
Task-optimal data-driven surrogate models
for eNMPC via differentiable simulation

and optimization

Daniel Mayfrank ∗,∗∗∗∗ Na Young Ahn ∗

Alexander Mitsos ∗∗∗,∗,∗∗ Manuel Dahmen ∗,†

∗ Forschungszentrum Jülich GmbH, Institute of Climate and Energy
Systems, Energy Systems Engineering (ICE-1), Jülich 52425,

Germany
∗∗ RWTH Aachen University, Process Systems Engineering

(AVT.SVT), Aachen 52074, Germany
∗∗∗ JARA-ENERGY, Jülich 52425, Germany

∗∗∗∗ RWTH Aachen University, Aachen 52062, Germany
† Corresponding author: m.dahmen@fz-juelich.de

Abstract: We present a method for end-to-end learning of Koopman surrogate models for
optimal performance in a specific control task. In contrast to previous contributions that employ
standard reinforcement learning (RL) algorithms, we use a training algorithm that exploits the
potential differentiability of environments based on mechanistic simulation models to aid the
policy optimization. We evaluate the performance of our method by comparing it to that of other
training algorithms on an existing economic nonlinear model predictive control (eNMPC) case
study of a continuous stirred-tank reactor (CSTR) model. Compared to the benchmark methods,
our method produces similar economic performance while eliminating constraint violations.
Thus, for this case study, our method outperforms the others and offers a promising path
toward more performant controllers that employ dynamic surrogate models.

Keywords: Koopman; Reinforcement learning; Differentiable simulation; End-to-end learning;
Economic model predictive control; Chemical process control

1. INTRODUCTION

Economic model predictive control (eNMPC) is a control
strategy that uses a dynamic process model to predict
the system behavior and make real-time control decisions
by repeatedly solving an optimal control problem (OCP)
in a rolling horizon fashion. Whereas traditional model
predictive control (MPC) focuses on following reference
trajectories, eNMPC aims to directly optimize economic
process performance by integrating an economic objective
into the OCP. eNMPC relies on a sufficiently accurate
dynamic model of the process. Unfortunately, for high-
dimensional nonlinear systems, the computational burden
of solving the resulting OCPs can render eNMPC com-
putationally intractable. In such cases, data-driven sur-
rogate models for computationally expensive mechanistic
dynamic models can enable real-time eNMPC by reducing
the computational burden of solving the underlying OCPs
(McBride and Sundmacher (2019)).

Recent articles (e.g., Gros and Zanon (2019); Mayfrank
et al. (2024)) have established end-to-end reinforcement
learning (RL) of dynamic surrogate models as way to train
models for optimal performance in a specific (control) task
(see Fig. 1a). Task-optimal dynamic models for control can

⋆ This work was performed as part of the Helmholtz School for Data
Science in Life, Earth and Energy (HDS-LEE) and received funding
from the Helmholtz Association of German Research Centers.

be learned by viewing a dynamic model and its learnable
parameters as part of a differentiable policy (see Fig.
1b). This policy consists of the dynamic model and a
differentiable optimal control algorithm. Various methods
for turning (e)NMPC controllers into differentiable and
thereby learnable policies have been developed, see, e.g.,
(Amos et al. (2018); Gros and Zanon (2019); Mayfrank
et al. (2024)). These methods do not depend on any
specific policy optimization algorithm. End-to-end RL
of surrogate models may yield increased performance of
the resulting eNMPCs regarding the respective control
objective, e.g., the minimization of operating costs while
avoiding constraint violations (Mayfrank et al. (2024)).

