, these
effects are more pronounced, enabling the agent to make
better informed decisions based on the observed outcomes.
When actions were taken every hour, the agent could not
effectively control the viscosity, as subsequent actions were
initiated before the full effects of the previous actions had
manifested. As a result, the performance of the 10-bit RPC
agent acting every 2 hours under varying input conditions
achieved high penicillin yields with a small variation com-
pared to the same agent acting every 1 hour (see Figure
4). We therefore strongly advise to adjust an RL agent’s
action interval to the observed process dynamics.
The discharge could have been treated as an additional
action by the RL agent, but we chose it to be a discrete
operation (either fully open or fully closed between the
action intervals), depending on whether the vessel was at
risk of overflowing. If discharge were to be treated as an
additional action, due to the chosen RL algorithm, it would
need to have continuous values just like the other actions in
this study. For future work, an alternative approach could
involve a multi-agent system, where one agent is solely
responsible for controlling the discharge and dynamically
adjusting the flow rate. However, if all discharge flow rates
are non-zero, the process would no longer be a fed-batch
process but would resemble more of a continuous process.
Furthermore, under different process faults (all active in
the same batch) none of the batch yields were below target
(or minimum) in this work. This shows the generalization
capabilities of the 10-bit RPC agent to take actions at
different intervals, reject disturbances, achieve high peni-
cillin yields and operate safely (no violation of constraints)
without the need for retraining, inclusion of disturbances
or other prior knowledge in the agent training. Finally,
Figure 8 compares the best RL agent from this work
with other implementations. As reported in Goldrick et al.
(2019), when operated manually or with an optimal prede-
fined recipe using Sequential Batch Control (SBC), there
were batches below target. With the help of Raman Spec-
troscopy for online measurements and PI controller to con-
trol the PAA concentration which is a critical parameter,
the performance was improved as no batches were below
target and the overall penicillin yield increased by 20% in
comparison to SBC. Nonlinear MPC implemented by Li
et al. (2024) was able to increase the yield by 37% (with
respect to SBC). However, it assumed a full state feedback
which means all 35 observations were recorded and used
to get the next optimal control action. Soft Actor Critic
was also implemented as an RL controller (Li et al. (2024))
and trained with 16 observations for 1 million steps. The
SAC implementation was able to achieve yields 35% higher
than SBC, resulting in performance comparable to that of
NMPC. Finally, the 10-bit RPC implementation in this
study was able to achieve the highest increase of 67% in
penicillin yield compared to SBC while requiring the least



number of observations (9 observations) all of which are
actually measurable in a process.

Fig. 8. Comparison of average penicillin yields for different
control strategies on IndPenSim.

7. CONCLUSION

In this study, RPC was chosen as the algorithm for RL
agents trained as high-level controllers in a penicillin pro-
cess simulation, with the goals of optimizing penicillin
yield, ensuring safe operation, and generalizing to unseen
scenarios. Among all trained agents, the 10-bit RPC RL
agent demonstrated superior performance, showing adapt-
ability and robustness across unseen conditions, highlight-
ing its real-world applicability. The agent’s ability to gen-
eralize behaviors, including executing actions outside its
training range, underscores its flexibility.
Even when encountering disturbances, the agent consis-
tently met control objectives, maintaining yields above the
minimum requirement. These findings suggest that the RL
agent can adapt to system changes, a crucial feature for
dynamic industrial settings. Achieving these results with
fewer training steps and observations makes the approach
practical for deployment, where data collection can be
costly. Its strong performance with limited data inputs
further streamlines AI-driven control in industrial appli-
cations.
These results align with the broader vision of increasing
autonomy in industrial systems, as outlined by Gamer
et al. (2020), where AI-driven methods like reinforcement
learning can enhance the adaptability and efficiency of
complex processes in dynamic environments.
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