
Metabolic Modeling of Arthrospira sp.
PCC 8005 - Network Definition and

Experimental Validation

M. Maton ∗ B. Leroy ∗∗ A. Vande Wouwer ∗

∗ Systems, Estimation, Control and Optimization (SECO) Laboratory,
University of Mons, Mons 7000, Belgium.

∗∗ Department of Proteomics and Microbiology, Research Institute of
Biosciences, University of Mons, Mons 7000, Belgium.

Abstract: Metabolic modeling is a valuable tool for studying microbial metabolism and
has broad applications across fields like biotechnology, medicine, and environmental science.
The construction of metabolic networks is crucial in this process, though their development
presents significant challenges. While genome-scale networks offer detailed insights, they are
computationally demanding, and smaller networks are often too simplified. This study discusses
a methodology to derive a metabolic network of intermediate size by combining biological
knowledge, experimental data, and mathematical tools to refine the network definition. The
present study focuses on the modeling of photosynthetic cyanobacteria Arthrospira sp. PCC
8005 and experimental validation is achieved using cultures in continuous mode. The procedure
is effective, yielding promising results, and metabolic analyses show predictive capabilities that
are in agreement with existing studies while studying the impact of different nitrogen sources
on the growth of cyanobacteria.
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1. INTRODUCTION

Photosynthetic cells are important both ecologically and
economically and play key roles in energy production,
oxygen generation, carbon cycling, and supporting biodi-
versity. In particular, cyanobacteria such as Arthrospira
platensis have significant biotechnological value due to
their high nutritional value (rich in proteins, vitamins,
minerals, and essential fatty acids) and their ability to
assimilate various nitrogen sources, to fix carbon dioxide
and produce oxygen. With such impressive features, these
cyanobacteria appear to be the best nutritional resource
for long-haul space exploration missions. In that context,
the European Space Agency has developed the concept of a
self-sufficient artificial ecosystem, known as the MELiSSA
loop, with the goal of producing part of food and oxygen
while contributing to water and waste recycling in harsh
environments such as space conditions (Hendrickx et al.,
2006). To fully harness the biotechnological potential of
these organisms, a deeper understanding of their metabolic
capabilities is essential.
Among the realm of possible methods to study microbial
metabolism, metabolic modeling is a powerful tool to
study the flow of metabolites through different biochemical
pathways, identify metabolic bottlenecks, and predict re-
sponses to genetic modification or environmental changes
(Stephanopoulos et al., 1998). In the case of A. platensis,
which has a complex metabolism involving both photo-
synthetic and heterotrophic processes, metabolic modeling
can provide insight into optimizing its growth conditions,

enhancing biomass production, or maximizing metabolite
yields. The latter are important metabolic objectives, es-
pecially for bioregenerative life-support systems.
However, the construction of a comprehensive metabolic
network is a complex task that requires integrating ge-
nomic, proteomic, and metabolomic data. On the one
hand, genome-scale metabolic reconstructions (GEMs) are
widely used despite multiple challenges (Covert et al.,
2001; Price et al., 2003; Reed and Palsson, 2003). As a
matter of fact, the completeness and accuracy of genome
annotations can vary, leading to gaps in metabolic path-
ways that need to be filled using computational tools or
experimental evidence. Also, to ensure the consistency and
robustness of such networks, the use of methods based on
convex analyses is required (Schuster and Hilgetag, 1994;
Schilling et al., 2000; Klamt et al., 2003; Orth et al., 2010)
and even though the latter methods are effective, they can
become computationally costly with the size of the net-
work. On the other hand, smaller metabolic networks have
been deduced to facilitate the analyses and the application
of control strategies (Provost and Bastin, 2004; Zamorano
et al., 2010; Fernandes de Sousa et al., 2016). Still, they
are simplified and omit parts of the metabolic interactions.
In any case, organisms like A. platensis have unique
metabolic traits, such as specialized pathways for photo-
synthesis and nitrogen fixation, which may not be well-
documented in existing databases. Furthermore, the sto-
ichiometry and thermodynamics of biochemical reactions
must be carefully curated to avoid inconsistencies in the
network. These challenges underscore the importance of