RL algorithms are a class of policy optimization algorithms
that enable learning of optimal controllers or dynamic
models for use in eNMPC through trial-and-error actu-
ation of real-world or simulated environments. Standard
RL algorithms view environments as black boxes and do
not use derivative information regarding the environment
dynamics or the reward signals, even though many RL
publications use simulated environments where analytical
gradients of dynamics and rewards could be available.
Policy gradient algorithms are the most commonly used
class of RL algorithms for end-to-end learning of dynamic
models for control, see, e.g., (Gros and Zanon (2019)).
However, fundamental issues arise from the fact that policy
gradient algorithms do not leverage analytical gradients

00. Monat 2017 Seite 4

PAPER 2
Koopman eNMPC

!(#!$", &", '") ≤ *s.t.:
$"#$ = 0!$% + 2!&%

&%∗$%
$% = 3!(4%) min', 8

"∈)
Φ #!$", &" +:'%⊺'%4%

Backpropagation using

Differentiable eNMPC

!(4", &") ≤ *s.t.:
4"#$ = ;! 4", &"

&%∗
min', < 4", &"4%

Backpropagation using
automatic differentiation

Generate data set of
system dynamics using

mechanistic model

Fit data-driven
surrogate model by

maximizing prediction
accuracy

Use surrogate model in (eN)MPC to control the physical system

System identification vs. End-to-end learning

Environment based on
mechanistic model

ActionState
Reward RL loop

(eN)MPC policy
employing data-driven

surrogate model

Generate data set of
system dynamics using

mechanistic model

Fit data-driven
surrogate model by

maximizing prediction
accuracy

Surrogate model

System identification End-to-end learning

Environment based on
mechanistic model

ActionState
Reward RL loop

(eN)MPC policy
employing data-driven

surrogate model

Use surrogate model in (eN)MPC to control the physical system

Task-optimal surrogate model

old

(a)

00. Monat 2017 Seite 1

PAPER 2

Dynamic Koopman surrogate
model parametrized by !

Data set "
#!, %!, #!"# ∈ "

Mechanistic model Generate data set through
random model actuation

Fit dynamic Koopman
surrogate model via
supervised learning

End-to-end refinement of
Koopman model using

SHAC

Task-optimal dynamic
Koopman surrogate model

1.

2.

3.

#̇()) = ,(#()), %()))

Koopman eNMPC

!(#!$", &", '") ≤ *s.t.:
$"#$ = 0!$% + 2!&%

&%∗$%
$% = 3!(4%) min'! 8

"∈)
Φ #!$", &" +:'%⊺'%4%

Backpropagation using

Generate data set of
system dynamics using

mechanistic model

Fit data-driven
surrogate model by

maximizing prediction
accuracy

Use surrogate model in (eN)MPC to control the physical system

System identification vs. End-to-end learning

Environment based on
mechanistic model

ActionState
Reward RL loop

(eN)MPC policy
employing data-driven

surrogate model

Differentiable eNMPC

!(4", &") ≤ *s.t.:
4"#$ = ;! 4", &"

&%∗
min'! < 4", &"4%

Backpropagation using
automatic differentiation

(b)

Fig. 1. (a) Comparison of two paradigms for the training
of data-driven dynamic surrogate models for use in
eNMPC. (b) The differentiable eNMPC policy takes
as input the current state xt and computes the
optimal control action u∗

t based on a cost function
f , inequality constraints g, and the learnable discrete-
time dynamic surrogate model hθ (highlighted in blue
font), which is parameterized by θ.

from the environment. These issues concern both a lacking
understanding of the algorithms’ empirical behavior (Ilyas
et al. (2018); Wu et al. (2022)) and their performance
(Islam et al. (2017); Henderson et al. (2018)).

Recently, however, policy optimization algorithms that
leverage the derivative information from simulated envi-
ronments were designed, e.g., the Short-Horizon Actor-
Critic (SHAC) algorithm (Xu et al. (2022)). These algo-
rithms manage to avoid the well-known problems of Back-
propagation Through Time (BPTT) (Werbos (1990)), i.e.,
noisy optimization landscapes and exploding/vanishing
gradients (Xu et al. (2022)), and have shown enhanced
training wall-clock time efficiency and increased terminal
performance compared to state-of-the-art RL algorithms
that do not exploit derivative information from the en-
vironment. These algorithmic advances could also benefit
the learning of dynamic surrogate models for (eN)MPC if
the mechanistic simulation model is differentiable. To this
end, differentiable simulators, e.g., (Chen et al. (2018)),
can be used to construct simulated RL environments with
automatically differentiable dynamics and reward func-
tions, thus enabling the use of analytic gradients for policy
optimization. Nevertheless, policy optimization using dif-
ferentiable environments has yet to be established for the
learning of dynamic surrogate models for (eN)MPC.

