
     

A digital tool for the automatic identification of anomalous cell cultures in 

biopharmaceutical process development 
 

G. Barberi*, P. Diaz-Fernandez**, D. Lega**, P. Kotidis**, G. Finka**, P. Facco * 


*CAPE-Lab – Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering,  

University of Padova, Italy (e-mail: gianmarco.barberi@unipd.it; pierantonio.facco@unipd.it). 

**Biopharm Process Research, Biopharm Product Development and Supply, GlaxoSmithKline R&D, Stevenage, UK  

Abstract: The development of new monoclonal antibodies (mAb) is a long-lasting and expensive 

procedure. Digital models can be adopted to reduce research costs and accelerate timelines. During mAb 

development, Ambr®15 is a small-scale, multi-parallel bioreactor platform used to assess performance of 

different cell lines and find the most productive and stable ones. Many factors affect the culture 

performance variability and often determine anomalies in the experimental batches. Those anomalies are 

neither easy, nor fast to be identified even by expert scientists. In this work, a tool for the automatic 

identification of cell culture anomalies and outlier experimental batches in Ambr®15 scale is presented. 

The software, calibrated on historical data of the experimental batches, effectively identifies through 

assumption-free modeling anomalies and diagnoses the root cause of cell lines non-standard behavior, 

representing also the first application of these methodologies for the development of mAbs. Accordingly, 

it represents a tool of invaluable importance to speed-up analysis of experimental data and reduce the effort 

of operators, thus reducing development timeline and costs.  
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

1. INTRODUCTION 

Biopharmaceuticals are gaining a great interest as 
innovative highly specialized drugs. Among those, 
monoclonal antibodies (mAbs) represent the biggest 
selling class, whose market reached 271 billion dollars in 
2021 (Walsh and Walsh, 2022). Monoclonal antibodies are 
produced in cultures of mammalian cells, commonly 
Chinese Hamster Ovary (CHO) cells, and are used to treat 
oncological and immunological diseases.  
The development of new mAbs is a long and expensive 
process, which lasts up to 10 years and requires more than 
2 billion dollars of investment. For this reason, 
biopharmaceutical companies look for innovative 
solutions to exploit the information available in historical 
data to accelerate the development of new assets and 
reduce research costs and timelines (Barberi et al., 2022).  
One key step of mAb development is cell line selection, in 
which cell lines reaching the desired performance in terms 
of productivity, stability, and product quality are selected. 
At this stage, a specific cell line, which will also be used at 
the manufacturing stage, is selected among a pool of 
originally transfected (i.e., genetically modified cell lines to 
produce the desired product) clonal cell lines (Li et al., 
2010). This procedure is typically performed at different 
laboratory scales, from nano-well pens, where thousands 
of cell lines are screened in nanoliter volumes, to shake 
flasks and high-throughput automated bioreactors (i.e., cL-
dL volumes), where only the best performing cell lines are 
cultured to properly assess their performance at scales and 

processes that better resemble the production one. One 
automated bioreactor typically used during cell line 
screening and selection is Ambr®15 (Rameez et al., 2014). 
It is a high-throughput bioreactor system with 48 single-
use bioreactors, that mimics the performance of larger 
scale stirred bioreactors. The bioreactors (whose working 
volume is 15 mL) are equipped with an internal impeller, 
are individually supplied with gasses and support 
automatic feeding, sampling, and control of pH and 
dissolved oxygen. Typically, time profiles of the main 
process variables (such as nutrients concentration, pH and 
dissolved oxygen) are available.  
During experimental runs in Ambr®15 several events can 
affect the correct growth and productivity of cells, leading 
the experimental batches (each one held in one of the 48 
single-use bioreactors) to anomalies. Since process 
variables are extremely correlated, a change in the culture 
state corresponds to variations in several process 
variables. The identification of anomalies is typically 
performed by expert scientists, who inspect the variable 
time trajectories of each experimental batch to identify the 
outlier ones. This identification is neither fast nor trivial, if 
not supported by science-based modelling methodologies. 
In fact, the main challenge is the fast and reliable 
inspection of time trajectories of many variables for a large 
number of batches to discriminate the ones that behave 
differently from the standard historical cultures.  
Multivariate latent variable models represent well-known 
effective methodologies to monitor the time evolution of 
batch processes, in order to identify anomalies and 



