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Abstract: This work presents a methodology for the simultaneous generation, design, and control of 

chemical process flowsheets (CPF) using RL, starting from an inlet flowrate and a set of unit operations 

(UOs) involving reaction-separation systems, each equipped with an embedded decentralized control 

system. The key innovation lies in embedding neural network surrogate models, which approximate the 

dynamic behaviour of complex UOs within the RL environment. The proposed framework was validated 

through a case study focused on the reaction and separation of products at varying purities. Results 

demonstrate the agent’s ability to generate economically attractive CPFs that can maintain the dynamic 

operation of the systems in closed-loop in the presence of external disturbances. 
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1. INTRODUCTION 

The integration of process design and control is a significant 

research area in chemical engineering, aimed at optimizing 

chemical process flowsheets (CPF) for both economic 

viability and dynamic operability. Traditional sequential 

approaches determine equipment sizing at steady state before 

evaluating controllability for dynamic operation, often 

overlooking transient conditions and resulting in suboptimal or 

infeasible designs. This underscores the need for integrated 

strategies that align design and control decisions, ensuring 

dynamic operability. However, integrating design and control 

poses challenges due to conflicting objectives—minimizing 

costs versus ensuring dynamic operability. For instance, 

smaller equipment lowers capital costs but can hinder dynamic 

response. CPF design further involves both continuous and 

discrete decisions, such as selecting reactor types or the 

number of distillation trays. Complexity rises when unit 

operations (UOs) are modeled with differential-algebraic 

equations (DAEs), leading to mixed-integer dynamic 

optimization (MIDO) problems  

Model-based optimization methods have emerged as effective 

techniques for solving the integrated design and control 

problem (Rafiei and Ricardez-Sandoval, 2018; Burnak et al., 

2019; Patilas and Kookos, 2021). Despite their benefits, those 

methods are often constrained by two major challenges: i) 

intensive computational efforts, and ii) predefined 

superstructures or fixed arrangements of UOs. The latter limits 

flexibility, restricting the exploration of novel flowsheet 

configurations and innovative solutions. Model-free 

optimization techniques, such as Reinforcement Learning 

(RL), show great potential to advance chemical process design 

given their ability to design flowsheets without the need of a 

process superstructure (Reynoso-Donzelli and Ricardez-

Sandoval, 2024a). This shift toward RL-based approaches has 

expanded to the integration of process design and control, 

leveraging RL’s ability to manage complex decision-making. 

Inspired by the successful outcomes reported in previous 

studies (Sachio et al., 2022; Mendiola-Rodriguez and 

Ricardez-Sandoval, 2022), this study seeks to explore the 

application of RL to integrate decisions involving process 

flowsheet design, unit operation (equipment) design, and 

process controllability for reaction-separation systems.  

A Proximal Policy Optimization (PPO) agent is designed to 

interact with the RL environment to design and control a CPF 

that optimizes a user-defined objective function. The objective 

function incorporates dynamic process variability, such as 

disturbance rejection and tracking errors, while ensuring 

compliance with both process and equipment operational and 

logical constraints. The agent's actions are guided by a reward 

shaping strategy that enforces these objectives and constraints. 

A key idea in this work is that the environment is composed of 

neural networks (NNs), which serve as surrogate models to 

approximate the dynamic behavior of the UOs in closed-loop. 

These surrogate models are identified prior to the RL training 

phase. Using NNs as surrogates of the actual UO mechanistic 

models reduce the computational costs (Schweidtmann and 

Mitsos, 2019). The framework is validated through a case 

study with two scenarios, where the agent designs and controls 

a CPF involving reaction-separation systems for the 

production and purification of two products. In this case, the 

agent manages three UOs, dynamically adjusting their 

operation to achieve optimal performance while accounting 

for external process disturbances. 

