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Abstract: The rapid advancement of Industry 4.0, artificial intelligence, and big data sensor technologies 

has made industrial systems highly complex and dynamic. Classical fault detection and diagnosis (FDD) 

techniques depend on insufficient information and variables with equivalent uncertainty. This paper 

introduced an advanced dynamic inner reconstruction-based contribution with global-local preservation 

projection (DiGLPP-RBC) for fault detection and diagnosis. Firstly, inner data statistics are extracted to 

develop an augmented matrix, which is used to characterize the dynamic latent variable using the DiGLPP 

framework. Secondly, reconstruction-based contribution (RBC) is used to determine fault contribution. The 

proposed method employs Hotelling’s T2 and squared prediction error (SPE) to detect and diagnose variable 

contributions and kernel density of faults in the ethanol-water industrial distillation system. The proposed 

framework’s robustness is compared with traditional baseline frameworks such as dynamic inner principal 

component analysis (DiPCA) and bi-directional long short-term memory-autoencoder (BiLSTM-AE). The 

results indicate that the DiGLPP-RBC technique detects, identifies, and diagnoses irregularities and faults 

more effectively and reliably than traditional approaches. 

Keywords: Industry 4.0, artificial intelligence, fault detection and diagnosis, variable contributions, 

DiGLPP-RBC, industrial distillation system.

1. INTRODUCTION 

Industrial process plants are intrinsically large-scale and 

highly interrelated systems with multiple process parameters. 

Early fault detection and detailed variability diagnosis 

constitute the first phase of risk assessment, allowing operators 

to prevent a malfunction from escalating into a significant 

hazard (Ali, Maulud, Zabiri, Nawaz, Suleman, et al., 2022). 

Multiple catastrophic events in the past have caused human 

suffering, environmental degradation, and mortality, 

increasing the focus on process safety (Ali, Safdar, Zhou, et 

al., 2024). The fault detection and diagnosis (FDD) method 

could be enhanced by smart automation, which reduces human 

intervention and risk, facilitating the transition to Industry 4.0. 

The use of artificial intelligence (AI) based automation is also 

important in fault detection and diagnosis (FDD)(Silva et al., 

2020). Consequently, fault detection and diagnosis (FDD) are 

crucial for developing the safety and risk estimation 

system(Ali et al., 2025). 

Fault detection and diagnosis (FDD) methodologies are 

primarily categorized into two basic types: knowledge and 

data-driven models(Ali, 2022; Ali, Safdar, Rasool, et al., 

2024). Multiple statistical models have been developed, 

devised, and widely used in system fault detection and 

diagnosis, including principal component analysis (PCA) (Ali, 

Zhang, & Gao, 2023), fisher discriminant analysis (FDA), 

canonical correlation analysis (CCA) (Ali & Gao, 2023), and 

independent component analysis (ICA) (Ali, Zhang, et al., 

2024). In the past few decades, several preservation techniques 

have achieved significant results in detection and diagnosis. 

Nonetheless, their practical implementations face several 

challenges(Ali, Maulud, Zabiri, Nawaz, & Ismail, 2022). 

These approaches often need substantial quantities of data with 

labels for development(Ding, Ali, Gao, Zhang, & Gao, 2025). 

Acquiring extensive labeled information within the fault 

diagnosis domain is still challenging. Zhang introduced a 

fault-detection approach for global-local structural evaluation 

by formulating a dual-objective function that integrates the 

attributes of PCA and local preserving projection (LPP) 

(Zhang, Ge, Song, & Fu, 2011). Yu introduced local and global 

PCA (Yu, 2012). A dual-objective variable was formulated 

using LPP and PCA, employing the ratio of variables for 

concurrently identifying global and local characteristics. Luo 

introduced an algorithm named global-local preserving 

projection (GLPP) (Luo, 2014). This approach effectively 

integrates global and local elements inside a single framework. 

Luo introduced a combined structure-preserving projection 

technique to identify abnormalities (Luo, Bao, Mao, & Tang, 

2016). These approaches could reveal latent intrinsic traits 

from highly dimensional information while preserving their 

local structural characteristics. The reconstruction approach 

ensures accurate variable diagnosis when the fault direction is 

identified and included in the possible locations (Dunia & Joe 

Qin, 1998). However, it cannot provide diagnostic findings for 

failures with undetermined directions. The contribution graphs 

may contain faults that might result in misleading and wrong 

diagnoses. (Yoon & MacGregor, 2001) demonstrate that 

conventional contribution charts do not yield accurate 

diagnostic outcomes. 