 

 

     

 

outliers. Typically, multiway principal component analysis 
(MPCA) and its diagnostics, Hotelling’s T2 and squared 
prediction error (SPE) are used to uncover process 
anomalies and the nature or root cause of these anomalies 
(Joe Qin, 2003). For example, MPCA is used for anomaly 
detection and diagnosis of a biopharmaceutical drug 
production process (Zeberli et al., 2021). However, this 
methodology handles the batch time dimension as 
additional variables (i.e., batch-wise unfolding of the data) 
and is effective if all the batches are at each sampling time 
in the same operating stage and biological state, namely 
they are characterized by the same chemical, physical and 
biological phenomena. This does not happen in cell 
cultures, because culture might grow and progress 
differently from each other, due to their biological 
variability. Furthermore, to obtain dynamic diagnostics, 
online monitoring methods require the artificial 
completion of the batch, which may introduce artifacts that 
are not realistic.  
To overcome these issues, an assumption-free method for 
batch monitoring and anomaly detection has previously 
been developed (Westad et al., 2015). This method 
considers batches that may be started and concluded in 
different states, without requiring synchronization. 
Furthermore, it handles each time point independently 
from the correlation with the others, thus providing 
dynamic diagnostics which do not depend on the specific 
operating stage or biological state. However, application of 
the assumption-free method in the biopharmaceutical 
sector and especially in the development of new mAbs is 
missing. Furthermore, the method has not been tested in 
applications where only a reduced number of time 
measurements is available.  
This work aims at developing a tool for the identification 
of anomalies and batch with non-standard behavior (i.e., 
outlier) in the development of new mAbs at Ambr®15 
scale. This method is able to define the standard behavior 
of the cell cultures and effectively performs the analysis of 
batch time trajectories, identifying possible outliers and 
diagnosing the causes of the anomalies in a reliable, fast 
and automatic manner. The developed tool provides 
precious support in inspecting the experimental results for 
cell line selection during mAb development. First of all, it 
is a objective and science-based method for cell lines 
selection and informed decision making. Furthermore, 
being a fast and automated tool to highlight non-standard 
batches, it relieves the scientists from the manual 
inspection of many experimental results, allowing to 
review only the non-standard batches. Hence, it saves 
scientists time in the analysis of experimental data for 
product development; thus, supporting the reduction of 
development timelines.  

2. MATERIALS AND METHODS 

2.1  Cell culture data 

Experimental batches culturing CHO cell lines (GSK 
proprietary) were run in the Ambr®15 miniature 
bioreactor system (Sartorius Stedim Biotech, Sartorius AG, 

Goettingen, Germany) to produce several therapeutic 
mAbs. All runs were performed for 15 days in fed-batch 
mode, with glucose as the main carbon source. All process 
conditions and their changes along the culture (i.e., feeding 
strategy, pH and temperature set points) are the same 
across all experimental runs. Variability in the profiles of 
controlled variables is due to the specificity of each clone 
and to the timing of controlled actions. 𝑁 = 1160 
experimental batches are available for the analysis.  
Process variables were measured along the experimental 
batch at 𝐾 = 7 time points (namely days 0, 3, 6, 8, 10, 13, 
15). 𝑉 = 10 process variables are available for the 
analysis, namely antibody titer, viable cell concentration, 
cell culture viability, concentration of ammonium, 
glutamate, glutamine, lactate, LDH, pH, and dissolved 
oxygen (DO). Batch data are organized in a three-
dimensional array 𝐗 [𝑁 × 𝑉 × 𝐾]. 

To test the proposed method for the identification of 
anomalies and outliers, a single Ambr®15 run (i.e., 48 test 
batches) is randomly selected and used as external 
validation set, while the remaining 1112 batches are used 
to calibrate the model. Testing batches are left aside before 
any processing and analysis.  