2. PROBLEM STATEMENT 

In this section, a general definition of the integrated design and 

control problem is presented. As shown in Eq. (1), the 

integrated problem, formulated as a MIDO problem, aims 

primarily at minimizing an objective function (1a) that may 

represent a combination of process economics, environmental 

requirements, sustainability incentives, etc. MIDO problems 

are constrained by DAEs (1b-1c) and their corresponding 



initial conditions (1d). These functions represent the equations 

that describe the dynamic behaviour of the system such as 

continuity, mass and energy balances, thermodynamics, 

reaction kinetics, as well as any DAE representing physical-

chemical phenomena. The problem is also constrained by 

equality (1e) and inequality (1f) constrains, that may posses a 

differential-algebraic nature or a purely algebraic nature. The 

system states and their derivatives, represented as functions of 

time, are denoted by 𝒙(𝑡), 𝒙̇(𝑡)  ∈  ℝ𝒏𝒙 while 𝒚(𝑡) ∈  ℝ𝒏𝒚 

represents the system's output variables. Logical and 

disjunctive constraints that delineate decisions like the 

existence or absence of a flow or UO in the CPF are also 

considered (1g). These inequalities give rise to Boolean 

variables; 𝑫 ∈ {𝑇𝑟𝑢𝑒, 𝐹𝑎𝑙𝑠𝑒}𝑛𝐷 represents the Boolean 

variables that appear in disjunctions, determining whether a 

specific constraint vector is enforced or not. These constraints 

are related to the logical proposition Φ(𝑫) = 𝑇𝑟𝑢𝑒 through 

the logical operators (e.g., AND, OR, XOR, negation, 

implication, equivalence), which are defined based on the 

specific disjunctive decisions considered in the problem. 

Vector 𝜼 ∈  ℝ𝒏𝜼 includes time independent continuous design 

and control variables, while 𝜸 ∈  ℤ𝒏𝜸   contains the integer 

design variables. Vector 𝜿 ∈  ℝ𝒏𝜿 represents continuous 

operating conditions, which can vary over time, while the 

controlled variables are denoted by 𝒖(𝑡) (𝒖 ∈  ℝ𝒏𝒖). 

Furthermore, 𝒅(𝑡) denotes the disturbances, which spans from 

an initial time 𝑡0 to a final value 𝑡𝑓. 

min
𝜼,𝜿(𝑡),𝜸,𝒖(𝑡)

Ψ(𝒙(𝑡), 𝒙̇(𝑡), 𝒚(𝑡), 𝜼, 𝜿(𝑡), 𝜸, 𝒖(𝑡), 𝒅(𝑡), 𝑡) (1a) 

𝑠. 𝑡. 
 𝒇𝒅(𝒙(𝑡), 𝒙̇(𝑡), 𝒘(𝑡), 𝜼, 𝜿(𝑡), 𝜸, 𝒖(𝑡), 𝒅(𝑡), 𝑡) = 0 

 

(1b) 

𝒇𝒂(𝒙(𝑡), 𝒘(𝑡), 𝜼, 𝜿(𝑡), 𝜸, 𝒖(𝑡), 𝒅(𝑡), 𝑡) = 0 (1c) 

𝒇𝟎(𝒙(𝑡0), 𝒙̇(𝑡0), 𝒘(𝑡0), 𝜼, 𝜿(𝑡0), 𝜸, 𝒖(𝑡0), 𝒅(𝑡0), 𝑡0) = 0 (1d) 

𝒉(𝒙(𝒕), 𝒙̇(𝒕), 𝒘(𝒕), 𝜼, 𝜿(𝒕), 𝜸, 𝒖(𝒕), 𝒅(𝒕), 𝑡) = 0 (1e) 

𝒈(𝒙(𝒕), 𝒙̇(𝒕), 𝒘(𝒕), 𝜼, 𝜿(𝒕), 𝜸, 𝒖(𝒕), 𝒅(𝒕), 𝑡 ) ≤ 0 (1f) 

Φ(𝑫) = 𝑇𝑟𝑢𝑒 

⋁𝑗∈𝑃𝑞
[

𝐷𝑗,𝑞

𝑔𝑗,𝑞(𝜼, 𝜿(𝑡), 𝜸, 𝒖(𝑡))  ≤ 0 
] , ∀𝑞 ∈ 𝑄 

 

 

(1g) 

𝜼 ∈ [ 𝜼𝐿 , 𝜼𝑈] (1h) 

𝜿 ∈ [ 𝜿𝐿, 𝜿𝑈] (1i) 

𝒖 ∈ [ 𝒖𝐿, 𝒖𝑈] (1j) 

𝜸 ∈ {𝛾1, … , 𝛾𝑁} (1k) 

𝑡 ∈ (𝑡0, 𝑡𝑓] (1l) 

Model-based optimization methods are well-suited for 

addressing the integrated problem, but they present several 

difficulties. A major challenge is the inclusion of disjunctive 

and/or integer decisions alongside process dynamics, which 

significantly increases problem complexity; solving such 

problems often requires advanced mathematical and 

optimization techniques. Another challenge is the need to 

predefine a superstructure that includes all necessary UOs, a 

process that relies heavily on user experience. Moreover, these 

methods often struggle to scale to larger problems, even 

without Boolean or integer variables, and heavily depend on 

well-informed initial guesses for convergence. These 

limitations underscore the need for innovative new 

approaches. 