Fig. 1. Methodology and algorithmic scheme of the math-
ematical methods to get mid-size metabolic networks

systematically refining and validating the metabolic model
to ensure it accurately reflects the organism’s metabolic
potential. In the case of A. platensis, experimental valida-
tion is particularly valuable given the organism’s metabolic
flexibility and its ability to adapt to varying environmental
conditions, such as light intensity and nutrient availability.
For this purpose, this paper discusses a procedure to derive
a mid-size metabolic network structure and refine the
network definition using experimental data. The modeling
methodology is iterative and combines biological knowl-
edge and mathematical methods, leading to a metabolic
network comprised of a couple hundred reactions, which is
detailed enough to capture the complexity of the cellular
metabolism yet still simple to analyze and use at the
process level. Experimental validation is then achieved
considering the cultivation of Arthrospira sp. PCC 8005 in
continuous mode and techniques of metabolic flux analysis
(MFA).
The paper is organized as follows. Sec. 2 describes the mod-
eling procedure and focuses on the modeling of Arthrospira
sp. PCC 8005. Sec. 3 covers the experimental validation of
the metabolic network to obtain a robust model, discusses
the results, and particularly the impact of the different
nitrogen sources on the growth of the organisms. Finally,
conclusions are drawn in Sec. 4.

2. MODELING PROCEDURE

The modeling procedure is depicted in Fig. 1 but is not
the main focus of this article. The main steps of the
algorithmic scheme are outlined for the sake of clarity and
are applied to the modeling of prokaryotic microorganisms.
The original aspect of the procedure lies in the use of
mathematical methods sequentially and iteratively while
ensuring the consistency of the network.
First, a preliminary set of metabolic reactions is selected
(bottom-up approach). The core metabolic pathways are
common to most microorganisms and can be found in
literature and biochemistry textbooks (Nelson and Cox,
2008). At this stage, genomic studies can be useful in

identifying specific metabolic functions and deriving the
corresponding intracellular reactions. To simplify the net-
work and reduce its dimensionality, lumping techniques
should be employed. In this case, lumping refers to the
process of grouping similar chemical species or reactions
into a single entry to facilitate the mathematical modeling
(Martinez, 1990).
Additionally, it is essential to assess the reversibility of
chemical reactions to ensure the network’s consistency. De-
termining whether a reaction is reversible involves several
factors, such as thermodynamics, kinetics, and physiologi-
cal context. In this study, the standard free energy change
∆G is used as a criterion, as well as enzyme regulation,
i.e., the enzyme’s capability to catalyze a reaction in both
directions depending on cellular conditions.
Mathematically, the metabolic reactions are organized into
a matrix representation N , which defines the stoichiomet-
ric matrix of the network. It is a m × n matrix, where m
is the number of metabolites, n is the number of chemical
reactions, and the entry Nij reflects the stoichiometry of
the metabolite i involved in the jth reaction. From this
matrix representation, a series of mathematical methods
can be applied.
For network consistency, a test ensuring elementary mass
conservation is required. It consists of verifying that each
reaction in the network balances the atoms of each chem-
ical element between reactants and products. It is per-
formed by analyzing the stoichiometric matrix to confirm
that the number of atoms (especially of carbon, nitrogen,
and phosphorus) remains consistent across all reactions. It
is important to note that an average atomic composition
is considered for the mass balance of biomass and macro-
molecules. Then, constraint-based methods are exploited
to limit the possible solutions and explore the solution
space. The basis of such methods lies in the addition
of constraints that govern the operation of the network
in a steady state. By applying the pseudo-steady state
assumption on the general equation of internal metabolite
dynamics and considering that network fluxes v are subject
to positivity constraints, the following convex analysis
problem is obtained:

{Nv = 0 ; v ≥ 0} (1)