2.2  Data pre-processing 

Missing values along the process variable time profiles are 
imputed by linear interpolation. The remaining missing 
values (e.g., at the beginning of the culture) are imputed 
using the column-wise mean value across all batches. This 
is done to reduce the impact of the imputed values on the 
multivariate model.  
Since experimental batches comprise data from cell lines 
expressing different mAbs, data were scaled within each 
experiment to allow multivariate comparison among 
process variable time profiles. In this work, data were 
scaled to zero mean and unit variance.  
Test batches are preprocessed similarly to calibration 
ones. Missing value imputation is performed using the 
column-wise mean value calculated over calibration 
batches.  

2.3  Multiway PCA 

Multiway Principal Component Analysis (MPCA; Nomikos 
and MacGregor, 1994) is used as a dimensionality 
reduction method to identify anomalies and outlier 
batches (i.e., batches with non-standard behavior) while 
properly handling the time-dimension of the batch data.  
In MPCA data is unfolded prior PCA modelling. Variable-
wise unfolding is used in this work. It retains the time 
behavior of batches along the observation direction, 
allowing to study time-averaged correlations across 
variables. This specific handling of the time-dimension of 
data is required by the assumption-free method used for 
the identification of outliers. In variable-wise unfolding, 
data at each time points 𝑘, 𝐗𝑘  [𝑁 × 𝑉], are concatenated 
vertically (i.e., along the variable dimension) to generate 
the unfolded bi-dimensional matrix 𝐗 [𝑁 ∙ 𝐾 × 𝑉]. 



 

 

     

 

PCA (Jolliffe, 2022) is then applied. It is a multivariate 
technique that captures the direction of maximum 
variability of and the correlation among variables of 𝐗 
scaled data. It projects the data into a reduced space of 𝐴 
principal components (PCs; where 𝐴 ≪ 𝑉) as: 

 𝐗 = 𝐓𝐏𝐓 + 𝐄   , (1) 

where 𝐓 [𝑁 ∙ 𝐾 × 𝐴] is the score matrix, 𝐏 [𝑉 × 𝐴] is the 
loading matrix and 𝐄 [𝑁 ∙ 𝐾 × 𝑉] is the residual matrix 
which is minimized in the least-square sense. In MPCA, 
scores capture the relationship between batches along 
their time evolution, while loadings capture the time-
averaged correlation among process variables.  
Squared Prediction Error (SPE; Nomikos and MacGregor, 
1995) is used to assess if observations (i.e., any batch at 
time point) follow the correlation structure captured by 
the MPCA model. SPE is defined as: 

 𝑆𝑃𝐸𝑛 = 𝐞𝑛
T𝐞𝑛  ,  (2) 

where 𝐞𝑛 is the residual vector for an observation 𝑛 from 
the MPCA model (i.e., a row of matrix 𝐄). One-sided 
confidence limit can be calculated for the SPE diagnostic 
as: 

 𝑆𝑃𝐸𝑙𝑖𝑚 =
𝜎

2𝜇
𝜒2𝜇 𝜎⁄ ,𝛼

2    ,  (3) 

where 𝜇 and 𝜎 are the mean and variance of the SPE, 
respectively, 𝜒2 is a chi-square distribution with 2𝜇 𝜎⁄  
degrees of freedom at a confidence level 𝛼. 

2.4  Assumption-free modeling 

Assumption-free modelling (Sartori, 2024; Westad et al., 
2015) is used in this work to identify anomalies in batch 
time progression because it can handle batches which: i) 
do not start in the same state (i.e., seeding and feeding 
conditions might vary), ii) have a different state of the final 
sampling point (i.e., due to a different degree of batch 
evolution), and iii) follow a different time progression.  
The assumption free algorithm considers the score matrix 
𝐓 to identify the common batch trajectory and dynamic 
confidence limits that identify outlier batches. The 
algorithm goes through the following steps: 

1. Use a grid-search algorithm to build a grid of cells 
in the score space of the MPCA model (Sartori, 
2024). The algorithm tests different space 
subdivisions and identifies the best one, namely 
the one which maximizes the number of valid grid 
cells. A grid cell is valid if it contains scores from 
at least a fraction 𝛽 of all batches. Grid cells must 
be valid because they are used to determine the 
common batch trajectory; hence, they should be 
representative of a sufficiently large portion of 
batches. The algorithm also ensures that at least a 
fraction 𝛾 of all MPCA scores are contained in valid 
cells to guarantee that the identified grid of cells 
appropriately capture the MPCA scores. In this 
work, 𝛽 = 0.5 and 𝛾 = 0.88 were heuristically set 
during preliminary studies. The parameters 

should be tuned to ensure that the resulting 
common batch trajectory properly follows the 
time evolution of batches. The automatic 
identification of these parameters is object of 
further studies.   

