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Abstract: Industrial processes often exhibit complex nonlinear dynamics. Controlling such
processes can be computationally intensive, making it advantageous to replace these nonlinear
models with a series of linear models defined at various operating points. This approach reduces
the computational burden while sufficiently preserving the system’s nonlinear dynamics. To
enhance the robustness of this control strategy, we focus on designing a multimodel predictive
controller (mMPC). The MPC cost function considers weighted model formulation and includes
state constraints from all linear models. The approach is applied to control an industrial chemical
reactor model and compared with multiple-model adaptive control (mMAC) implementing
weighted state constraints. As a base for comparison, a nonlinear model predictive controller
(nMPC), and a linear MPC that switches to the best model (sMPC) according to predefined
state regions. The results demonstrate greater robustness and reduced constraint violations of
the proposed method.

Keywords: Multi-model predictive controller, Controller constraints and structure, Robust
controller synthesis

1. INTRODUCTION

Nowadays, Model Predictive Control (MPC), based on op-
timal control of complex systems with multiple input and
output variables, is a frequently used advanced industrial
control technology (Lee, 2011; Schwenzer et al., 2021).
Many processes are characterized by nonlinear dynamics
between inputs and outputs, often based on a series of
differential equations, leading to the application of non-
linear MPC (nMPC). These are characterized by their
high accuracy in controlling dynamical systems across a
variety of operating conditions, but a significant draw-
back of nMPCs is their computational burden associated
with nonlinear model predictions. Linear MPCs integrate
a structurally less complex (linear) model that provides
a less time-consuming solution, but is only applicable to
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control in the close vicinity of the operating point in which
it is constructed. Therefore, the motivation is to construct
a multi-model predictive controller (mMPC), based on the
integration of multiple linear system models at different
operating points, providing efficient control of nonlinear
process dynamics at reduced computational complexity.

For multi-model implementation in the structure of a pre-
dictive controller, one of three main principles is currently
utilized (Du and Johansen, 2015), including (1) approxi-
mation of the nonlinear model by weighting multiple linear
models output predictions, (2) application of a min-max
mechanism on model bank, or (3) design of a series of
local MPCs at individual operating points for subsequent
application to a global MPC based on a switching or
weighting mechanism. Several authors (Kumar and Pat-
wardhan, 2002; Aufderheide and Bequette, 2003; Garćıa
et al., 2012) have addressed the problem of approximating
the dynamics of a nonlinear model by a series of linear
models defined at particular operating points across a
specified range of control. The prediction from each model
is weighted into the final value used in the MPC, following
a Bayesian likelihood or prediction error approach between
the measurement and the model output. This strategy



is denoted as multiple-model adaptive control (mMAC)
strategy by Kuure-Kinsey and Bequette (2010); Rastegar-
pour et al. (2024) and significantly improves robustness of
the controller.

Multi-linear model predictive control (ML-MPC) is a
multi-model control approach based on scaling control in-
puts of local predictive controllers to a global MPC defined
for each linear model at different operating points of the
system (Zribi et al., 2016; Ahmadi and Haeri, 2018). The
global control input is obtained by (I) weighting mech-
anism – assigning weights to the local control inputs or
(II) switching mechanism – the weights are binary values
{0, 1} obtained by selection criteria for a particular control
input (Gavgani et al., 2024). Gap metric is a well-studied
ML-MPC approach based on selecting a series of linear
models that effectively describe the system’s nonlinearity
over the specified range of operating points (Galán et al.,
2003). The criterion for model selection is the distance
between the dynamical systems or their parameters. The
application of the switching gap metric for a continuous
stirred tank reactor control was addressed by Park et al.
(2021), where using single local MPC, the offset-free track-
ing of the global MPC was achieved. Gavgani et al. (2024)
by implementing a delay in a soft switching gap metric
mechanism showed an improvement in control quality for
systems with fast dynamics over previously existing soft
switching gap mechanisms. The stability of the system at
any set-point of the selected local MPC was guaranteed in
both papers. Weighting gap matrix was considered by Du
and Johansen (2017) to identify the nonlinearity of the
system. 1/δ gap-based weighting method was favoured
over 1− δ method, as studied in Du and Johansen (2015),
and in Prasad and Rao (2019).