However, most large-scale metabolic networks are under-
determined, i.e., there are more biological reactions than
metabolites, and no unique solution exists. In that con-
text, additional constraints can be applied to reduce the
solution space further. For instance, flux coupling analysis
(FCA) is a framework particularly useful for studying
the topological and flux connectivity features of large
networks. This method involves solving a series of lin-
ear programming (LP) problems and helps to reduce the
network’s dimensionality by identifying pairs of metabolic
fluxes. As introduced in (Burgard et al., 2004), three types
of couplings are commonly defined: directional, partial,
and full couplings. Pairs not belonging to one of these
categories are considered uncoupled, which defines blocked
reactions, i.e., reactions that cannot carry a flux under
steady-state conditions for a given uptake scenario. In this
study, finding blocked reactions helps to identify incom-
plete pathways, highlight errors or omissions in metabolic
reconstructions, and potentially reveal issues regarding re-
actions reversibility. Mathematically, it consists of solving
the following LP problem once for every flux:



maximize vj (2)

subject to

N∑
j=1

Nijvj = 0, ∀i ∈ M (3)

vuptakej ≤ vuptake
max

j , ∀j ∈ Ntransport (4)

vj ≥ 0, ∀j ∈ N (5)

In this formulation, reversible reactions are represented as
two irreversible reactions in opposite directions, meaning
that if the maximum flux value is zero, then the reaction is
unusable or blocked, given the uptake-secretion scenario.
Similarly, flux balance analysis (FBA) is another popular
constraint-based method. This approach assumes optimal
cell behavior and involves calculating an optimal flux
distribution v that either maximizes or minimizes a specific
objective function Z = cT v such that:

vopt = max
v

(
Z
)
s.t. {Nv = 0 ; v ≥ 0 ; vl ≤ v ≤ vu} (6)

where c represents weights that quantify the contribution
of each reaction to the objective function, while vl and vu
are vectors defining the lower and upper bounds.

Using in-silico data to quantify intracellular mechanisms
and applying the iterative modeling procedure depicted
in Fig. 1 lead to a metabolic network composed of 171
metabolites and 198 reactions, including energy aspects
such as the proton motive force (PMF) barely outlined in
existing studies. Details are indicated in Table 1.

Table 1. Information related to the metabolic
network using the iterative procedure

iter. # met. # rnx # blocked rnx

1 157 167 39

2 170 191 16

3 161 182 7

4 161 179 7

5 154 172 0

6 155 182 0

7 171 198 0

3. EXPERIMENTAL VALIDATION

This section is devoted to the experimental validation of
the metabolic network established in Sec. 2. Data were
provided by the Department of Proteomics and Microbiol-
ogy of the University of Mons. Information relative to the
cell line, the media, the bioreactor mode operation and the
analysis methods can be found in (Deschoenmaeker et al.,
2017). Methods for experimental validation are shown in
Fig. 2.

3.1 Experimental Conditions and Data Processing

Photo-bioreactor (PBR) started under batch mode and
continuous feeding started after 7 days. For the continuous
PBR experiments, cyanobacteria were incubated in a radi-
ally illuminated 2L cylindrical double jacket reactor under
a constant light power density of 125 W.m−2 with the agi-
tation settled at 150 rpm. The pH was automatically main-
tained at 8.5 with HCl (0.5 M) whereas the dilution rate
was kept around 0.2 per day with fresh Zarrouk medium

Fig. 2. Scheme of methods for experimental validation

(30mM-N NaNO3 or a mixture of nitrogen sources).
Experimental data include biomass productivity and oxy-
gen productivity (in g.L−1.d−1) ; residual nitrogen concen-
tration (i.e., NO−

2 , NO−
3 , NH+

4 and urea in mM) ; pigments
concentration (i.e., chlorophylla in g.L−1) ; TC, TOC,
TIC and TN in biomass and supernatant (in mg.L−1) and
protein, lipid, and carbohydrate content in biomass. O2 is
monitored in exhaust gas (purging with air to prevent an
increase in the oxygen saturation of the medium).