2. Calculate the mean of all scores and the means of 
individual batches (irrespectively of their time) 
within a valid cell. Multiple time points of a batch 
can be contained in a cell, as it might have a time 
evolution which is different from the common one. 
The mean of all scores is the average state of the 
batches in a cell, and it is thereafter named cell 
center.  

3. Determine the common batch trajectory by linear 
interpolation of all the centers of valid cells.  

4. Project the mean of the individual batches onto 
the average batch trajectory and estimate the 
distance statistic. The distance statistic for an 
individual batch mean 𝑏 is calculated as: 

 𝑑𝑏 = √∑ (𝑡𝑏 − 𝑡𝑏⟂)2𝐴
𝑎=1   ,  (4) 

where 𝑡𝑏 is the individual batch mean and 𝑡𝑏⟂ is 
the projection of the individual mean onto the 
average batch trajectory. 

5. Estimate the confidence limit for the population of 
individual batch distance statistics within each 
valid cell. This confidence limit will be used to 
identify outlier observations (i.e., a time point of a 
batch) within each cell. 

6. Calculate the SPE for all batch observations within 
each valid cell and determine its confidence limit 
(2-3). This confidence limit will be used to identify 
in each cell batch observations that do not follow 
the correlation structure captured by the model.  

When a new batch is available the following steps are 
performed: 

1. Preprocess the new batch; 

2. Project the new batch into the MPCA model 𝐭𝑛𝑒𝑤 =
𝐱𝑛𝑒𝑤𝐏; 

3. Estimate the distance statistic and SPE to identify 
possible outliers.  

2.5  Outlier detection and diagnosis 

The anomalies detection is performed using the dynamic 
control limits of SPE and distance from the average batch 
trajectory (i.e., distance statistic) calculated through the 
assumption-free modelling (Section 2.4). Outlier detection 
identifies batch that deviates from the average batch 
trajectory (i.e., large distance) and/or does not conform 
with the correlation structure captured by the MPCA 
model (i.e., large SPE). Accordingly, a batch is considered 
faulty if a defined number of observations violates either 
the SPE or the distance confidence limit in the score space. 
The number of consecutive observations outside the 



 

 

     

 

confidence limits can be tuned to minimize false positives 
(Rato et al., 2016). However, in this work, due to the small 
number of time points, a batch is identified as an outlier if 
a single time observation is outside the confidence limit.  
Outlier diagnosis (i.e., identification of the root causes of 
the anomalies) is performed using the contributions to the 
distance from the average batch trajectory and the SPE. 
Contributions to the SPE for an observation 𝑛 are provided 
by the residual vector 𝐞𝑛 . Distance contributions, instead, 
are calculated as: 

 𝐝𝒄𝒐𝒏𝒕,𝒏 = 𝐭𝒏𝐏𝐓   .  (5) 

To properly assess the deviations of a batch with respect 
to the average batch trajectory, the relative contributions 
of the distance statistic are calculated. Two-sided 
confidence limit for contributions can be calculated from 
the population of contributions resulting during the 
calibration phase. 