This paper introduced an advanced dynamic inner 

reconstruction-based contribution with global-local 

preservation projection (DiGLPP-RBC) for fault detection and 

diagnosis. The proposed method employs Hotelling’s T2 and 

squared prediction error (SPE) to detect and diagnose variable 

contributions and kernel density of faults in the ethanol-water 

industrial distillation benchmark. The proposed framework’s 

robustness is compared with traditional baselines such as 

dynamic inner principal component analysis (DiPCA) and bi-

directional long short-term memory-autoencoder (BiLSTM-

AE). 

The following portions of this paper are ordered as outlined 

below. Section 2 outlines the dynamic inner global-local 

preservation projection (DiGLPP), reconstruction-based 

contribution (RBC), and the proposed methodological 

framework (DiGLPP-RBC). Section 3 presents a performance 

benchmark of the ethanol-water industrial distillation system. 

Section 4 analyzes, compares, and evaluates the effectiveness 

of the intended and existing baselines. The conclusion is 

elaborated in Section 5. 

2. METHODOLOGY 

2.1 Dynamic inner global-local preservation projection 

The DiGLPP approach is a dynamic approximation of the 

Laplacian characteristic map used for feature extraction from 

data while maintaining both local and global manifold 

knowledge associated with the dataset. For the original dataset 

X, the transform matrix W is computed and projected onto a 

space with a low dimension to get the data set Y after reducing 

its dimensionality(Luo, 2014). 
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where, ( 1)X k  denotes the m-dimensional variables at period 

k l , while l  is the duration interval. 

The objective functionality of DiGLPP is outlined below: 
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The converse T m

i iy a x  of a transformation information 

matrix in A is indicated T

i iy a x , while the [0,1] array 

coefficient regulates the balance between global and local 

structure preservation. 
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The subset ( )k x is defined by k-adjacent that involves k(x), 

where 1  and 2  are the variables factors. Equation 2 may be 

calculated as follows(Luo, 2014): 
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where, H indicates the diagonal information 

, (1 )ii ij ij ij ijj
H R R W W    , and M = H – R is the 

Laplacian information array(Luo, 2014). 
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where [0,1]  is ascertained using the spectral radii ( )L

and ˆ( )L of the vectors L and L̂  that correspond to the global 

and local manifold structures, respectively. 

The DiGLPP model is trained in solving the specified 

optimization challenge. 
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After the development and implementation of the DiGLPP 

algorithm, the two statistical control charts, Hotelling’s T2 and 

SPE, are used to assess the framework’s efficacy and the 

variation of the residual matrix in dimension, respectively. 

The T2-monitored control score will be calculated 

appropriately. 
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The control limit for the T2 statistic may be computed as 

follows: 
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The Fisher distribution is ( , )F m   where the degrees of 

freedom are indicated by , ( 1)( 1)m m   and ( ) denotes the 

significance scale. 

The SPE is calculated subsequently. 
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The control limit for the SPE statistic may be computed as 

follows: 
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value c derived from the substantial universal groupings. 

A fault will be identified when T² and (SPE) statistical control 

limits are above the threshold. 

2.2 Reconstruction-based contribution 

Reconstructing a diagnosis index after detecting a variable 

mitigates the influence of that particular parameter on the 

index. Reconstruction describes the degree to which a 

parameter contributes to the overall reconstruction of the fault 

index. Consequently, this specific degree of reconstruction 

will be designated as the reconstruction-based contribution 

(RBC) of this descriptive parameter to fault diagnosis. 

Let us assess an operating system with n sensors. In the 

occurrence of an anomaly in sensor xi, the misleading signal is 

indicated as 
nx . Furthermore, the position of the 

abnormalities is denoted by i (Alcala & Qin, 2009). 

i i iZ x f                                                                                       (14) 

The anomaly diagnosis index of the reconstructed value can be 

articulated in a typical way. 
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Here, if  denotes the anticipated magnitude of the 

abnormalities. The anomaly diagnosis index iZ  of the 

reconstructed data is computed. 

The aim of reconstruction is to choose a threshold if  that 

optimizes the Index( )iZ ratio. The reduction method entails 

computing the initial derivatives Index( )iZ  of a variable and 

if equating them to zero. 

