
Nonasymptotic E-Optimal Design of
Experiments for System Identification Using

Sign-Perturbed Sums ⋆

Masanori Oshima ∗ Sanghong Kim ∗∗ Yuri A. W. Shardt ∗∗∗

Ken-Ichiro Sotowa ∗

∗ Department of Chemical Engineering, Kyoto University, Kyoto
615-8510, Japan (e-mail: masanori.9221.sskt@outlook.jp,

sotowa@cheme.kyoto-u.ac.jp).
∗∗ Department of Applied Physics and Chemical Engineering, Tokyo
University of Agriculture and Technology, Tokyo 184-8588, Japan,

(e-mail: sanghong@go.tuat.ac.jp)
∗∗∗ Department of Automation Engineering, Technical University of

Ilmenau, Ilmenau D-98684, Germany, (e-mail:
yuri.shardt@tu-ilmenau.de)

Abstract: Design of experiments (DoE) helps us to obtain an accurate model using system
identification. However, most DoE methods rely on asymptotic theory and assume availability
of infinite data samples. To overcome this problem, Oshima et al. (2024) proposed a DoE method
that evaluates the data quality using the volume of the nonasymptotic confidence region (CR)
calculated using sign-perturbed sums (SPS) proposed by Csáji and Weyer (2015). This paper
modifies the DoE objective function defined by Oshima et al. (2024) to derive a nonasymptotic
counterpart of the E-optimal DoE, which minimizes the length of the longest axis of the
asymptotic confidence ellipsoid. The proposed data-quality index is defined by the maximum
distance from the center point to the points on the boundaries of the nonasymptotic CR.
Moreover, a necessary condition for the points in the parameter space to be on the boundaries
of the nonasymptotic CR obtained using the SPS method is theoretically derived. Based on
this condition, an algorithm to calculate the maximum distance is proposed. The proposed
nonasymptotic E-optimal DoE was validated in a numerical case study, where a 2-input, 3-
output ARX system was targeted. As a result, it was shown that the nonasymptotic E-optimal
DoE provides a more accurate model compared with the asymptotic E-optimal DoE.

Keywords: system identification, design of experiments, finite-sample data, nonasymptotic
confidence region, E-optimal design

1. INTRODUCTION

In process systems, dynamic models are often built using
system identification, where the model parameters are
estimated using only the time-series data of the input and
output variables. This estimated model is used in model-
based control, such as model predictive control (MPC)
(Morari and H. Lee, 1999), to realize advanced operations,
such as minimizing energy consumption while satisfying
the requirement for product quality. Using an accurate
model in model-based control is essential to obtaining
optimal results from such advanced operations.
The accuracy of the model parameters estimated using sys-
tem identification depends not only on the identification
method but also on how the data for identification is col-
lected. Hence, it is crucial to determine the experimental
condition for data collection, such as the amplitudes and
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frequencies of the external input signals, so that useful
data for system identification can be obtained.
Design of experiments (DoE) for identification (Goodwin,
1977) is helpful for this objective. DoE determines the
experimental conditions by maximizing a data-quality
index, which is defined based on the uncertainty of the
model parameters.
The data-quality indices of the classical DoE methods,
which are elaborated by Goodwin (1977) and Shardt
(2022), use the asymptotic confidence region (CR) as an
uncertainty of the model parameters. Let the confidence
probability be p, then the asymptotic CR includes the true
parameter vector with probability p if the least-squares
estimates of the model parameters follow a Gaussian
distribution (Ljung, 1998). This holds either when the
noise innovations of the target system follow a Gaussian
distribution or when the number of samples is so large that
the central limit theorem approximately holds. However,
in the actual situation of the process systems, the noise
innovations do not always follow a Gaussian distribution,