By combining our previously proposed method for end-
to-end learning of task-optimal Koopman models in
(e)NMPC applications (Mayfrank et al. (2024)) with the
SHAC algorithm (Xu et al. (2022)), we present a method

for end-to-end optimization of Koopman surrogate models.
Crucially, our method exploits the differentiability of simu-
lated environments, distinguishing it from previous contri-
butions, which are based on RL (Gros and Zanon (2019);
Mayfrank et al. (2024)) or imitation learning (Amos et al.
(2018)). We evaluate the resulting control performance on
an eNMPC case study derived from a literature-known
continuous stirred-tank reactor model (Flores-Tlacuahuac
and Grossmann (2006)). We compare the performance to
that of eNMPCs employing Koopman surrogate models
that were trained either using (i) system identification
or (ii) RL. We find that the novel combination of a
Koopman-eNMPC trained using SHAC exhibits superior
performance compared to the other options. This finding
confirms our expectation that the advantages of policy op-
timization algorithms that leverage derivative information
from differentiable environments can apply to the end-to-
end training of dynamic surrogate models for predictive
control applications. Thus, our work constitutes a step to-
wards more performant real-time capable optimal control
policies for large-scale, nonlinear systems, where optimal
control policies based on a mechanistic model are not real-
time capable.

We structure the remainder of this paper as follows:
Section 2 presents our method. Section 3 showcases the
performance of our method on a simulated case study
and discusses the results. Section 4 draws some final
conclusions.

2. METHOD

From a methodological perspective, the core contribution
of this work is combining: (i) the SHAC algorithm (Xu
et al. (2022)), a policy optimization algorithm that lever-
ages derivative information from a differentiable simula-
tion environment, (ii) an extension of Koopman theory
to controlled systems by Korda and Mezić (Korda and
Mezić (2018)) that results in convex OCPs, and (iii) our
previously published (Mayfrank et al. (2024)) method for
turning Koopman-(e)NMPCs into differentiable policies.
We refer the reader to the aforementioned publications for
a detailed description of the theoretical background of this
work.

We adopt an RL perspective (Sutton and Barto (2018)) on
policy optimization problems. Herein, the control problem
is represented by a discrete-time Markov Decision Process
(MDP) with associated states xt ∈ Rn and control inputs
ut ∈ Rm, a transition function F : Rn × Rm → Rn,
xt+1 = F(xt,ut), and a scalar reward function R : Rn ×
Rm → R, rt+1 = R(xt+1,ut). An environment is the MDP
of a specific RL problem. An episode refers to a sequence of
interactions between a policy and its environment, starting
from an initial state, involving a series of control inputs,
and leading to a terminal state. A policy πθ(ut|xt) : Rn →
Rm is a function, parameterized by θ, mapping states xt

to (probability distributions over) control inputs ut. The
goal of policy optimization is to maximize the expected
future sum of rewards.

We aim to exploit the differentiability of continuous-time
mechanistic models that can be represented as ordinary
differential equation (ODE) systems, i.e.,

ẋ(t) = f(x(t),u(t)), (1)

00. Monat 2017 Seite 5

PAPER 2

Dynamic Koopman surrogate
model parametrized by !

Data set "
##, %#, ##$% ∈ "

Mechanistic model Generate data set through
random model actuation

Fit dynamic Koopman
surrogate model via
supervised learning

End-to-end refinement of
Koopman model using

SHAC

Task-optimal dynamic
Koopman surrogate model

1.

2.

3.

#̇()) = ,(#()), %()))

Pre-trained discrete-time Koopman surrogate model

Data set "
##, %#, ##$% ∈ "

Mechanistic model Generate data set through
random model actuation

Fit discrete-time
Koopman surrogate model

via supervised learning

Task-optimal discrete-time Koopman surrogate model

1.

2.

End-to-end
refinement of

Koopman model
using SHAC

3.