(Index( ))
2( )Ti

i i i

i

d Z
x f M

df
                                                 (16) 

Consequently, the RBC of the parameterized variable xi about 

the anomaly diagnostic index is articulated as(Alcala & Qin, 

2009): 
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The reconstructed index, denoted as Index( )iZ  , is obtained 

by substituting an integer if  into Equation (17) and is 

calculated to be. 
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The formulation of the RBC-aided DiGLPP control limits 

entails the calculation of statistical heatmap plots RBCDiGLPP

i , 

respectively. 
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2.3 Reconstruction-based DiGLPP methodological 

framework 

This study presents an advanced machine learning (ML) 

framework for fault detection and diagnosis to tackle 

contemporary difficulties and improve industrial systems. The 

proposed algorithm integrates machine learning techniques 

with reconstruction-aided dynamic inner global-local 

preservation projection (DiGLPP-RBC). The scenario dataset 

has 1,000 observations across 10 variables, resulting in an 

array of 1000 X 10. This dataset encompasses standard 

operations and abnormal circumstances, offering a compact, 

precise sample for system training and validation. The 

proposed framework’s robustness is compared with traditional 

baselines such as dynamic inner principal component analysis 

(DiPCA) and bi-directional long short-term memory-

autoencoder (BiLSTM-AE). Figure 1 and Table 1 depict the 

proposed advanced machine learning system and the steps for 

building models. 

 
Table 1. Methodological Development Steps 

Steps DiGLPP-RBC Methodological Framework 
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Datasets Structuring 

 The proposed approach acquires data for 

training and testing by implementing an 

industrial distillation system using AspenTech 

and MATLAB. 

 The assessment metrics in the gathered data 

sets accurately reflect standard process 

conditions without any anomalies. 

 Assessment metrics consist of aggregating data 

that shows unusual conditions. 

 The training and testing information is 

normalized to possess unit variance and a zero 

mean. 
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Dynamic Inner GLPP Model Development 

 Assess training and testing information. 

 Compute the time-delay of each parameter. 

 Executing the sliding window to obtain a 

dynamic augmented vector. 

 Compute dimensional reduction of augmented 

vector to get DiGLPP model. 

 Calculate threshold control limits: T2 and SPE. 

 DiGLPP-T2 and DiGLPP-SPE < Threshold 

limit. 

(F
a

u
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g
n

o
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Reconstruction-based DiGLPP Model 

Development 

 Compute the augmented vector. 

 Compute the contribution index using DiGLPP 

variables. 

 Apply kernel density estimation to training and 

testing information. 

 Execute the variable density of each parameter 

based on the DiGLPP-RBC model. 



 
Figure 1. Proposed methodological framework

3. INDUSTRIAL DISTILLATION SYSTEM: CASE 

SCENARIO 

This study employs a distillation system (DS) inside an 

equilibrium ethanol-water combination as a reference for 

imitating a particular scenario. Figure 2 presents a systematic 

representation of the DS ethanol-water reaction system. The 

simulation findings are loaded into MATLAB and Simulink to 

provide data on standard and abnormal circumstances. 

Tables 2-4 thoroughly illustrate the model parameters of 

anticipated attributes of fault categories, including Process 

Disruption and Sensor failure. 

Table 2. Distillation system variables 

 Industrial Distillation System  

No. Parameters Description 

1 Fi Feed flow rate 

2 XF Feed composition 

3 Rf Reflux flow rate 

4 Ti Feed temperature 

5 Tc Condenser exhaust temperature 

6 Tr Reboiler exhaust temperature 

7 Pi Feed pressure 

8 Pd Reflux column pressure 

9 Pc Condenser exhaust pressure 

10 R Reflux ratio 

 
Table 3. Fault case scenarios 

No. Fault Type Fault Description Fault Nature 

1 Ramp Discrepancy in 

condenser out 

temperature 

Process 

Disruption 

2 Step Instability in reflux 

pressure 

Sensor failure 

 