and the number of available samples is often limited.
Hence, the suggestions by the classical DoE methods may
not suit many practical situations. Therefore, a data-
quality index based on a nonasymptotic uncertainty that is
accurate even when applied to such situations is desirable.
The sign-perturbed-sums (SPS) method, which was de-
veloped by Csáji et al. (2012, 2015), provides an exact
nonasymptotic CR of the process parameters. Moreover,
the SPS method does not rely on the assumption that
restricts the distribution of the noise innovation to a par-
ticular type, such as a Gaussian or a uniform distribution.
Instead, it only assumes that the noise innovation has a
symmetric distribution. Hence, the SPS method is applied
to many practical situations without violating the assump-
tion.
As well, the SPS method have been extended to various
types of systems. Csáji et al. (2012) proposed the SPS
algorithm for general single-input, single-output (SISO)
linear systems. Csáji and Weyer (2015) extended the
SPS algorithm to SISO closed-loop systems with linear
processes. Extensions to multivariate systems with or
without closed loops were also proposed by Szentpéteri
and Csáji (2023) and Oshima et al. (2023).
The SPS method has been used for DoE in a few previous
papers (Kolumbán and Csáji, 2018; Oshima et al., 2024).
Kolumbán and Csáji (2018) minimized the expected value
of the volume of the nonasymptotic CR obtained using
the SPS method. However, their DoE problem restricts
the target systems to SISO finite-impulse-response (FIR)
systems, so that it can be solved offline. Hence, it cannot
be applied to more complicated systems, such as multi-
input, multi-output systems with regressors comprised of
sequences of both the past inputs and outputs. Oshima
et al. (2024) solved this problem by defining the data-
quality index based on the volume of the nonasymptotic
CR for multivariate autoregressive exogenous input (ARX)
systems. Furthermore, an approach that iteratively per-
forms a data-collection experiment using Bayesian opti-
mization (BO) (Shahriari et al., 2016) was introduced to
solve the optimization problem of DoE including an objec-
tive function dependent on the outcome of the experiment.
However, all of these use the data-quality index based on
the CR volume, that is, they are nonasymptotic counter-
parts of the D-optimal design. There is no nonasymptotic
DoE method comparable with the E-optimal design, which
quantifies the uncertainty of the model parameters by the
longest axis of the asymptotic CR, which is an ellipsoid.
Thus, this paper proposes a nonasymptotic E-optimal DoE
method based on the nonasymptotic CR obtained using
the SPS method.

2. NOMENCLATURE

Vectors and matrices are written in lowercase and upper-
case boldface, respectively, in this paper. Sets are written
in uppercase blackboard font. In addition, the following
symbols are used:
(1) Z: the set of integers.
(2) Zi≤,≤j = Z ∩ {x ∈ R | i ≤ x ≤ j} for i, j ∈ Z such

that (s.t.) i < j.
(3) Zi≤ = Z ∩ {x ∈ R | x ≥ i} for i ∈ Z.

(4) [a, b]i = {[x1, · · · , xi]
⊤ ∈ Ri | a ≤ xi′ ≤ b,∀i′ ∈

Z1≤,≤i} for a, b ∈ R and i ∈ Z2≤
(5) ∅: the empty set.

3. BACKGROUND

3.1 Target system

The target system is an M -input, N -output ARX system.
The outputs, inputs, and noise innovations at time index
t are yt = [y1,t, · · · , yN,t]

⊤, ut = [u1,t, · · · , uM,t]
⊤, and

et = [e1,t, · · · , eN,t]
⊤. Thus, the process of interest is

yt =

K∑
k=1

Akyt−k +

L∑
l=1

Blut−l + et, (1)

where K and L are the maximum time delays of the
outputs and inputs of the process, Ak ∈ RN×N and
Bl ∈ RN×M are the process parameters.
Let τn,m ∈ Z1≤,≤L and τn,m ∈ Zτn,m≤,≤L be respectively
the minimum and maximum time delays between yn,t and
um,t. Then, the number d of the process parameters is

d = KN2 +

N∑
n=1

M∑
m=1

(τn,m − τn,m + 1), (2)

and Eq. (1) is transformed into
yt =Φ⊤

t θ
∗ + et, (3)

Φt =

ϕ1,t 0
. . .