3. REINFORCEMENT LEARNING FRAMEWORK 

This section presents a RL approach to solve the integrated 

problem described in the previous section. In this work, 

process dynamics are represented through surrogate models. 

The way such models are identified is presented next, followed 

by rest of the RL scheme, i.e., action space, observation vector, 

reward function and agent. The methodology presented builds 

upon a previous work (Reynoso-Donzelli and Ricardez-

Sandoval, 2024b). However, this study specifically focuses on 

reaction-separation systems, emphasizing the advantages of 

the proposed framework for those applications. More details 

on the implementation, reward function and hyperparameters 

considered in this framework can be found in our previous 

work (Reynoso-Donzelli and Ricardez-Sandoval, 2024b).  

3.1 Surrogate models 

The agent interacts with an environment composed of 

surrogate models that approximate the dynamic behavior of 

closed-loop UOs. These models condense dynamic response 

data into specific values for the agent’s use. Three types of 

surrogate models were developed: endpoint regressors, 

dynamic performance metric regressors, and label classifiers. 

Each of these surrogate models is described at the end of this 

section. Data is needed to identify the surrogate models. In this 

work, the data generation process aims to create a matrix 𝑴𝑈𝑂 

for each UO, as the input variables vary between different 

UOs. 𝑴𝑈𝑂 ∈  ℝ𝑚×𝑛 is composed of 𝑚 vectors (𝒛𝑚), each 

containing all the input variables necessary for that UO, i.e., 

𝒛𝑚 ∈  ℝ𝑛. The input variables include feed stream conditions 

(e.g., temperature, concentration), UO-specific design 

variables (e.g., reactor diameter, number of distillation stages), 

and control system parameters (e.g., set-point values, 

controller tuning parameters). When designing 𝑴𝑈𝑂, 

operational bounds need to be provided, as the feed stream to 

the UO can be situated at any point within the CPF. These 

bounds ensure realistic input ranges for training the surrogate 

model. In this study, Latin Hypercube Sampling (LHS) was 

used to populate 𝑴𝑈𝑂 using the bounds defined a priori for 

each input variable. LHS is effective in covering the 

multidimensional input space while minimizing redundancy, 

enhancing the accuracy of the surrogate models. A preliminary 

data analysis needs to be performed to avoid input 

combinations that may be infeasible and could interfere with 

the learning process, ensuring logical consistency throughout 

the dataset, e.g., set-point concentrations higher than inlet 

concentrations in a reactive system are discarded in the design 

of 𝑴𝑈𝑂. The input variables 𝒛𝑚 are used to simulate the 

mechanistic process models in closed-loop to generate time-

dependent output variables (𝒚(𝑡)). Since surrogate models 

cannot fully replicate the dynamic responses of mechanistic 

models, different key values are captured to approximate the 

dynamic behaviour. All responses generated when evaluating 

𝒛𝑚 were stored in a matrix 𝑴𝑅𝑒𝑠𝑝, which, along with 𝑴𝑈𝑂, 

were used to train the surrogate models. Due to differences in 

output responses—both in magnitude and type (continuous vs. 

Boolean)—it was found that training the surrogate models 

individually yielded more accurate results. The Mean Squared 



Error (MSE) served as the loss function for their training, and 

Adam's optimizer was used to compute gradients and update 

their network weights. As shown in Figure 1, three key metrics 

are used to represent the dynamic response of UOs, these are 

defined next. i) Endpoint value: this corresponds to the final 

value of an output variable, such as temperature or 

concentration, at 𝑡𝑓 (i.e., 𝑦(𝑡𝑓)). This time point is typically 

selected assuming the system has reached a steady state. Note 

that any other time points for which a variable is required to be 

within constraint could be considered. The endpoint is 

approximated by an endpoint regressor, represented as 

𝑦(𝑡𝑓)̂ = 𝑁𝑁𝐸𝑃(𝒛𝑚), where a neural network (𝑁𝑁𝐸𝑃) uses 𝒛𝑚 

as input to predict the endpoint. ii) Dynamic performance 

metric: This value rates the control strategy of the proposed 

design using metrics such as the Integral of Squared Error 

(ISE) or Integral of Absolute Error (IAE). Dynamic 

performance metric regressors approximate these values, 

enhancing predictive accuracy by computing the natural 

logarithm of the metrics, particularly useful when values 

approach zero. This value is approximated using a surrogate 

dynamic performance regressor, expressed as ln (𝐷𝑀)̂ =
𝑁𝑁𝐷𝑃(𝒛𝑚). iii) Label value: This is a Boolean value used to 

classify whether the proposed UO design violates design or 

operational constraints while maintaining target operation in 

closed-loop. The label is determined through an algorithm with 

various logical checks (Algorithm 1). A surrogate classifier 

model is tasked to predict the determined label, 

mathematically expressed as 𝐿𝑎𝑏𝑒𝑙̂ = 𝑁𝑁𝐶(𝒛𝑚). 