This work investigates the design of a robust multi-model
predictive controller, where the structure of the optimiza-
tion problem includes consistent state bounds for the pre-
dictions of all linear models. A weighting mechanism based
on model prediction error is adopted for calculation of the
weighted states used in the cost function. The proposed
controller is applied to control a nonlinear chemical re-
actor model with one input and two states. The proposed
mMPC is compared with mMAC with state constraints for
the weighted predicted state only. For illustration of the
best attainable performance we also consider a nonlinear
MPC and sMPC with the perfect knowledge of the actual
operating region.

2. STUDIED PROCESS

In this section, we focus on the description of the dynamics
and properties of the studied process and discuss the
design of its multiple linear models.

2.1 Process Description

We consider the following model of the non-isothermal
continuous-stirred tank reactor (CSTR) with a complex
dynamics (Nikravesh et al., 2000). An irreversible reaction
(A → B) takes place in the CSTR:

dcA
dt

=
q

V
(cA,f − cA)− k0cA exp

(
− E

RT

)
, (1)

Fig. 1. Steady-state map of concentration csA and coolant
flow rate qsc.
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where cA denotes the effluent concentration, cA,f the feed
concentration, q the feed flow rate, qc the coolant flow rate,
T the effluent temperature, Tf the feed temperature, Tc,f

the coolant inlet temperature, respectively. We assume for
simplicity that the process state xn = (cA, T )

⊺ can be
measured. If not, a state observer could be designed. We
consider the concentration cA as the controlled variable
and the coolant flow rate as the manipulated variable
u = qc. The parameter values in (1) and (2) are displayed
in Table 1.

The model exhibits multiple steady states for the same
operating conditions. This is shown in Fig. 1, which depicts
the steady-state map of CSTR, as the dependence of the
concentration csA on the coolant flow rate qsc. Multiple
steady-state regions are observed, but from the point
of view of industrial application, favourable operating
conditions are located in the lower steady-state region
leading to the bifurcation point, since the required effluent
concentration is minimal in this region. Furthermore, the
CSTR model is non-linear, as can be shown in the step
responses in Fig. 2, where significant oscillations and non-
symmetric behavior can be observed.

Table 1. CSTR model parameters.

Variable Unit Value

q L · s−1 1.67
cA,f mol · L−1 1.00
Tf K 0.35× 103

Tc,f K 0.35× 103

V L 0.10× 103

hA cal · s−1 ·K−1 1.17× 104

k0 s−1 1.20× 109

E/R K 9.95× 103

−∆H cal ·mol−1 0.20× 106

ρ, ρc kg · L−1 1.00× 103

cp, cp,c cal · g−1 ·K−1 1.00



Fig. 2. CSTR step responses.

Table 2. Steady-state values of CSTR system
variables in several operating points.

m csA,m T s
m qsc ∆qsc

1 0.0593 447.4718 1.5511 -10%
2 0.0703 443.8281 1.6373 -5%
3 0.0836 440.1554 1.7235 0%
4 0.0999 436.3830 1.8097 +5%
5 0.1204 432.3923 1.8958 +10%

2.2 Multiple Linear Process Models

We selected M = 5 different operating points (marked as
red stars in Fig. 1), in which 5 linear state models are
constructed. The steady-state values xs

m = (csA,m, T s
m)⊺

of concentration csA,m, temperature T s
m (m = 1, . . . ,M)

and coolant flow rate qsc are shown in Table 2. Point 3
represents the nominal operating point, while other points
are calculated for the ±5% and ±10% change in the
steady-state coolant flow rate ∆qsc.

The nonlinear model is linearized in each of the steady
states xs

m based on the first-order Taylor series approxi-
mation. This yields

˙̃xm = Ãmx̃m + B̃mũm (3)

where the deviation state and control are defined as x̃m =
xn − xs

m, ũm = qc − qsc,m. These models are discretized
with the sampling time Ts =5 s and their state and input
variables shifted to absolute values using xm = x̃m + xs

m,
u = ũm + qsc,m yielding piecewise affine models

xm(k + 1) = Amxm(k) +Bmu(k) + bm, (4)

where xm(k) = (cA,m(k), Tm(k))
⊺
, u(k) = qc(k) and

bm = (I −A)xs
m −Bqsc,m.