0 ϕN,t

 , (4)

ϕn,t =[−y1,t−1, · · · ,−y1,t−K , · · · ,
− yN,t−1, · · · ,−yN,t−K ,

u1,t−τ
n,1

, · · · , u1,t−τn,1
, · · · ,

uM,t−τn,M
, · · · , uM,t−τn,M

]⊤, (5)
where θ∗ ∈ Rd and Φt ∈ Rd×N are the true parameter
vector and the regressor matrix, respectively.
T samples of yt and ut are collected in the process of
Eq. (1) or Eqs. (3) to (5), based on which θ∗ is estimated
using least-square estimation. The least-squares estimates
of θ∗ are denoted by θLS.

3.2 Sign-perturbed sums

The SPS method (Csáji et al., 2012; Csáji and Weyer,
2015; Csáji et al., 2015; Szentpéteri and Csáji, 2023;
Oshima et al., 2023) examines as many parameter vectors
as possible using the following procedure for finding the
set of the points included in the CR. The SPS method
generates R sets of time series of noise innovations by
randomly perturbing the signs of the noise innovation
estimated using a parameter vector θ of interest and the
original input-output data obtained in the target system.
Then, R sets of input-output data are generated from
the simulation of the model with θ that is driven by the
generated noise innovations. The generated data sets are
compared with the original data set in the Euclidean norm
of a vector index, called the reference sum for the original
data set and sign-perturbed sums for the generated data
sets. If the norm of reference sum is smaller than the R̃-th



largest norm of sign-perturbed sum, then the SPS method
determines θ is in the target region, that is,

θ ∈ DSPS if and only if Rank(θ) ≤ R− R̃ (6)
where DSPS is the CR obtained using the SPS method, and
Rank(θ) expresses the rank of the reference sum in the
ranking of the norms of reference sum and sign-perturbed
sums from the smallest to the largest (see Appendix. A).
R ∈ Z1≤ and R̃ ∈ Z1≤,≤R−1 are the hyperparameters of
the SPS method that determine the confidence probability
pSPS of DSPS as

pSPS = 1− R̃

R
. (7)

Previous papers on the SPS method have mathematically
proved that the actual confidence probability of DSPS is
exactly equal to pSPS, which makes the SPS method a
reliable tool to evaluate the nonasymptotic CR. Further-
more, the exactness of the SPS method does not rely on
the values of R and R̃. In the case of multivariate ARX
systems, the following assumptions are made for the proof
(Oshima et al., 2023):
A.1 {en,t} are independent, and the probability density

function (PDF) of each en,t is symmetric about 0.
A.2 The other external signals are independent of {en,t}.
A.3 The model has the same structure as the system given

by Eqs. (3) to (5).
Note that A.1 simply requires the PDF of the noise
innovation to be a symmetric function and does not require
a specific type of PDF such as a Gaussian distribution.
This allows us to apply the SPS method to practical cases
where the PDF of the noise innovation is not accurately
known.

4. METHOD

This section describes both asymptotic and nonasymptotic
DoE methods. Both of the DoE methods commonly op-
timize the design variables χ, which corresponds to the
properties of the external input signals, such as frequen-
cies. On the other hand, the objective functions of the
asymptotic and nonasymptotic DoE methods are different,
which are described in the sections below.

4.1 Asymptotic E-optimal objective function

Asymptotic E-optimal DoE maximizes the minimum
eigenvalue of the Fisher information matrix F , that is,
the asymptotic E-optimal objective function JA is

JA = ln(λmin(F )), F =
1

T

T∑
t=1

ΦtΦ
⊤
t , (8)

where λmin(·) is a function that returns the minimum
eigenvalue of the input matrix. Moreover, the inverse of
the minimum eigenvalue of F corresponds to the length lA
of the longest axis of the asymptotic CR DA (Franceschini
and Macchietto, 2008), which is a d-dimensional ellipsoid
with center θLS (Ljung, 1998). Hence, JA is expressed
using lA as follows:

JA = ln((lAT )
−1) + C, (9)

where C is a constant that depends on the confidence
probability and the variance of et.