 
Figure 1. Database building 

Algorithm 1 Pseudocode for label classification 

if |𝑦(𝑡𝑓) − 𝑦𝑠𝑝| ≤ 𝜖1 then 

    if 
1

𝑟
∑ (

𝑑𝑦

𝑑𝑡
)

𝑗

𝑟
𝑗=1 ≤ 𝜖2 then 

        if 𝑐𝑜𝑛𝑠 ≤ 𝜖3 then 

            pass = 1         

        else 

            pass = 0 

        end if 

    else 

        pass = 0 

    end if 

else 

    pass = 0 

end if 

The first logical test in Algorithm 1 specifies if the distance 

between the mechanistic model's predicted endpoint 𝑦(𝑡𝑓) and 

the design set-point (𝑦𝑠𝑝) is within a threshold (𝜖1). If this 

condition is not satisfied, the design is deemed unsatisfactory, 

regardless of the endpoint regressor's accuracy. The second 

test evaluates the oscillatory behavior by measuring the 

gradient of the model outputs (
𝑑𝑦

𝑑𝑡
) over the last 𝑟 points. If the 

mean gradient exceeds a threshold (𝜖2), the system's behavior 

is deemed non-ideal due to unwanted oscillations (i.e., not 

properly controlled). Once the two preceding logical 

conditions are satisfied, the next step is to verify compliance 

(i.e., 𝑝𝑎𝑠𝑠) with design, logical, or operational constraints (i.e., 

𝑐𝑜𝑛𝑠 ≤ 𝜖3). Estimations of these constraints vary by type, 

such as dynamic path or endpoint constraints, with a structure 

similar to the ISE used for dynamic path violations. Equation 

2 presents a method for measuring the extent and magnitude 

of constraint violations. An auxiliary vector 𝜽(𝑡), composed 

by the point difference between 𝑔(𝑡) and 𝑔𝑐𝑜𝑛𝑠, i.e., maximum 

allowed input limit in a UO (e.g., temperature or liquid level), 

is integrated over time, outputting a punctual value denoted as 

𝑐𝑜𝑛𝑠. To address potential class imbalance, the Synthetic 

Minority Over-sampling Technique (SMOTE) is used to 

balance the dataset, enhancing classifier predictive power and 

preventing bias toward the overrepresented class. 

𝑔(𝒙(𝒕), 𝒙̇(𝒕), 𝒘(𝒕), 𝜼, 𝜿(𝒕), 𝜸, 𝒖(𝒕), 𝒅(𝒕), 𝑡 ) ≤ 𝑔𝑐𝑜𝑛𝑠 

𝜽(𝑡) =  {
𝑔(𝑡) − 𝑔𝑐𝑜𝑛𝑠, 𝑔(𝑡) ≥ 𝑔𝑐𝑜𝑛𝑠

0, 𝑔(𝑡) < 𝑔𝑐𝑜𝑛𝑠  
 

𝑐𝑜𝑛𝑠 = ∫ 𝜽(𝑡)2𝑑𝑡
𝑡𝑓

𝑡0

 

 

 

 

(2) 

3.2 RL environment and agent 

The environment serves as the external context for RL agent 

interactions and represents the part of the algorithm where 

Equation 1 is translated into RL terms to be amenable to the 

agent. At each step (𝑖), the RL agent exchanges information 

with the environment through actions, observations and 

rewards. In this work, the action space 𝑨 includes all design 

and control decisions for the UOs, represented as 𝑨 =
[𝝔𝑑 , 𝝔𝑐 ]. The vector 𝝔𝑑 contains discrete variables, e.g., 

whether or not to include a UO in a flowsheet, and design 

decisions like the number of stages in a distillation column. 