In metabolic flux analyses conducted in Sec. 3, the light
intensity is expressed in a number of moles of photons per
square meter per second (or Einstein per square meter per
second: E.m−2.s−1) by assuming an average wavelength
λ = 600 nm, expressing the energy of a single photon
with Planck’s equation and using Avogadro’s number.
Experimental uptake and secretion rates are expressed in
mmol.g−1

DW .h−1 using smoothing splines and differentia-
tion methods. Biomass concentration X (DCW, g.L−1)
is retrieved from the biomass productivity and oxygen
concentration is computed by numerical integration when
the oxygen productivity is known at different time instants
(cumulative integration).

3.2 Mathematical Analysis

Because the network identified in Sec. 2 is highly underde-
termined and the number of experimental measurements
is limited, a network reduction is suggested using FCA.
As noticed in (Burgard et al., 2004), flux coupling anal-
ysis is also particularly useful to simplify over-detailed
networks. Doing so, the metabolic network is reduced to
175 biochemical reactions and 152 metabolites by simplify-
ing the metabolism of tetrahydrofolate and the cofactors’
metabolism.



Before proceeding to metabolic flux analyses, mathemati-
cal tools turn out to be interesting for assessing the consis-
tency of the network. In this regard, ensuring the formu-
lation of a well-posed problem is essential. Specifically, it
involves determining whether certain pathways within the
metabolic network connect non-measured inputs to non-
measured outputs. If such pathways exist, they can lead
to an unbounded set of solutions for the corresponding
reaction rates, making the system’s behavior difficult to
interpret and predict. In that respect, taking into account
experimental measurements, Eq. (1) becomes:(

N 0
Nm −νm

)
.

(
v
1

)
= 0 (7)

where νm is the vector of specific uptake and excretion
rates of the measured external species, and Nm is the sto-
ichiometric matrix of extracellular measurements. There-
fore, checking if the system is well-posed is equivalent to
computing the elementary flux modes collected in a matrix
E of the matrix in Eq. (7). The system is said to be well-
posed if there is no null column in E. In this case, after
using metatool (Pfeiffer et al., 1999), a matrix containing
303583 EFMs is obtained. After analysis, no null column
is identified, meaning the problem is well-posed.
Furthermore, calculability/observability analysis is also
relevant to examine underdetermined networks, as dis-
cussed in (Klamt et al., 2002), and consists of identifying
fluxes that can be uniquely determined. In this context,
it enables an improved interpretation of flux distribu-
tions, avoiding misleading conclusions from non-unique
solutions, but it can also guide experimental efforts if
additional experimental measurements are needed. After
computation, it was determined that only 32 fluxes are
calculable when the growth rate is considered a well-known
flux.

3.3 Direct Validation

This study focuses on the quasi-steady state under con-
stant light regimes, using the full spectrum of metabolic
analysis tools. Several tests have been made to validate the
network on the basis of the iterative procedure suggested
in Fig. 2. However, inconsistencies have been observed
after a detailed analysis of the intracellular flux values.
An example is related to the chemical reactions associated
with nitrogen assimilation, where the reaction rates adjust
to maintain a balance between Fered and Feox, making
it impossible to impose experimental constraints on more
than one nitrogen source. To solve the problem, one ap-
proach is to disregard Fe, i.e., iron-sulfur proteins that
function as electron carriers, in the network definition or
to add the corresponding transport reactions. This incon-
sistency issue highlights (i) the importance of validating
the network with experimental data in addition to in-silico
validation, (ii) the necessity of performing flux consistency
checks, and (iii) the necessity of an iterative strategy both
for network definition and experimental validation.