4.2 Nonasymptotic E-optimal objective function

Based on Eq. (9), the maximized objective function JN
of the nonasymptotic E-optimal DoE is defined using a
representative length lSPS of DSPS as follows:

JN = ln((lSPST )
−1). (10)

In Eq. (10), the ratio R̃/R of the hyperparameters is
determined such that 1 − R̃/R will be the probability of
interest. The magnitudes of R and R̃ should be as large
as the computational resources allow. This is because the
stochastic fluctuation of the CR boundary caused by using
random signs is alleviated by increasing R and R̃.
Since DSPS is not necessarily an ellipsoid, the length of the
longest axis is not defined in DSPS. On the other hand,
the length of the longest axis of the asymptotic confidence
ellipsoid can be regarded as the maximum value of the
distances between θLS and any points in DSPS. Based on
this notion, let lSPS be defined as

lSPS = max
θ∈DSPS

∥θ − θLS∥. (11)

4.3 How to calculate lSPS

From the definition of the SPS algorithm, the least-squares
estimates are included in DSPS. Hence, ∥θ−θLS∥ takes the
maximum value for θ ∈ DSPS when θ is on the boundaries
of DSPS. Therefore, let BSPS be the boundaries of DSPS.
Then, Eq. (11) is

lSPS = max
θ∈BSPS

∥θ − θLS∥. (12)

From Eq. (12), it is necessary to find the points on the
boundaries of DSPS. Theorem 1 can be used for this.
Theorem 1. Let DSPS be a bounded region. Then, the rank
of the SPS method satisfies,

Rank(θ) = R− R̃ , ∀θ ∈ BSPS. (13)
2

Proof. See Appendix B.

Theorem 1 implies that Rank(·) always returns R− R̃ for
the points in BSPS. Hence, we can relax Eq. (12) into

lSPS = max
Rank(θ)=R−R̃

∥θ − θLS∥. (14)

Based on Eq. (14), the algorithm to calculate lSPS is
shown as Algorithm 1. The loop from lines 2 to 8 finds
a point in DSPS as far from θLS as possible using quasi-
random sampling based on a Sobol series (Kocis and
Whiten, 1997). The value of δl > 0 used in this loop is
determined to be sufficiently small so that SSPS will not
be an empty set at l = 0. Lines 9 to 12 guarantee that θmax

satisfies the boundary condition in Theorem 1. Moreover,
line 10 is achieved by applying the bisection method to
g(·) = Rank(halfline(·,θmax))− (R− R̃) between κ = 1
and sufficiently large κ s.t. g(κ) > 0.

4.4 Solving the optimization problem of DoE

Since JN and JA in the case of the ARX systems depend
on the outcome of the data-acquisition experiment, they
are maximized by the iterative experiment approach using
BO proposed by Oshima et al. (2024). Let the objective



Algorithm 1 Calculation of lSPS

1: Initialize l = 0.
2: repeat
3: Let Ssobol(l + δl) be a Sobol series in {x + θLS |
∀x ∈ [−(l + δl), l + δl]d}.

4: Dshell ← {θ ∈ Rd | l ≤ ∥θ − θLS∥ ≤ l + δl}
5: Sshell ← {θi ∈ Dshell ∩ Ssobol(l + δl)}Ii=1

6: SSPS ← {θ ∈ Sshell | Rank(θ) ≤ R− R̃}
7: θmax ← argmaxθ∈SSPS

∥θ−θLS∥, l← ∥θmax−θLS∥
8: until SSPS = ∅
9: if Rank(θmax) < R− R̃ then

10: κmax ← κ s.t. Rank(halfline(κ,θmax)) = R− R̃
11: θmax ← halfline(κmax,θmax)
12: end if
13: return lSPS = ∥θmax − θLS∥

function halfline(κ ∈ (0,∞),θmax ∈ Rd)
return κ(θmax − θLS) + θLS

end function

function and the design variables of the DoE be J and χ,
respectively. In addition, let the values of J and χ at the
iBO-th experiment be JiBO

and χiBO
, respectively. Then,

after performing NBO,init experiments to obtain the initial
dataset {Ji,χi}

NBO,init

i=1 , the following procedure is iterated
from iBO = NBO,init to iBO = NBO − 1:

B.1 Based on the dataset {Ji,χi}iBO
i=1, the next point of

χiBO+1 is determined according to the BO algorithm.
B.2 A data-acquisition experiment is performed for T

samples at the experimental condition determined by
χiBO+1.

B.3 Based on the data, the objective function value JiBO+1

is evaluated, and iBO is updated to iBO + 1.
NBOT samples of input-output data are obtained in this
procedure, all of which are used for system identification.
The frequency constraint introduced in Oshima et al.
(2024) is also used to suppress the difference between the
qualities of the T -sample data in the experiment of each
iteration and the overall NBOT -sample data. Therefore,
the optimization problem to be solved is

max
χ

J (15)

subject to∫ T−1

0
Ψri(ω)dω∫ 1

T−1 Ψri(ω)dω
< ϵ, ∀i ∈ Z1≤,≤I , (16)

where {ri} is an external excitation signal, and Ψri(ω) is
the power spectral density of ri for frequency ω ∈ (0, 1).

5. NUMERICAL EXAMPLE

The nonasymptotic E-optimal DoE is compared with
the asymptotic E-optimal DoE in a numerical example.
The hyperparameters R and R̃ in the nonasymptotic
DoE were set to 500 and 25, respectively. To clarify
the difference between the nonasymptotic and asymptotic
objective functions, all the details except for the DoE
objective function are the same in both DoE methods.
The system of interest is an open-loop, 2-input, 3-output
ARX system represented by

Table 1. Initial evaluation points in BO

.

Iteration T1 T2

1 2.01 2.01
2 2.01 50
3 50 2.01
4 50 50
5 26.05 26.05

Fig. 1. Objective function of the asymptotic E-optimal
DoE as a function of the design variables.

Fig. 2. Objective function of the nonasymptotic E-optimal
DoE as a function of the design variables.

yt =

[
0.8535 0

0.9497
0 0.8475

]
yt−1+[

0.68 0.3033
0.2741 0.3014
0.1359 0.5248

]
ut−1 + et, (17)

where et ∈ R3 follows an uniform distribution in
[−0.001, 0.001]3. Note that the seed values used to generate
et are the same for both DoE methods. From Eq. (17), the
system has three poles that take positive real values less
than 1. This means the system is a stable process without
oscillation, which is usual for process systems.
The input signals were

um,t = sin

(
2πt

Tm
+

π

2
(m− 1)

)
, (18)

where {Tm} are the period of the sinusoidal signal, and
the design variables are χ = [T1, T2]

⊤.



Table 2. The optimal design variables T ∗
1 ,

T ∗
2 , and the representative lengths lSPS of

nonasymptotic CRs for the asymptotic and
nonasymptotic E-optimal DoE methods.

DoE method T ∗
1 T ∗

2 lSPS|NBOT

Asymptotic 7.353 31.126 1.219× 10−4

Nonasymptotic 43.763 23.831 1.193× 10−4

Initialization

Fig. 3. The estimation error of the parameters for the
nonasymptotic and asymptotic E-optimal DoE plot-
ted as a function of the number of samples.