Continuous variables in 𝝔𝑐 encompass design and control 

parameters, such as column diameter and PI controller tuning 

parameters. Note that other controllers can also be considered 

in the framework, e.g., model-based controllers. Discrete 

design variables are approximated using continuous 

distributions for computational efficiency, although this may 

introduce approximation errors. The environment includes 

functions that interpolate values from these probability 

distributions, guiding the agent's actions through sampling at 

each step (𝑖). The step-observation vector 𝑜𝑖 consists of key 

process variables, including operating conditions like 

temperature, pressure, and total flow, as well as a tracker for 

chemical components (e.g., reactants or products) and the 

current observation step (𝑖). All elements are normalized to 

ensure balanced data processing within the neural network. In 

this approach, the reward shaping technique is used to guide 

the agent by composing the step reward 𝑟𝑖 from multiple sub-

rewards, each addressing different objectives. The step reward 

is expressed as: 𝑟𝑖 = ∑ 𝑟𝑏𝑏∈𝐵  where 𝑏 represents each sub-

reward component. The three main sub-rewards are: 1) Capital 

cost 𝑟𝐶𝐶, which quantifies the cost related to UO design 

variables (𝑟𝐶𝐶 = 𝑓 (𝜸, 𝜼, 𝑦(𝑡𝑓)̂)). 2) Dynamic cost 𝑟𝐷𝐶, based 

on dynamic performance metrics like the predicted ISE (𝑟𝐷𝐶 =

𝑓(ln (𝐷𝑀̂)). 3) Constraint violation cost 𝑟𝐶𝑉, penalizes 



constraint violations based on predicted label (𝑟𝐶𝑉 =

𝑓(𝐿𝑎𝑏𝑒𝑙̂ )). At the final step, an additional penalty is applied if 

design objectives are not met. The agent used is a PPO agent 

(Schulman et al., 2017), with a modified activation function 

using tanh instead of ReLU. This change ensures the outputs 

are bounded, making it more suitable for real-life scenarios 

that involve working with data constrained within specific 

limits. 

A key limitation of this approach lies in the use of surrogate 

models, which may result in the loss of transient information 

during the approximation process. Moreover, the accuracy of 

the surrogates depend on the availability of a comprehensive 

database or sufficient training data. Another challenge is the 

need for long simulation times, which can make the modeling 

and validation process more resource-intensive. 

4. RESULTS AND DISCUSSION 

The methodology described in the previous section was 

evaluated using a case study aimed to simultaneously generate, 

design and control a reactor-separator CPF capable of 

producing two high-purity products (B and C) from reactant 

A. The process operates under isothermal conditions and is 

subject to a +50% step disturbance in the inlet flow rate. For 

this case the RL agent has access to 3 UOs: a reactor where 

two first-order reactions (𝐴 → 𝐵 and 𝐴 → 𝐶) occur in 

parallel, a binary distillation column (DC) and a flash tank 

(FT). The latter two units can be used by the agent to separate 

the binary mixture of products B and C. It is assumed that DC 

and FT operate with a constant relative volatility of 2.5 (i.e., 

ability of species to vaporize). The mechanistic models 

describing the dynamic behaviour for each UOs were adapted 

from the literature (Schweiger and Floudas, 1998; Bequette, 

2002). Two scenarios were investigated, both requiring the 

agent to produce an outlet stream with a molar fraction of 

product B smaller or equal to: 0.1 (Scenario A) and 0.4 

(Scenario B). In both scenarios, the agent was set to ensure a 

user-defined conversion of reactant A of at least 95% to enable 

an effective separation, while also rejecting disturbances in the 

inlet flow and keeping the liquid reaction volume within an 8-

liter reactor design capacity limit. Note that different 

conversion values can be imposed to enhance or limit 

exploration. To simplify the analysis, the separation UOs are 

removed from the agent's action space until 95% of the 

reactant is converted. Once achieved, the separation units are 

activated, and the reactor deactivated. This action space 

masking is applied to prevent the agent from incorrectly using 

binary separation operations on a ternary stream. 

A total of 11 surrogate models were identified: 5 endpoint 

regressors that predicted the outlet concentration of A from the 

reactor, the liquid reactor volume, the molar fraction of B in 

the bottoms for both the DC and FT and the liquid outflow of 

the FT. Moreover, 3 dynamic performance metric regressors 

that predicted the ISE for the concentration of A in the reactor, 

as well as the output liquid molar fraction of B for the FT and 

the DC were identified. Likewise, 3 classifiers that evaluate 

operational compliance with constraints for each unit are 

included. These operational constraints consist of maintaining 

the 8-liter design limit in the reactor, avoiding DAE violations 

(constraints enforced by the dynamic modeling suite), and 

preventing any stream in both the DC and FT from drying out 

(i.e., flowrate equal to zero). Note that the constraints for each 

UO are evaluated in closed-loop. Note that the agent can 

arrange multiple FTs in series, as their separation capability is 

lower than DC. To determine which of the two output streams 

will serve as the feed for the next FT, the stream with the 

greater mass is selected. For simplicity, if the vapor stream has 

a higher mass, it is assumed to be condensed before being fed 

into the subsequent FT. To train these models, three different 

matrices 𝑴𝑈𝑂 were generated, one for each UO. The variables 

considered in 𝑴𝑈𝑂 (i.e., 𝒛𝑚) include design variables (sizing, 

set-points, control parameters) and input variables 

(concentration, molar flow, molar fraction) for each UO. The 

full set of variables used in the three matrices is not shown here 

for brevity but their definitions can be found elsewhere 

(Reynoso-Donzelli and Ricardez-Sandoval, 2024b). The 

action space for this problem was composed of all the design 

decisions related to the 3 UOs (Equation 3). For the reactor: 