Experimental validation of a metabolic network is quite
challenging because all available data (uptake and secre-
tion rates, metabolite concentrations, and flux measure-
ments if applicable) are used to constrain the system.
Nevertheless, several strategies can be applied to evaluate

Fig. 3. Results of flux variability analysis

the validity and reliability of the model, as depicted in
Fig. 2. For direct validation, it is proposed to perform flux
variability analyses (FVA), flux consistency checks via the
analysis of a flux map and to compare the outcomes with
published data from literature and databases. Initially, a
series of fundamental tests is conducted to verify the coher-
ence of the network. For instance, flux variability analysis
is achieved by imposing only experimental uptake rates
and ensuring experimental secretion rates belong to the
predicted intervals. Also, FBA with biomass optimization
is performed by imposing both experimental uptake and
secretion rates and ensuring that the predicted optimal
value for the growth rate is higher than the measured
growth rate. Doing these analyses is a prudent approach
to enhance confidence in analyses and verify the model
accurately reflects the organism’s growth potential and
efficiency. Subsequently, all experimental constraints are
applied, and FVA is conducted to explore the range of
possible fluxes through each reaction within the network.
Fig. 3 displays the outcomes of FVA performed at a spe-
cific time instant for the 30mM-N nitrate feeding case.
Reactions r106 to r121 are related to the synthesis of lipid,
reactions r122 to r129 are related to the synthesis of car-
bohydrates and reactions r130 to r134 are related to the
biosynthesis of chlorophyll. Narrow intervals indicate that
the predictions are more reliable, whereas broader intervals
suggest that the predictions are less significant, indicating
that the model could benefit from additional constraints.
Furthermore, when the interval narrows to a single value,
it indicates that the corresponding flux is calculable. These
results are compared with an analysis conducted on a
genome-scale network of 875 reactions in (Klanchui et al.,
2012) and roughly similar observations are noticed, i.e.,
larger intervals for reactions related to the central carbon
metabolism and smaller intervals for anabolic pathways.

FBA is also conducted to analyze the flux distribution of
the model. It is performed by imposing the experimental
uptake and secretion rates and the growth rate while
maximizing ATP production. After analysis of the flux
map, the results are in agreement with existing studies
(Baroukh et al., 2015). As depicted in Fig. 4, the regime



Fig. 4. Part of the flux map at a specific time instant for
the 30mM-N nitrate feeding case

is characterized by high fluxes in the photosynthetic path-
ways and the activation of the Calvin-Benson cycle. Up-
per glycolysis operates in the glyconeogenic direction to
produce carbohydrates and sugar precursors metabolites
(PEP, G6P and R5P), essential for growth. The pentose
phosphate pathway (PPP) is in the reductive mode and
ATP synthesis is driven by the PMF and is synthesized
via photophosphorylation and oxidative phosphorylation
(in addition to substrate-level phosphorylation). Also, it is
interesting to note that glyceraldehyde-3-phosphate (G3P)
is mainly produced via the Calvin-Benson cycle. The re-
ductive PPP contributes a little, but glycolysis (i.e., the
breakdown of fructose-1,6-bisphosphate) is not a major
pathway for G3P production, particularly when the or-
ganism is in a photosynthetic state. Besides, the analysis
of the whole map shows the activation of the citric acid
cycle and the GS-GOGAT pathway and the urea cycle are
involved for nitrogen assimilation.

Another objective of this study is to assess the impact of
different nitrogen sources on the metabolism of Arthrospira
sp. For this purpose, FBA are performed using experimen-
tal data for different feeding strategies (30mM-N nitrate ;
15mM-N nitrate + 15mM-N nitrite ; 15mM-N nitrate +
15mM-N urea ; 30mM-N nitrate in high salinity medium).
The results of these analyses will also allow the validation
of the network structure by comparing the predicted intra-
cellular fluxes with known biological principles. The time
evolution of some intracellular fluxes is shown in Fig. 5.
First, it is noticed that the production rates of cyanophycin
and arginine are greater when urea is the nitrogen source
because of the faster production of ammonia and then
the rapid synthesis of glutamine and glutamate. The pro-
duction rate of chlorophyll is also larger because urea
can be hydrolyzed into CO2 thus increasing the photo-
synthetic activity. In contrast, when nitrate or nitrite are
the main nitrogen sources, more ATP and reducing power
are needed for nitrogen assimilation, potentially reducing
growth efficiency in certain conditions. Besides, cultures
grown on nitrate or nitrite may produce lower pigment
levels than urea-fed cultures, as more energy is diverted
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Fig. 5. Time evolution of some intracellular fluxes for
different feeding strategies