The maximum number of BO iterations NBO was 20, and
50 samples were obtained in each iteration, that is, 1000
samples of input-output data were obtained. Since T = 50,
Eq. (16) determines the upper limits of Tm as 50. On the
other hand, the lower limits of Tm should be larger than 2
from the Nyquist sampling theorem. Hence, the optimal
χ ∈ R2 was searched in [2.01, 50]2 in this numerical
example. Moreover, the first five iterations of BO were used
to obtain the initial Gaussian process regression (GPR)
model in BO, that is, NBO,init = 5. The design variables
for the initial five experiments were set to the values in
Table 1.
The GPR models of both objective functions were trained
through DoE as shown in Figs. 1 and 2, respectively. The
model mean fits well with the observed points in both
figures, and hence, the GPR models for JN and JA are
sufficiently accurate to be compared with each other.
The two GPR models are clearly different. Although the
model of the asymptotic method has a single extremum,
the model of the nonasymptotic method has two ex-
trema. Moreover, the models of the nonasymptotic and
asymptotic methods provide the optimal design variables
[T ∗

1 , T
∗
2 ]

⊤ as shown in Table 2.
The least-squares estimate vectors of the nonasymptotic
and asymptotic methods are also different. Calculation of
θLS was performed to evaluate model accuracy, and ∥θLS−
θ∗∥ is plotted as a function of nBOT (nBO ∈ Z2≤,≤NBO) in
Fig. 3. From Fig. 3, the nonasymptotic method provides
the more accurate θLS. Furthermore, the value of lSPS at
nBOT = 1000 was smaller in the nonasymptotic method
as shown in Table 2. Hence, the nonasymptotic E-optimal
objective function improves the performance of system
identification.

6. CONCLUSIONS

A new DoE method using a data-quality index based
on the maximum distance between the points in the
nonasymptotic CR and the center of the nonasymptotic
CR is proposed. In the proposed DoE, the nonasymptotic
CR is calculated using the SPS method. Moreover, to
effectively calculate the maximum distance for the pro-
posed data-quality index, the proof of a theorem regarding
the points on the boundary of the nonasymptotic CR is
provided. The proposed DoE problem is solved in the same
way as in Oshima et al. (2024).
The proposed DoE was compared with the asymptotic E-
optimal DoE, which relies on the length of the longest
axis of the asymptotic confidence ellipsoid, in a numerical
example. As a result, the proposed DoE provided less least-
squares-estimation error by 42.3% at the most.
However, the proposed method still has some open ques-
tions that will be answered in our future work. When the
proposed method is used, a few hyperparameters, such
as T and R, need to be determined, which affects the
performance of the proposed DoE. Although the effect
of T and R on DSPS was studied by Csáji et al. (2015)
and Weyer et al. (2017), how the changes in T and R
affect the performance of the proposed DoE is not clear.
A reasonable guideline to determine T and R should be
derived so that the best performance of the proposed DoE
can be obtained.
Another question is related to the accuracy of lSPS. The
representative length lSPS of DSPS is expressed using the
θmax calculated in Algorithm 1. The vector θmax satisfies
the necessary condition to be on a boundary of DSPS given
in Theorem 1. However, it is not guaranteed that θmax

is the furthest point from θLS in DSPS, and hence, lSPS

may be inaccurate. Although this risk is mitigated by
decreasing δl and increasing I, such adjustments of δl and
I increase the computational cost. Hence, the relationship
between them should be studied in detail to find a set of
reasonable parameters balancing the computational cost
and the accuracy of lSPS.
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Appendix A. PROCEDURE FOR THE SPS METHOD

The procedure for the SPS method is:

S.1 Determine R ∈ Z2≤ and R̃ ∈ Z1≤,≤R−1.
S.2 Generate (R− 1) time series of random-sign matrices
{Ξ1,t}Tt=1, · · · , {ΞR−1,t}Tt=1. The random-sign matrix
Ξr,t ∈ RN×N is a diagonal matrix, whose diagonal
components take the values +1 and −1 with a proba-
bility of 0.5 each.