#̇()) = ,(#()), %()))

Koopman (e)NMPC

Environment based on
mechanistic model

ActionState, Reward

Old version

Fig. 2. Workflow from mechanistic model to task-optimal
dynamic Koopman surrogate model. Adapted from
Mayfrank et al. (2024).

for the end-to-end learning of task-optimal discrete-time
dynamic surrogate models. In our previous publication
(Mayfrank et al. (2024)), we present a method for end-
to-end RL of data-driven Koopman models for optimal
performance in (e)NMPC applications, based on viewing
the predictive controller as a differentiable policy and
training it using RL. This method is independent of the
specific policy optimization algorithm. Therefore, by re-
placing the RL algorithm (Schulman et al. (2017)) with
SHAC (Xu et al. (2022)), we can take advantage of policy
optimization algorithms that exploit the differentiability
of simulated environments in the learning of surrogate
models for dynamic optimization. Analogous to the ap-
proach we take in (Mayfrank et al. (2024)), the overall
workflow (visualized in Fig. 2) from a mechanistic model
to a task-optimal dynamic Koopman surrogate model con-
sists of three steps: (i) We generate a data set of the
system dynamics by simulating the mechanistic model
using randomly generated control inputs. (ii) Following
the model structure proposed by Korda and Mezić (2018),
we fit a Koopman model (Koopman (1931)) with learn-
able parameters θ to the data. (iii) Using the mechanis-
tic process model (Eq. 1) and a differentiable simulator
(Chen et al. (2018)), we construct a differentiable RL
environment whose reward formulation incentivizes task-
optimal controller performance on a specific control task.
For instance, in an eNMPC application, the task-specific
reward should depend on operating costs and potential
constraint violations, not on the prediction accuracy of
the dynamic model, which is used as part of the predictive
controller. Using the differentiable environment, we fine-
tune the Koopman model for task-optimal performance as
part of a predictive controller. Fig. 3 provides a conceptual
sketch of this fine-tuning process. To ensure exploration
in the training process, we add Gaussian noise to the –
otherwise deterministic – output of the Koopman eNMPC
policy. For a detailed description of steps one and two in
Fig. 2 (data generation and SI) and how to construct a
differentiable eNMPC policy from a Koopman surrogate
model, we refer the reader to our previous work (Mayfrank
et al. (2024)).

3. NUMERICAL EXPERIMENTS

3.1 Case study description

Following our previous work (Mayfrank et al. (2024)), we
consider a dimensionless benchmark continuous stirred-
tank reactor (CSTR) model (Flores-Tlacuahuac and Gross-
mann (2006)) that consists of two states (product concen-
tration c and temperature T), two control inputs (produc-
tion rate ρ and coolant flow rate F), and two nonlinear
ordinary differential equations:

ċ(t) = (1− c(t))
ρ(t)

V
− c(t)ke−

N
T (t) ,

Ṫ (t) = (Tf − T (t))
ρ(t)

V
+ c(t)ke−

N
T (t)

− F (t)αc(T (t)− Tc)

The model has a steady state at css = 0.1367, Tss =
0.7293, ρss = 1.0 1

h , Fss = 390.0 1
h . Based on the model,

we construct an eNMPC application by assuming that
the electric power consumption is proportional to the
coolant flow rate F , enabling production cost savings by
shifting process cooling to intervals with comparatively low
electricity prices. Given price predictions, the goal is to
minimize the operating costs while adhering to process
constraints. The state variables and the control inputs
are subject to box constraints (0.9css ≤ c ≤ 1.1css,
0.8Tss ≤ T ≤ 1.2Tss, 0.8

1
h ≤ ρ ≤ 1.2 1

h , and 0.0 1
h ≤ F ≤

700.0 1
h). We include a product storage with a maximum

capacity of six hours of steady-state production to enable
flexible production. To match the hourly structure of the
day-ahead electricity market, we choose control steps of
length ∆tctrl = 60 minutes. A more detailed case study
description, including the model parameters, is given in
Mayfrank et al. (2024).

3.2 Training setup

We compare the performance of the following three train-
ing paradigms:

(1) Koopman-SI : eNMPC controller using a Koopman
surrogate model trained solely using SI.