3. RESULTS AND DISCUSSION 

3.1  Model calibration for the detection of outlier cell-lines  

To perform the detection of outlier batches, both the MPCA 
and the assumption-free models have to be calibrated. 
However, not all the 𝑁 available batches are representative 
of standard batch conditions, due to the intrinsic difficulty 
in defining standard conditions for mAb cell cultures, and 
the absence of batch labeling (standard/outliers) and 
normal operating conditions for cell cultures. Accordingly, 
to identify the standard batches among the available ones, 
a first global version of both MPCA and assumption-free 
model are built on all the available data, and the calculated 
distance statistic and SPE limits are used to exclude 
calibration batches with non-standard conditions. In this 
way, the model can be calibrated on well-behaving 
batches, excluding unknown outliers, which cannot be 
otherwise determined due to the absence of ground truth 
labels. Batches with at least one observation outside 2 
times the distance confidence limit and 2.5 times the SPE 
confidence limit are considered as non-standard and are 
accordingly excluded. The remaining 𝑁′ = 994 batches are 
considered to operate in standard conditions and are used 
to calibrate the model.  These thresholds have been 
heuristically selected (during preliminary studies not 
showed) as they exclude batches with highly anomalous 
behavior, without limiting excessively the variability of the 
historical data. However, the presence of ground truth 
labels for batches would have strengthened the capability 
of the model.  
MPCA captures with 2 PCs the 56.1% of 𝐗 variability. 
Figure 1a reports the score space of the calibration data 
with the average batch trajectory (purple line), the 
confidence limit of the distance within the model (red 
line), and the optimal grid. The time behavior of batches is 
captured in the score space. In fact, batches start in the top-
left quadrant and move in time toward the bottom-left 
quadrant and then the right part of the score space. The 
confidence limit identifies the region where standard 

batches are located. Note that the presence of some 
observations outside the confidence limit is physiological, 
because the 95% confidence limit leaves 5% of 
observations outside by definition.  

 

(a) 

 

(b) 

Fig. 1. Results of MPCA and assumption free section 

calibration: (a) score plot with average batch trajectory, 

distance confidence limit, and grid; (b) loading plot of the 

MPCA model. 

The loading plot reports the correlation structure among 
variables, averaged throughout the entire batch duration, 
captured by the model (Figure 1b) used for the 
identification of anomalies and outlier batches. The first PC 
captures the positive correlation between variables 
antibody titer, ammonium, glutamine, LDH, and viable cell 
concentration, which are anticorrelated to lactate and cell 
culture viability. Accordingly, observations (i.e., batch at 
each time point) located at positive values of PC1 are 
characterized by high values of antibody titer, ammonium, 
glutamine, LDH and viable cell concentration, and by low 
values of lactate and cell culture viability.  
The second PC, instead, mainly captures the 
anticorrelation between lactate and pH. This 
anticorrelation is physically reasonable, because it 
captures the physical effect of pH reduction when the acid 
in the culture (i.e., lactate) increases. According to this 
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anticorrelation, batches with positive value of PC2 are 
characterized by low values of lactate and high value of pH. 
Other minor effects indicate that these batches are also 
characterized by low value of viable cell concentration and 
DO.  

 

(a) 

 

(b) 

Fig. 2. Results of outlier detection and diagnosis for test 

batch #32: (a) time trajectory of relative distance statistic and 

relative SPE, with confidence limit; (b) distance and SPE 

contributions with confidence limits at day 10 for root cause 

diagnosis. 

The joint analysis of scores and loadings indicates that at 
the beginning of the culture batches are characterized by 
low value of antibody titer, ammonium, glutamine, LDH, 
viable cell concentration, lactate, and by high values of cell 
culture viability and pH, because they are located in the 
top-left quadrant (negative PC1 and positive PC2 values). 
With the growth phase, the state of batches moves towards 
the bottom-left quadrant (negative PC2 values), which 
indicates an increase in lactate and viable cell 
concentration and a corresponding decrease in pH, while 
all other culture variables are not subject to large 
variations. Then, during stationary and decline phases, 
batches move towards the right side of the score space 
with PC2 ~0. This indicates that the progression through 

stationary and decline phases induces an increase in 
antibody titer, ammonium, glutamate, LDH, viable cell 
concentration, and a decrease in cell culture viability and 
lactate, while pH remains on intermediate values.  
The batch behavior captured by the MPCA model is 
coherent with the expected time evolution of mAb cell 
cultures, which are subject to the accumulation of some 
compounds, such as antibody titer, ammonium, glutamate, 
together with an increase in viable cell concentration and 
a decrease in cell culture viability. Lactate, instead, is 
initially produced by cells, and subsequently consumed 
after the lactate shift. According to these results, the MPCA 
model can be used to identify outlier batches, as the ones 
that deviate from this standard behavior.  