set-point of the concentration of A (𝐶𝐴
𝑠𝑝

), initial liquid reaction 

volume (𝑉𝑟), and controller parameters (𝐾𝐶
𝑅 , 𝜏𝐼

𝑅). For the DC: 

the number of stages (𝑁), the set-point of the molar fraction 

of B at the bottoms (𝑥𝐵
𝑠𝑝

), column diameter (𝐷𝐶), feed stage 

(𝑓𝑛), reflux stage (𝑟𝑛), and controller parameters at the tops 

(𝐾𝐶
𝐷 , 𝜏𝐼

𝐷) and at the bottoms (𝐾𝐶
𝐵 , 𝜏𝐼

𝐵). For the FT: molar 

fraction set-point of B at the liquid outlet (𝑥𝐿
𝑠𝑝

) and controller 

parameters at the vapor outlet (𝐾𝐶
𝐹𝑇  , 𝜏𝐼

𝐹𝑇). In addition to the 

design variables of the three UOs, 𝑨 also includes a binary 

variable that indicates the choice between DC and FT, denoted 

as 𝜇̃. 

𝑨 = [
𝐶𝐴

𝑠𝑝
, 𝑉𝑟 , 𝐾𝐶

𝑅  , 𝜏𝐼
𝑅, 𝑁, 𝑥𝐵

𝑠𝑝
, 𝐷𝐶 , 𝑓𝑛, 𝑟𝑛,

𝐾𝐶
𝐷 , 𝜏𝐼

𝐷, 𝐾𝐶
𝐵 , 𝜏𝐼

𝐵 , 𝑥𝐿
𝑠𝑝

, 𝐾𝐶
𝐹𝑇, 𝜏𝐼

𝐹𝑇 , 𝜇̃
] 

(3) 

Note that the action space consists of individual probability 

distributions rather than a combination of different continuous 

and discrete actions. The selection of the action at each step 

(i.e., 𝑎𝑖) involves sampling values from predefined probability 

distributions. The observation vector returned at each step 

includes information on the outlet stream of the selected UO, 

such as the concentration of reactant A and products B and C, 

the molar fraction of B, and the current step, i.e., 𝑜𝑖 =
[𝐶𝐴, 𝐶𝐵, 𝐶𝐶 , 𝑧𝐵, 𝑖]. Table 1 outlines the general form of the 

reward function, which is composed of sub-rewards adapted 

for each UO. The mathematical formula and meaning of each 

sub-reward functions are also presented in Table 1. 

In this context, 𝜗 represents a free design variable, meaning 

the user can assign any value depending on the sub-reward. 

For 𝑟𝐶𝐶, 𝜗 is a design variable (e.g., volume, diameter, height) 

that characterizes the UO and is normalized using the 

maximum and minimum values the agent can take for that 

variable. For 𝑟𝐷𝐶, the agent uses 𝐼𝑆𝐸̂, normalized by the 

smallest ISE value the surrogate model is capable to regress; 

and depending on the 𝐼𝑆𝐸̂ value, the penalty can be constant 

or variable. For 𝑟𝐶𝑉, the constant value assigned to 𝜗 depends 

on the classifier’s predicted label. Moreover, for the design 

requirement, 𝜗 receives a constant penalty if the agent fails to 



meet the design constraint (e.g., final purity, conversion) 

within the maximum number of steps allowed per episode (𝐼). 

The magnitude of the constant values assigned in the last two 

sub-rewards is user-defined. However, setting excessively 

high values – particularly for 𝑟𝐶𝑉 – can negatively impact the 

agent’s ability to explore effectively. 