(2) Koopman-PPO : eNMPC controller using a Koopman
surrogate model pretrained using SI and refined for
task-optimal performance using the state-of-the-art
policy gradient algorithm Proximal Policy Optimiza-
tion (PPO) (Schulman et al. (2017)), like we did in
Mayfrank et al. (2024).

(3) Koopman-SHAC (main contribution of this work):
eNMPC controller using a Koopman surrogate model
pretrained using SI and refined for task-optimal
performance using the SHAC algorithm (Xu et al.
(2022)).

Our goal is to train dynamic surrogate models of fixed
size for optimal performance as part of eNMPC. All results
presented in Subsection 3.3 are obtained using a Koopman
model with a latent space dimensionality of eight, i.e.,
Aθ ∈ R8×8,Bθ ∈ R8×2,Cθ ∈ R2×8, and an encoder
ψ : R2 → R8 in the form of a feedforward neural network
with two hidden layers, four and six neurons, respectively
and hyperbolic tangent activation functions. We use an
eNMPC horizon of nine hours.

!(#!$", &", '") ≤ *s.t.:
$"#$ = 0!$% + 2!&%

&%∗

&%∗

&%$%
$% = 3!(4%) min'! 8

"∈)
Φ #!$", &" +:'%⊺'%4%

(e)NMPC with Koopman surrogate model

Seite 600. Monat 2017

max!8
%1$

2
B%0$>% + B2C3(42) max! 8

%12#$

,2
B%020$>% + B2C3(4,2)

Transition function
Policy
Reward function

SHAC_IFAC_FINALSUBMISSION

4+ 4$

>$

&+

…
420$ 42

>20$ >2

&20$&$

C3(42)

42 42#$

>2#$

&2

…
#&'($ 4,2

1&'($ 1&'

%&'($&2#$

C3(4,2)

= cut gradients
?!?!(&%|4%)

= = = = =
?! ?! ?! ?!

Mechanistic
simulation model

Fig. 3. Using SHAC to train a task-optimal Koopman surrogate model for the transition function F . This figure can be
interpreted as a SHAC-specific unrolled version of the typical RL loop shown in the third step in Fig. 2. The policy
is optimized by adjusting the parameters θ of the dynamic Koopman surrogate model. Φ is a convex function for
the stage cost of the objective function. To ensure the feasibility of the resulting optimal control problems, we
add slack variables st to the state bounds (Mayfrank et al. (2024)). Their use is penalized quadratically using a
penalty factor M . Due to the use of PyTorch and cvxpylayers (Agrawal et al. (2019)), the output ut of the policy
is differentiable with respect to xt and θ. The critic is a feedforward neural network with trainable parameters ϕ.
To increase the clarity of the figure, we omit the direct dependence of rt+1 with respect to ut.

We use the same data set as in (Mayfrank et al. (2024))
for the SI pretraining of the Koopman surrogate model.
This data set consists of 84 trajectories, each of a length
of 5 days, i.e., 480 time steps, using a step length of 15
minutes. Of those 84 trajectories, we use 63 for training
and the remaining 21 for validation. Then, we perform
SI of the Koopman model in a similar way as described
in (Mayfrank et al. (2024)). We repeat SI ten times using
random seeds. We use the model with the lowest validation
loss for the Koopman-SI controller. The same model is
used as the initial guess when training the Koopman-PPO
and Koopman-SHAC controllers.

In order to use a policy optimization algorithm such as
SHAC, which makes use of derivative information from a
simulated environment, not only the dynamic model but
also the reward function must be differentiable. For our
case study, we choose a reward function that calculates the
reward at time step t based on whether any constraints
were violated at that time step, and on the electricity
cost savings compared to the steady-state production
at nominal rate between t − 1 and t. The constraint
component rcont of the reward quadratically penalizes
violations of the bounds of c, T , and the product storage,
i.e., rcont ≥ 0, and rcont = 0 if no constraint violation occurs
at t. The cost-component rcostt of the reward is calculated
by taking the difference between the cost at nominal
production and the actual production cost between t − 1
and t, i.e.,