Figure 2. A systematic portrayal of the industrial distillation 

system 

4. RESULTS AND DISCUSSION 

4.1 Fault detection outcomes 

The discrepancy in condenser outlet temperature of the 

industrial distillation system has been influenced by ramp fault 

resulting from process disruption. The fault was caused at a 

labeled point of collection at 600. Figure 3 illustrates the 

outcomes of the dynamic inner principal component analysis 

(DiPCA), bi-directional long short-term memory-autoencoder 

(BiLSTM-AE), and the proposed Reconstruction-based 

dynamic inner global-local preservation projection (DiGLPP-

RBC) techniques. Figures 3 (a) and (b) illustrate the detection 

outcomes of DiPCA. The DiPCA can identify the problem at 

(821 and 686) with a substantial false alarm rate and 

inadequate detection effectiveness. Figures 3 (c) and (d) 

similarly illustrate the detection findings of BiLSTM-AE. The  



           Table 4. Model development parameters 

Feed Value Top Value Bottom Value Parameters Value 

F 12 L/min D 4.8 L/min B 7.2 L/min Reflux flowrate rate 0.45 L/min 

T 60 oC T 83 oC T 92oC Reflux ratio 2.4 

P 1.5 atm P 2 atm P 3.5 atm Diameter / Height 2.1 m / 8 m 

XF 0.35 XD 0.80 XB 0.20 No. of trays / Type 19/bubble cap tray 

  CondQ  -8.2KW 
rebQ  10.3KW Tray spacing 0.35 m 

BiLSTM-AE can identify the problem at (662 and 638) with 

modest detection accuracy. The monitored statistics datasets 

stay under the threshold limit throughout the fault’s length. 

Figures 3 (e) and (f) show the detection outcomes of the 

developed DiGLPP-RBC framework. The findings indicate 

that the proposed strategy may identify irregularities and 

failures promptly upon their emergence in the overall system. 

The DiGLPP-RBC can identify faults at (608 and 603) with a 

high detection rate with robust efficiency. The proposed 

strategy establishes the dynamic attributes of a system through 

developing a link between historical and current data. 

4.2 Fault diagnosis outcomes 

Upon detecting irregularities and failures in the distillation 

system, the subsequent challenge is ascertaining the root cause 

variable and diagnosis density. The fault density diagnostic 

outcomes for this fault situation are shown in Figures 4. The 

findings shown in Figure 4 (a) demonstrate that the RBC index 

of the DiPCA reveals the presence of confusing factors that are 

incorrectly identified. The results mark the targeted regions in 

the heat map using variables (1, 2, 8, and 10), yielding an 

impartial result. Comparably, The findings presented in Figure 

4 (b) suggest that the RBC index of the BiLSTM-AE reveals 

the presence of influencing factors that cannot be precisely 

identified. The projected impact readily distinguishes the 

targeted regions in the heat map by variables (2, 8, and 10), 

yielding a consistent result. 

Figure 4 (c) illustrates the fault density diagnostic findings 

derived from the proposed DiGLPP-RBC. Figure 6 

demonstrates that the RBC index of the DiGLPP-RBC reveals 

the presence of complicating variables (2 and 10). The 

DiGLPP-RBC approach effectively identifies and elucidates 

genuine fault interpretations. The results of DiGLPP-RBC 

elucidate the underlying fault components and density 

interpretation that contribute to the misleading variable.

 
Figure 3. Fault detection results of industrial distillation system (a)DiPCA-Φv (b) DiPCA-Φs (c)BiLSTM-RE2 (d) BiLSTM-MD2 (e) 

DiGLPP-T2 (f) DiGLPP-SPE

 
Figure 4. Reconstruction-based fault variable contribution (a) DiPCA-RBC (b) AE-BiLSTM-RBC (c) DiGLPP-RBC



5. CONCLUSIONS 

This paper introduced an advanced dynamic inner 

reconstruction-based contribution with global-local 

preservation projection (DiGLPP-RBC) for fault detection and  

diagnosis. The proposed framework’s robustness is compared 

with traditional baseline frameworks such as dynamic inner 

principal component analysis (DiPCA) and bi-directional long 

short-term memory-autoencoder (BiLSTM-AE). The results 

indicate that DiPCA and BiLSTM-AE can detect the 

abnormalities in the process at (821 and 686) and (662 and 

638) with a substantial false alarm rate and inadequate 

detection effectiveness. The DiGLPP-RBC can detect 

abnormalities at (608 and 603) with a high detection rate with 

robust efficiency. The proposed DiGLPP-RBC technique can 

detect, identify, and diagnose irregularities and faults more 

effectively and reliably than traditional approaches. It can 

establish the dynamic attributes of a system through 

developing a link between historical and current data. 
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