3. MULTI-MODEL PREDICTIVE CONTROLLER

The multiple-model of the process will be applied for
prediction of future states in MPC. Each of the models
is valid to a different degree and its application in MPC
would lead to steady-state offsets. To compensate that,
constant state disturbance concept (Tatjewski, 2017) will
be applied. This disturbance is calculated for each model
based on the current value of measured states and esti-
mated value of the respective model state

dm(k) = xn(k)− (Amxm(k − 1) +Bmu(k − 1) + bm) .
(5)

The future state predictions can then be determined as

xm(k + i) = Amxm(k + i− 1) +Bmu(k + i− 1)

+ bm + dm(k), i = 1, . . . , Np, (6)

where Np is the length of the prediction horizon.

The state disturbance dm(k) is also used in determination
of the importance of each of the individual models in
predictions. In general, we do not choose a single model
for prediction, but a weighted one: the smaller absolute
value of the disturbance, the more important prediction of
the model. A linear combination of individual disturbance
components C⊺dm(k), C⊺ = (c1, c2)

⊺ will be used to de-
termine the weights, to scale the importance of individual
state variables.

Therefore, the weight wm(k) of the m-th model is calcu-
lated as

wm(k) =
1

M − 1

(
1− |C⊺dm(k)|∑M

i=1 |C⊺di(k)|

)
, (7)

so that all weights are positive, the sum of all weights is
equal to 1 and the weight of a more important model is
larger. This weight is assumed constant over the whole pre-
diction horizon Np but it is recalculated in each sampling
period.

The prediction of the weighted model state xw(k + i) is
then calculated as

xw(k + i) =

M∑
j=1

wj(k)xj(k + i). (8)

The proposed multimodel MPC formulation includes stan-
dard quadratic cost function with output Np and control
Nc horizons, penalizing tracking error of the weighted
model concentration and future control increments, with
equality constraints, input constraints, and state con-
straints with slack variables on all process models.

min
qc(k),ε

Np∑
i=1

e(k + i)⊺Qxe(k + i) +Qϵϵ(i)

+

Nc−1∑
i=0

Qu∆q2c (k + i), (9)

s.t. (6), (8),

e(k + i) = xr(k + i)− xw(k + i) (10)

xmin − ϵ(i) ≤ xm(k + i) ≤ xmax + ϵ(i), (11)

qc,min ≤ qc(k + i− 1) ≤ qc,max, (12)

0 ≤ ϵ(i), (13)

m = 1, . . . ,M, i = 1, . . . , Np,

where xr(k + i) denotes the future reference, qc(k) =
(qc(k), . . . , qc(k +Nc − 1))⊺, ε = (ϵ⊺(1), . . . , ϵ⊺(Np))

⊺ are
the vectors of the optimized future manipulated variables
and nonnegative slack variables for state constraints, Qx,
Qu, and Qϵ are the penalizations on output, control
increment and slack variables. There are lower/upper hard
constraints on the manipulated variable (qc,min, qc,max)
and lower/upper soft state constraints (xmin,xmax).

3.1 Other MPC Approaches

We will compare the proposed mMPC control to a number
of existing approaches. In all of them, MPC formulation



includes the objective function (9), control input con-
straints (12) and slack constraints (13).

The optimal performance can be obtained if the full
nonlinear model (1) and (2) serves for state predictions
xn(k + i). The nMPC formulation defines the control
error (10) and state constraints (11) using the nonlinear
state predictions xn

e(k + i) = xr(k + i)− xn(k + i), (14)

xmin − ϵ(i) ≤ xn(k + i) ≤ xmax + ϵ(i). (15)

We note that the slack variables would be needed only
in case of some unknown disturbances as the considered
model is the same as the process.