S.3 Determine DSPS using the following equation:
DSPS =

{
θ ∈ Rd | Rank(θ) ≤ R− R̃

}
, (A.1)

where Rank(θ) is calculated as follows:
S.3.1 Calculate {ϵ0,t(θ)}Tt=1 defined as

ϵ0,t(θ) = yt −Φ⊤
t θ ∈ RN (A.2)

using the input-output data SData,0.
S.3.2 Calculate {ϵ1,t(θ)}Tt=1, · · · , {ϵR−1,t(θ)}Tt=1 as

ϵr,t(θ) = Ξr,tϵ0,t(θ). (A.3)

S.3.3 Generate the input-output data SData,r(θ) using the
simulation of the system with θ using ϵr,t(θ) as
a noise innovation vector, for all r ∈ Z1≤,≤R−1.
Note that the initial condition of the system for the

simulation is the same as when the original data
SData,0 is obtained.

S.3.4 Prepare R regressor matrices {Φρ,t}R−1
ρ=0 , where

Φ0,t = Φt, and Φr,t (r > 0) is composed of the data
SData,r(θ) in the same way as Φt.

S.3.5 Calculate {sρ(θ)}R−1
ρ=0 defined as

sρ(θ) =

(
1

T

T∑
t=1

Φρ,tΦ
⊤
ρ,t

)− 1
2

·

(
1

T

T∑
t=1

Φρ,tϵρ(t,θ)

)
,

(A.4)
where s0(θ) and {sr(θ)}R−1

r=1 are the reference sum
and the sign-perturbed sums, respectively.

S.3.6 Arrange {∥sρ(θ)∥}R−1
ρ=0 from smallest to largest, and

let ∥sρi
(θ)∥ be the i-th smallest.

S.3.7 Define Rank(θ) as
Rank(θ) = i, if and only if ∥s0(θ)∥ = ∥sρi(θ)∥.

(A.5)

Appendix B. PROOF OF THEOREM 1

Let us consider a parameter vector θB ∈ BSPS, then the
points on a half line from θLS to θB are given as

θ(k) = k(θB − θLS) + θLS, k ≥ 0. (B.1)
Since θ(1) = θB is a point on the boundary, Eq. (B.1)
implies that, ∀θB ∈ BSPS, ∃∆k > 0 s.t., ∀∆k ∈ (0,∆k],

θ(1±∆k) ∈ DSPS and θ(1∓∆k) /∈ DSPS. (B.2)
(double sign in the same order)

Furthermore, Eq. (B.2) is transformed as follows:

(B.2)⇔
{
Rank(θ(1± k)) ≤ R− R̃

Rank(θ(1∓ k)) > R− R̃
(∵ From Eq. (6))

⇔


∥s0(θ(1±∆k))∥ ≤ ∥sρR−R̃

(θ(1±∆k))∥
and
∥s0(θ(1∓∆k))∥ > ∥sρR−R̃

(θ(1∓∆k))∥
(∵ From the definition of Rank(·) in Eq. (A.5))
⇔ f(1±∆k) ≤ 0 and f(1∓∆k) > 0 (B.3)
(double sign in the same order)

where f : R 7→ R is a univariate and continuous function
defined as f(·) = ∥s0(θ(·))∥−∥sρR−R̃

(θ(·))∥. Thus, apply-
ing the intermediate value theorem to Eq. (B.3) gives

∃k′ ∈ [1−∆k, 1 + ∆k] s.t. f(k′) = 0. (B.4)
Since f(k′) = 0 is equivalent to

∥s0(θ(k′))∥ = ∥sρR−R̃
(θ(k′))∥, (B.5)

that is, Rank(θ(k′)) = R − R̃ (Csáji and Weyer, 2015),
Eq.(B.4) is
∃k′ ∈ [1−∆k, 1 + ∆k] s.t. Rank(θ(k′)) = R− R̃. (B.6)

Eq. (B.6) holds for all ∆k ∈ (0,∆k]. Let us consider the
limit as ∆k goes to 0, then the set [1−∆k, 1+∆k] converges
to {1}. Therefore, Eq. (B.6) implies

Rank(θ(1)) = R− R̃. (B.7)
Since θ(1) = θB from Eq. (B.1), Eq. (B.7) is

Rank(θB) = R− R̃. (B.8)
Thus, the rank function returns R − R̃ for any point on
the boundaries of the CR obtained using the SPS method.
Q.E.D.