rcostt = (Fss − Ft−1) · pt−1 ·∆tctrl,

where pt−1 is the electricity price between t−1 and t, and
∆tctrl is the time between t−1 and t for which the controls
are held constant. We balance the influence of the two

components on the overall reward using a hyperparameter
α:

rt = α · rcostt − rcont

We train the policies using day-ahead electricity prices
from the Austrian market from March 29, 2015, to March
25, 2018 (Open Power System Data (2020)). Using random
seeds, we repeat the controller training ten times for each
combination of policy and training algorithm (except for
the Koopman-SI controller, whose Koopman model is not
trained any further after SI).

We use the same hyperparameters for Koopman-PPO and
Koopman-SHAC wherever possible, i.e., for all hyperpa-
rameters which are not part of PPO or SHAC. For the
hyperparameters of PPO and SHAC, we do not perform
extensive hyperparameter tuning. Instead, we mostly rely
on the standard values. In both algorithms, we use the
Adam optimizer with a small learning rate of 10−5 as
the behavior of the Koopman eNMPCs is highly sensitive
to small changes in the parameters. We used the Stable-
Baselines3 (Raffin et al. (2021)) implementation of PPO
but implemented our own version of SHAC following the
description in (Xu et al. (2022)). All code used for training
the controllers, including the hyperparameters that were
used to obtain the results presented in Subsection 3.3,
is publicly available 1 . In addition to the code used to
obtain the results presented in the following subsection,
the linked repository also contains code for training pure
neural network policies for our case study using PPO and
SHAC. As the results of the neural network policies do not

1 https://jugit.fz-juelich.de/iek-10/public/optimization/

shac4koopmanenmpc

influence the narrative of this work in a meaningful way
we do not discuss these results.

3.3 Results

For Koopman-PPO and Koopman-SHAC, we identify the
controller (and the associated set of parameters) that
achieved the highest average reward between two consec-
utive parameter updates. We test their performance and
that of the Koopman-SI controller on a continuous roughly
half-year-long test episode using Austrian day ahead elec-
tricity price data from March 26, 2018, to September 30,
2018 (Open Power System Data (2020)). Unlike the train-
ing process, we perform this testing without exploration,
i.e., we waive adding Gaussian noise to the controller
output (cf. Fig. 3). We initialize the test episode for each
controller at the steady state of the CSTR and with empty
product storage. The results are presented in Table 1. The
trajectories produced by all controllers exhibit an intuitive
inverse relationship between electricity prices and coolant
flow rate.

Table 1. Test results: The economic cost is
stated relative to the nominal production cost,
i.e., we report the cost incurred by the respec-
tive controller, divided by the cost incurred
by steady-state production at nominal rate
given the same electricity price trajectory. The
percentage of control steps that result in con-
straint violations is given. The average size of
a constraint violation is given relative to the
size of the feasible range of the variable whose

bound was violated.

Economic
cost

Constr.
viols. [%]

Avg. size
constr. viol.

Koopman-SI 0.88 19.88 5.1 · 10−2

Koopman-PPO 0.90 17.57 1.3 · 10−2

Koopman-SHAC 0.90 0.0 −

As can be seen from Table 1, Koopman-SHAC is the
only controller that does not produce any constraint vio-
lations. Koopman-SI achieves slightly higher cost savings
than Koopman-SHAC, however, it frequently produces
constraint violations. Therefore, we consider Koopman-
SHAC preferable in most real-world applications where
constraint-satisfaction is of high importance.