The optimal approach employing a family of linear/affine
models is to use MPC with piecewise affine hybrid system
modelling (Bemporad et al., 2000; Borrelli et al., 2005).
An approximation can be to select the model s that is the
nearest to one of the M operating points and use it for all
predictions in the actual sampling time

s = arg min
i=1...M

|C⊺(x(k)− xs
i)| (16)

The sMPC formulation defines the control error (10) and
state constraints (11) using the linear state predictions
xs = xw from (8) for the weight ws = 1 and other weights
equal to zero

e(k + i) = xr(k + i)− xs(k + i), (17)

xmin − ϵ(i) ≤ xs(k + i) ≤ xmax + ϵ(i). (18)

Finally, the mMAC approach (Kuure-Kinsey and Be-
quette, 2010) uses the weighted model predictions (8).
Although a family of linear models is considered, this is
again a single model approach. The mMAC formulation
defines the control error (10) and state constraints (11)
using the weighted state predictions xw

e(k + i) = xr(k + i)− xw(k + i), (19)

xmin − ϵ(i) ≤ xw(k + i) ≤ xmax + ϵ(i). (20)

We note that the original mMAC formulation in Aufder-
heide and Bequette (2003) includes a more sophisticated
procedure to calculate the current weights (7). We have
modified it to be comparable with our proposed scheme –
there is only a minimal difference in performance of both
methods using either weighting.

As can be seen in the state constraint formulation (11),
states from all models xm(k + i) of the proposed multi-
model predictive controller must satisfy the same set of
constraints (xmin,xmax). This is different to sMPC or
mMAC strategies, where only single model and a single
set of state constraints are assumed.

4. SIMULATION RESULTS AND DISCUSSION

The simulation parameters were set as follows. The sim-
ulation starts in the operating point 4 (Table 2) and the
reference values will be in the region of operating points 4
and 5 where the process exhibits oscillatory behavior. We
will study scenario with cA being the controlled variable.
Therefore, the weights and constraints for the tempera-
ture T will be inactive: C⊺ = (1, 0), Qx = diag(1, 0),
Qϵ = diag(0.5, 0), T ∈ (300, 600).

MPC parameters are Ts = 5 s, Np = 10, Nc = 3,
cA ∈ (0.09, 0.14), qc ∈ (1.72, 2.00), Qu = 0.05.

Table 3. Performance indicators of compared
MPC methods.

Controller J ε̄ (%) t (s)

nMPC 0.0132 (100%) 0.00 0.92
sMPC 0.0137 (104%) 0.20 0.05
mMAC 0.0351 (266%) 5.03 0.05
mMPC 0.0137 (104%) 0.05 0.05

To investigate fully the effect of the state constraints on the
performance of the controllers, these were set tight and the
same as the applied minimum/maximum reference values.

For simulating the model equations (1) and (2), the solver
ode15s in MATLAB environment is used, with default
solver settings and the relative tolerance set to 1 × 10−5.
To solve the nMPC problem for the future control in-
puts qc(k), the fmincon function is used, with sequential
quadratic programming algorithm and 3000 maximum it-
erations applied. For other approaches, YALMIP (Löfberg,
2004) is used to construct quadratic programming prob-
lem.

We present the results in Fig. 3, where mMPC is compared
with mMAC. The sMPC results are very similar to mMPC.
Fig. 3a shows the evaluation of the controlled variable
cA and Fig. 3b shows the evaluation of the manipulated
variable qc. The behaviour of the two predictive controllers
is identical from the initial moment until the first change
of setpoint which occurs after 5min. As there are no active
state constraints, the both methods coincide.

The first setpoint change activates the minimum state con-
straint and requires that the state trajectory does not over-
shoot. mMAC shows a slightly faster response and more
aggressive control action. The second setpoint change oc-
curs after next 3min, while the maximum state constraint
is activated and again no overshoot is required. mMAC
becomes almost critically damped and slack variable con-
straints on states are active several times as there are
significant constraint violations. The mMPC oscillation
is considerably more damped compared to mMAC, while
only negligible state constraint violations are detected.

To quantify the comparison, three performance indicators
are introduced:

• J – the value of the closed-loop objective function
defined over the number of sampling instants in the
simulation interval N

J =

N∑
i=1

e(i)⊺Qxe(i) +Qϵϵ(i) +Qu∆q2c (i), (21)

• ε̄ – the mean relative constraint violation (in per
cent), computed as

ε̄ =
100

∑N
i=1 max(0, cA,min − cA(i), cA(i)− cA,max)

N(cA,max − cA,min)
,

(22)

• t – the mean computation time of the MPC opti-
mization problem (in minutes) at one sampling time
i, obtained for 10 simulation runs.