3.2  Detection of outlier cell lines and root causes analysis 

The developed tool is tested on 48 validation batches not 
included in calibration to identify outliers and anomalies 
in the testing set. Test batches follow the following analysis 
procedure (Section 2.4): i) preprocessing; ii) projection 
onto the MPCA model; iii) calculation of distance statistic 
and SPE; iv) outlier detection and diagnosis.  
The tool identifies 25 test batches over 48 as outliers. 
These batches are highlighted as having at least one time 
observation outside the distance statistic or the SPE 
confidence limit. The large number of outliers, identified in 
this case, is expected since the testing Ambr®15 run 
presents large variability in the main process trajectories 
(Figure 3). Furthermore, due to the absence of ground 
truth labels for outliers, the accuracy and false discovery 
rate of the method cannot be determined. The identified 
batches, together with the root cause of the non-standard 
behavior are provided to expert developers for further 
analysis. As an example, the analysis of the batch #32, 
which is identified as an outlier, is presented. The distance 
statistic and SPE over the batch time evolution is reported 
in Figure 2. Note that the Figure is represented in terms of 
relative distance (i.e., the ratio between the distance 𝑑 and 
the respective limit) and relative SPE (i.e., the ratio 
between SPE of the observation and the respective limit), 
so the confidence limit is equal to 1.  
This representation is used because the confidence limits 
change according to the position of the observation in the 
score space. Test batch #32 is identified as an outlier 
because it exceeds the confidence limit of distance statistic 
at days 10 and 15 and the confidence limit of SPE at day 10. 
Accordingly, at day 10 the batch is strongly different from 
the standard conditions of the Ambr®15 batches (given by 
the average batch trajectory), but at the same time it does 
not follow the correlation structure identified by the 
model, being outside the SPE confidence limit.  
The final state of the batch (at day 15) is statistically 
different from the standard state of batches. In particular, 
at this time point, the batch has progressed further than 
standard conditions, showing slightly higher values of 
antibody titer, ammonium, glutamine, LDH, and lower 
values of lactate and cell culture viability. 



 

 

     

 

 

(a) 

 

(b) 

Fig. 3. Relevant process variables time profile for test batch 

#32 (blue line – batch #32; gray lines - time profiles of the 

other test batches): (a) lactate concentration; (b) pH. Axis 

values are anonymized for confidentiality reasons. 

The root cause diagnosis of the non-standard behavior is 
performed by analyzing the diagnostic contribution plot at 
the relevant time points (i.e., where the batch exceeds a 
confidence limit). The diagnostics contributions plot at day 
10 for the test batch #32 is reported in Figure 2b, together 
with the respective confidence limits. The batch shows 
values glutamate, lactate, viable cell concentration, and DO 
higher than standard batches, while lower values of pH 
(from contribution of the distance statistics). 
Furthermore, the same variables with the addition of LDH 
make the batch not following the correlation structure of 
the MPCA (i.e., is outside SPE limit).   
The behavior highlighted by the software can be observed 
in the process variables time profiles (Figure 3). Batch #32 
shows a spike in lactate concentration at day 10 (Figure 
3a), which is not a standard behavior, as can be observed 
also in the other test batches (gray lines). At the same time, 
the lactate spike produces an increased culture acidity, 
resulting in a corresponding decrease of pH (Figure 3b).  

4. CONCLUSIONS 

In this work, we presented a tool for the detection of 
anomalies and outliers to support the development of new 

monoclonal antibodies. The tool uses multivariate and 
assumption-free methods to identify batches showing 
anomalies in their process trajectories at Ambr®15 scale. 
Accordingly, the detection of anomalies is accomplished on 
all process variables together, not just considering the 
single variables in a univariate fashion. Being calibrated on 
historical Ambr®15 data, even without knowing the 
standard conditions for cell cultures or ground truth labels 
for outliers, the tool is able to highlight outlier batches to 
expert scientists and provide an indication of the root 
cause of the anomaly.  
The developed tool supports the digitalization of the 
development of mAbs, allowing a fast and automatic 
evaluation of Ambr®15 batch time trajectories. This 
simplifies and accelerates the analysis conducted by 
scientists, reducing the experimental effort and providing 
a science-based tool to support decision making during the 
development and approval of new mAbs. 
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