It is noticeable that Koopman-SI and Koopman-PPO
cause substantially more constraint violations than the
Koopman-SHAC controller. In the case of Koopman-SI,
this is not surprising since the employed Koopman sur-
rogate model received no end-to-end training for task-
optimal performance. Here, frequent but minor constraint
violations show that the controller is trying to operate
at the borders of the feasible range, which is normal
behavior for a predictive controller. However, in the case of
Koopman-PPO the results are unsatisfactory and rather
unexpected. Here, the end-to-end training reduced the
average size of the constraint violations by roughly a
factor of four, but only led to a small improvement in
the frequency of constraint violations. We observe that
some training runs did not improve performance com-
pared to Koopman-SI at all. Moreover, those training
runs that did improve performance did not show stable

0.0 0.2 0.4 0.6 0.8 1.0

Training steps ×106

0.00

0.02

0.04

A
ve

ra
ge

re
w

ar
d

Fig. 4. Learning progress in the Koopman-SHAC training
runs. The dark orange line indicates the running
average reward over the previous 1024 steps in the
environment, averaged over all ten training runs. The
light orange region indicates one standard deviation of
the performance variance between the training runs.

convergence to high rewards. The unstable convergence of
the Koopman-PPO controllers is in line with the results
in our previous work (Mayfrank et al. (2024)). There, we
used a non-differentiable reward formulation with a high
constant penalty incurred by any constraint violation. Us-
ing that reward formulation, we managed to substantially
reduce the frequency of constraint violations unlike here.
However, that approach (Mayfrank et al. (2024)) severely
affected the resulting economic performance and thus pro-
duced overly conservative eNMPC controllers. In contrast
to Koopman-PPO, Koopman-SHAC exhibits a relatively
stable convergence to high rewards in our case study (Fig.
4) and produces superior terminal performance (Tab. 1).
The control performance improves relatively evenly in all
ten training runs without ever dropping for extended pe-
riods.

Due to the small size of the case study under consideration,
a detailed analysis of the training runtimes would provide
little insight about the expected runtime on a control
problem of more practical relevance. Therefore, we leave
such an analysis for future work on larger systems.

Policy gradient analysis The fundamental difference be-
tween the two policy optimization algorithms SHAC (Xu
et al. (2022)) and PPO (Schulman et al. (2017)) is that
SHAC utilizes analytic policy gradients from an automat-
ically differentiable environment, whereas PPO estimates
policy gradients via the policy gradient theorem (Sutton
and Barto (2018)). Ilyas et al. (2018) show that given
common and practical hyperparameter configurations, the
PPO-estimated policy gradients can incur a high vari-
ance which can lead to unstable training convergence,
as we observe in our case. We follow the approach by
Ilyas et al. (2018) to analyze empirically whether there
is a meaningful difference in the variance of the policy
gradients produced by PPO and SHAC when applied to
our case study. To this end, we investigate how similar
the direction of multiple policy gradients are given a fixed
policy parameterization. We fix the policy parameters to
that of the Koopman-SI controller for this analysis. Then,
for PPO and SHAC, we fit the critic to this policy without
updating the policy. Finally, for both algorithms and still
without updating the policy, we record the policy gradients
of 100 optimization steps. We calculate how similar the 100

recorded gradients are by computing their average pairwise
cosine similarity. The cosine similarity is a measure of
the similarity of two vectors which only depends on their
direction, not on their length. It takes a value of one if
both vectors point in the same direction, zero if they are
orthogonal to each other, and minus one if they point
in exactly opposite directions. PPO produces an average
cosine similarity of 0.22, whereas SHAC results in an
average cosine similarity of 0.94. Thus, the variance in the
direction of policy gradients is much higher for PPO than
for SHAC, which might explain the instable convergence
to high rewards and thus the relatively bad performance
of Koopman-PPO (see Tab. 1).

4. CONCLUSION

We combine our previously published method for turning
Koopman-(e)NMPC controllers into differentiable policies
(Mayfrank et al. (2024)) with the policy optimization al-
gorithm SHAC (Xu et al. (2022)). Our approach leverages
derivative information from automatically differentiable
simulated environments, differentiating it from previously
published methods for end-to-end training of dynamic
models for control. We find that SHAC produces a stable
convergence to high control performance across all inde-
pendent training instances, translating to superior con-
trol performance compared to our previously published
approach (Mayfrank et al. (2024)) which was based on
the PPO algorithm. Note that even though our method
achieves perfect constraint satisfaction in our case study,
full adherence to constraints can in general not be ex-
pected.