Table 3 shows the numerical value for the investigated
methods. The first two rows serve as a comparison for
the best attainable performance. Nonlinear MPC (nMPC)
attains the lowest value of the closed-loop cost function



(a) Controlled variable.

(b) Manipulated variable.

Fig. 3. Control of the chemical reactor using mMPC and
mMAC approaches.

and the perfect knowledge of the model results in no
constraint violations. Linear MPC with the best selected
model (sMPC) performs only slightly worse (104%) but
the constraint violations are the second worst of all meth-
ods. It seems that the linearization is valid only in the
close neighborhood of the nominal operating points and
the model fails to predict the constraints accurately. We
note that sMPC would be difficult to implement in real
conditions as the presence of disturbances and unmodelled
dynamics would deteriorate its ability to identify the active
model and worsen the overall performance.

The worst performance in both closed-loop function
(266%) and constraint violations can be observed with
mMAC. The single weighted model cannot predict accu-
rately the state constraints which results in a number of
significant constraint violations and oscillations in manip-
ulated variable. The proposed multimodel MPC (mMPC)
is only slightly worse than nMPC both in closed-loop cost
(104%) and performs favorably in percentage of constraint
violations.

Comparison of the computational times confirms that the
nonlinear MPC formulation is significantly more demand-
ing than other methods using quadratic programming for-
mulations. Their values are identically around 0.05 second,
even in the case of mMAC, where significant constraint

violations are observed. For mMPC, there is no observ-
able increase in the mean computation time, even when
considering the state constraints of all linear models in
the structure of the controller.

The reason for the significantly higher value of the objec-
tive function and partially the value of mean computation
time for mMAC compared to mMPC is the presence of
more significant constraint violations, as evidenced by the
higher value of ϵ̄. An explanation for the significant de-
crease in constraint violations and the damped oscillations
of concentration for mMPC compared to mMAC is the
implementation of the state constraints for all state-space
models in contrast with the weighted state constraint for
mMAC. The comparison of both constraints definition
approaches is depicted in Fig. 4, describing the evolution of
the minimum and maximum predicted concentration val-
ues from all state-space models (yellow area) and from the
weighted model (blue area) at each discrete time point k.

While mMAC method is only aware of the predictions
in the blue area in Fig. 4a, the original models used for
the weighted model cover significantly larger yellow area.
Hence, it can happen frequently that the constraints will
be violated. On the other hand, it explains the improved
behaviour of mMAC during the second setpoint change
at 8min. The controller is not aware that some models
would violate the constraint and acts significantly faster
than mMPC.

The proposed mMPC operates with the prediction values
indicated by the yellow area in Fig 4b, which if satisfy-
ing the constraints, the weighted predictions (blue area,
showed for information only) principally would automati-
cally do as well. The increased number of models used for
prediction of future states results in a smaller probability
of constraint violations and in a more cautious control.
This increases the robustness of the proposed controller
and reduces the closed-loop cost function.

5. CONCLUSIONS

This paper discusses a novel robust multi-model predic-
tive controller (mMPC) design and its application to a
chemical reactor control simulation. The non-linear con-
tinuous stirred-tank reactor model is approximated by a
series of state-space models at different operational points,
thus reducing the computational complexity while main-
taining the required accuracy of process dynamics pre-
diction under different operating conditions. The imple-
mentation of multiple models in MPC structure is based
on weighting/selecting the predicted states of the state-
space models into a final (weighted/selected) state, where
the novelty in our approach is the constraining of the
predicted states from all models versus the constraining
of the weighted/selected state employed in the literature.
Both approaches of multi-model controllers are compared
with a nonlinear MPC considering a real model of the
manipulated process. The proposed mMPC was charac-
terized by higher robustness, less aggressiveness of the
control input, and a reduction of the value of the objective
function with the same computational complexity as the
solution presented in the literature.



(a) Predictions of mMAC controller.

(b) Predictions of mMPC controller.

Fig. 4. Comparison of the minimum/maximum state pre-
dictions in mMAC and mMPC.

In the further studies of multi-model controllers, a focus
on the control of MIMO systems is essential. An enhanced
weighting approach for multiple inputs and outputs should
be considered, including the study of the combinatorial
explosion of operating conditions. Another area of interest
is the analysis of the robust stability of the proposed multi-
model controllers.
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