towards nitrogen reduction. A deeper analysis of the in-
tracellular fluxes shows that it increases the metabolic
burden on glycolysis, the acid citric cycle and the PPP,
as these pathways provide ATP, NADH and NADPH
necessary for nitrogen assimilation. These results agree
with the study led by (Deschoenmaeker et al., 2017) on
the same strain. Under high salinity, a larger demand for
ATP and NADPH is required to maintain osmotic balance
and repair oxidative damage. An increased production of
ammonia is noticed, increasing the activity of ornithine
cycle (impacting the production rate of arginine) as a way
to manage the nitrogen overload that can occur when the
GS-GOGAT pathway efficiency is reduced. Furthermore,
to protect cellular structures from osmotic stress, the cell
can increase the synthesis of glycine and proline that
act as osmoprotectant solutes in high-salinity conditions.
Therefore, the predicted fluxes are biologically coherent
and align with established biological knowledge, definitely
validating the metabolic network.

3.4 Cross-Validation

Cross-validation is quite complex when applied to metabolic
networks because all available data are typically used to
constrain the model. Most cross-validation strategies in
MFA focus on comparing predicted fluxes with experimen-
tal fluxes when 13C-labeled flux data are available as a
ground truth. Such data are not available for the present
study. However, three experiments have been conducted
using the same feeding strategy, i.e., 30mM-N nitrate feed-
ing. Consequently, this study suggests performing a form of
cross-validation by computing mean exchange fluxes from
two datasets (training phase) to predict intracellular fluxes
via FBA, which will be then compared against the results
from the third dataset (test phase) using flux similarity
metrics. The idea is to test how well the general trends
in flux distributions generalize when faced to a completely
new set of constraints. Results are summarized in Table



2 for all folds, and relative flux error (RFE) is used as a
metric (see (Kim et al., 2016) for more information). It
measures the relative difference between two flux distribu-
tions and is normalized such that it is comprised between 0
(i.e., perfect similarity) and 1 (i.e., complete dissimilarity).
The proposed indicator is defined as follows:

RFE =
1

I

I∑
i=1

(
1

J

J∑
j=1

|ftrain,i,j − ftest,i,j |
max(|ftrain,i,j |, |ftest,i,j |, ϵ)

)
(8)

where ftrain,i,j and ftest,i,j are the ith flux at time instant
j from the training set or the test set, respectively. ϵ
is a small constant to avoid division by zero (typically,
ϵ = 1e−6). Therefore, the analysis of the RFE shows a high
similarity between fluxes, highlighting a robust network.

Table 2. Relative flux error for all folds

FOLD (1-2) VS 3 FOLD (1-3) VS 2 FOLD (2-3) VS 1

RFE 0.0518 0.0538 0.0581

4. CONCLUSION

This work validates the definition of a mid-size metabolic
network for Arthrospira sp. PCC 8005 using experimental
data and two iterative strategies. First, a modeling pro-
cedure that combines biological knowledge and a series of
constraint-based methods is applied to derive a first draft
of the network consistent with in-silico data. Then, ex-
perimental validation is achieved with a refinement of the
metabolic network if needed. The results are promising,
and metabolic analyses show predictive capabilities that
concord with existing studies. Furthermore, the impact of
different nitrogen sources on the growth of cyanobacteria
has been addressed, highlighting that urea is, overall, a
better nitrogen source compared to nitrate and nitrite and
that ammonia shows a repressive effect on the nitrate-
assimilation pathway.
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