Table 1: Sub-rewards 

Sub-reward Assigned Mathematical formulation 

𝑟𝐶𝐶   

(Capital cost) 
Every step 𝑟𝐶𝐶 =

𝜗 −  𝜗𝑚𝑖𝑛

𝜗𝑚𝑎𝑥 −  𝜗𝑚𝑖𝑛

 

𝑟𝐷𝐶  

(Dynamic 

cost) 

Every step  𝑟𝐷𝐶 = {

−1, 𝐼𝑆𝐸̂  ≥  1

− (1 −  
ln(𝐼𝑆𝐸̂)

ln(𝐼𝑆𝐸)𝑚𝑖𝑛

) , 𝐼𝑆𝐸̂  <  1
 

𝑟𝐶𝑉 

(Constraint 

violation) 

Every step 
𝑟𝐶𝑉 = {

0, 𝐿𝑎𝑏𝑒𝑙̂ =  1

−𝜗, 𝐿𝑎𝑏𝑒𝑙̂  =  0
 

Design 

requirement 
Final step {

0, 𝑖 < 𝐼
−𝜗, 𝑖 ≥ 𝐼

 

For both scenarios the PPO agent was trained for 100,000 

steps, taking approximately 50 minutes per training. Note that 

in RL, a step is a single interaction where the agent takes an 

action and receives feedback. An episode is a sequence of steps 

that ends when a termination condition is met. The actor 

network consisted of 2 hidden layers, each with 64 neurons, 

while the critic network had only 1 hidden layer with 64 

neurons. The actor-critic networks were updated every 2048 

steps with a discount factor of 0.99 and optimized using Adam 

optimizer with a starting learning rate of 2.5e-4, which was 

adjusted throughout the training. 

 
Figure 2: Learning curve: A) Scenario A; B) Scenario B 

The learning curves shown in Figures 2.A and 2.B depict the 

cumulative rewards achieved by a PPO agent under two 

different scenarios. The black line represents the running 

average of the rewards over the episodes, while the shaded 

grey region illustrates the cumulative rewards obtained during 

each episode. Both scenarios display a similar trend: an initial 

phase of rapid, exponential growth followed by a plateau at a 

stable value. However, Scenario B (Figure 2.B) shows 

significantly more variability throughout the training process, 

as evidenced by the broader grey region around the running 

average. Despite these differences, both curves plateau at a 

similar cumulative reward value, around -2.5. The agent in 

Scenario A reaches this plateau much earlier, with variability 

decreasing quickly as training progresses, while the agent in 

Scenario B takes longer to stabilize and experiences greater 

fluctuations even after the plateau is reached. The higher 

variability in Scenario B is likely due to frequent operational 

failures during the simulations. The classifier flagged many 

designs as infeasible, resulting in extended exploration phases 

and slower convergence. When evaluating the best-performing 

agents for Scenario A while using the mechanistic process 

models, the resulting CPF is capable of producing product B 

to a molar fraction of up to 0.1, having previously converted 

reactant A to 95%; adhere to the design constraints (liquid 

reaction capacity smaller than 8 liters); and produce an 

attractive solution, i.e., a solution that maximizes the reward 

function, minimizing capital and dynamic costs. For this case, 

the agent required three reactors and a DC with the design 

specifications shown in Table 2 (Scenario A). 

Table 2: UOs designs and specifications for scenarios A and B 

As shown in Figure 3, the disturbance was rejected across all 

three reactors, maintaining a feasible operation near the 

specified set-point. Although the agent could have used only 

two reactors to achieve the desired conversion of A with fewer 

units, it opted for three reactors due to the reactor’s maximum 

capacity limit constraint. Regarding the liquid reaction 

volume, the first two reactors experience significant 

fluctuations, reaching up to 6.5 liters before reaching a stable 

operation. Despite this variability, none of the reactors exceed 

the design limitations (not shown for brevity). As shown in 

Table 2, the three reactors require large 𝐾𝐶
𝑅 and 𝜏𝐼

𝑅 values. This 

control scheme induces oscillatory behavior in the response 

variable, specially for the first reactor, before stabilizing at the 

set-point (Figure 3). 

 

 
Figure 3: Scenario A: A) Reactor 1 B) Reactor 2 C) Reactor 3 

Likewise, the DC was able to reject the disturbance while 

operating near the specified set-points (Figure 4A). The agent 

can achieve this operation using a DC with a small diameter 

and 13 trays. Also, the DC control strategy results in slow 

oscillations that settled after 15 minutes. Note that additional 

constraints on controller performance can be imposed while 

developing the proposed surrogate models. 

Scenario Variable CSTR 1 CSTR 2 CSTR 3 DC/FT 

A 

𝑉𝑟  [𝐿] 3.8988 3.7787 3.8763 - 

𝐶𝐴
𝑠𝑝

 [𝑚𝑜𝑙/𝐿]  0.3352 0.1032 0.0480 - 

𝐾𝐶
𝑅  [𝐿2/𝑚𝑜𝑙  min−1]  -164.6513 -172.4885 -173.0276 - 

𝜏𝐼
𝑅  [𝑚𝑖𝑛−1] 5.2697 5.9563 6.3171 - 

𝑁  - - - 13 

𝐷𝐶  [𝑚]  - - - 0.3454 

𝑥𝐵
𝑠𝑝

 - - - 0.0984 

𝑓𝑛  - - - 5 

𝑟𝑛  - - - 12 

𝐾𝐶
𝐷  [𝑚𝑜𝑙/𝑚𝑖𝑛] - - - -13.7983 

𝜏𝐼
𝐷  [𝑚𝑖𝑛−1] - - - 0.1381 

𝐾𝐶
𝐵  [𝑚𝑜𝑙/𝑚𝑖𝑛] - - - 14.6740 

 𝜏𝐼
𝐵  [𝑚𝑖𝑛−1] - - - 0.0785 

B 

𝑉𝑟  [𝐿] 4.0549 4.0239 4.1461 - 

𝐶𝐴
𝑠𝑝

 [𝑚𝑜𝑙/𝐿]  0.3482 0.1044 0.0498 - 

𝐾𝐶
𝑅  [𝐿2/𝑚𝑜𝑙  min−1]  -148.5977 -162.3069 -171.0000 - 

𝜏𝐼
𝑅  [𝑚𝑖𝑛−1] 4.9108 5.7208 6.1898 - 

𝑥𝐿
𝑠𝑝

 - - - 0.3635 

 𝐾𝐶
𝐹𝑇  [𝑚𝑜𝑙/𝑚𝑖𝑛] - - - 7.7068 

 𝜏𝐼
𝐹𝑇  [𝑚𝑖𝑛−1] - - - 0.4628 

 



A key advantage of the present RL framework is the ability to 

employ surrogate models across different problems, provided 

that the prediction ranges of these models align with the 

modifications required by the new problem. To illustrate this 

feature, the case study presented in this scenario (Scenario A) 

was modified by tasking the agent to achieve a target molar 

fraction of up to 0.4 for product B, while maintaining the 95% 

conversion of reactant A. The reactor’s design volume 

constraint of 8 liters remained unchanged, and the agent was 

allowed to use a maximum of 10 steps to achieve the 

corresponding design goals.  

 
Figure 4: A) Scenario A, DC operation; B) Scenario B, FT operation 

When evaluating the best-performing agents, the resulting 

CPF is capable of distilling product B to a molar fraction of 

0.4, having previously converted reactant A to 95%; adhere to 

the design constraints (reaction’s volume smaller than 8 liters); 

and produce an attractive solution. For this case, the agent 

required three CSTRs and a FT with the design specifications 

shown in Table 2 (Scenario B). The three reactors designed by 

the agent rejected the disturbance in the inlet flow rate while 

maintaining a feasible operation at the established set point 

(image not shown for brevity and close similarity to Figure 3). 

Compared to Scenario A, the reactor capacities are larger, with 

𝑉𝑟 around 4 liters. Despite this increase in reactor’s capacity, 

none of the reactors violate the 8-liter capacity constraint. The 

second reactor comes closest to the limit, exhibiting 

oscillations that peak at approximately 7.9 liters (not shown 

for brevity). Also, the 3 reactors used relatively large values 

for both 𝐾𝐶
𝑅 and 𝜏𝐼

𝑅, allowing process oscillations. As shown 

in Figure 4B, the FT unit was able to reject the disturbance. 

The agent adopts a relatively aggressive strategy for FT, 

allowing a swift response of the controlled variable with 

minimal oscillations. In this scenario, the agent achieved a 

molar fraction of component B using only one FT. 

Furthermore, since 𝑥𝐿
𝑠𝑝

 is a decision variable that the agent 

must select, it is unlikely that the agent will precisely choose 

0.4 unless the problem formulation explicitly sets this as an 

equality constraint. In both case studies, the most time-

consuming task is data generation for training the surrogate 

models, taking up to 8 hours of CPU time. In contrast, training 

the surrogate models and the RL agent required ~55 minutes. 

5.  CONCLUSIONS AND FUTURE WORK 

This study presented a novel framework for the simultaneous 

generation, design, and control of CPFs starting from an inlet 

stream and a set of UOs. The innovative aspect of this 

approach is highlighted by the implementation of surrogate 

models embedded within the RL environment, which 

approximate the mechanistic models of UOs in a dynamic 

state. Additionally, a tailored reward system was designed to 

guide the agent’s design decisions penalizing economic and 

dynamic effects, as well as constraint violations. A case study 

with multiple UOs was addressed with this framework 

showing the benefits of using surrogate models by simplifying 

a complex mechanistic model, like the DC, into multiple 

surrogate models. Future work will consider the addition of 

uncertainty and the use of external advanced dynamic 

simulation suites to improve the quality of the predictions. 
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