The results can be understood as a successful proof of con-
cept. By training data-driven surrogate models for optimal
performance in a specific control task, our method utilizes
the representational capacity of the model efficiently, thus
avoiding unnecessarily large and computationally expen-
sive surrogate models. We view our approach as a promis-
ing avenue toward more performant real-time capable
data-driven (e)NMPCs. Still, the computational burden
of backpropagation through mechanistic simulations and
optimal control problems and thus the cost of each training
iteration is naturally linked to the size of the mechanistic
simulation model, meaning that our method could be-
come computationally intractable for very large models.
Thus, future work should investigate the application of
our method to larger mechanistic simulation models and
more challenging control problems, presumably necessitat-
ing training for more iterations.

ACKNOWLEDGEMENTS

We thank Jan C. Schulze (Process Systems Engineering
(AVT.SVT), RWTH Aachen University, 52074 Aachen,
Germany) for fruitful discussions and valuable feedback.

REFERENCES

Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond, S.,
and Kolter, J.Z. (2019). Differentiable convex optimiza-
tion layers. Advances in Neural Information Processing
Systems, 32, 9558–9570.

Amos, B., Jimenez, I., Sacks, J., Boots, B., and Kolter,
J.Z. (2018). Differentiable MPC for end-to-end planning
and control. Advances in Neural Information Processing
Systems, 31, 8299–8310.

Chen, R.T.Q., Rubanova, Y., Bettencourt, J., and Duve-
naud, D. (2018). Neural ordinary differential equations.
Advances in Neural Information Processing Systems, 31,
6572–6583.

Flores-Tlacuahuac, A. and Grossmann, I.E. (2006). Simul-
taneous cyclic scheduling and control of a multiproduct
CSTR. Industrial & Engineering Chemistry Research,
45(20), 6698–6712.

Gros, S. and Zanon, M. (2019). Data-driven economic
NMPC using reinforcement learning. IEEE Transac-
tions on Automatic Control, 65(2), 636–648.

Henderson, P., Romoff, J., and Pineau, J. (2018). Where
did my optimum go?: An empirical analysis of gradient
descent optimization in policy gradient methods. arXiv
preprint arXiv:1810.02525.

Ilyas, A., Engstrom, L., Santurkar, S., Tsipras, D., Janoos,
F., Rudolph, L., and Madry, A. (2018). A closer look at
deep policy gradients. arXiv preprint arXiv:1811.02553.

Islam, R., Henderson, P., Gomrokchi, M., and Precup,
D. (2017). Reproducibility of benchmarked deep rein-
forcement learning tasks for continuous control. arXiv
preprint arXiv:1708.04133.

Koopman, B.O. (1931). Hamiltonian systems and trans-
formation in hilbert space. Proceedings of the National
Academy of Sciences, 17(5), 315–318.

Korda, M. and Mezić, I. (2018). Linear predictors for
nonlinear dynamical systems: Koopman operator meets
model predictive control. Automatica, 93, 149–160.

Mayfrank, D., Mitsos, A., and Dahmen, M. (2024). End-
to-end reinforcement learning of Koopman models for
economic nonlinear model predictive control. Computers
& Chemical Engineering, 190, 108824.

McBride, K. and Sundmacher, K. (2019). Overview of
surrogate modeling in chemical process engineering.
Chemie Ingenieur Technik, 91(3), 228–239.

Open Power System Data (2020). Open power system
data. https://data.open-power-system-data.org/
time_series/ (accessed on 2022-08-29).

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus,
M., and Dormann, N. (2021). Stable-baselines3: Reliable
reinforcement learning implementations. Journal of
Machine Learning Research, 22(268), 1–8.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017). Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347.

Sutton, R.S. and Barto, A.G. (2018). Reinforcement
Learning: An Introduction. MIT press.

Werbos, P.J. (1990). Backpropagation through time: what
it does and how to do it. Proceedings of the IEEE,
78(10), 1550–1560.

Wu, S., Shi, L., Wang, J., and Tian, G. (2022). Under-
standing policy gradient algorithms: A sensitivity-based
approach. In International Conference on Machine
Learning, 24131–24149. PMLR.

Xu, J., Makoviychuk, V., Narang, Y., Ramos, F., Matusik,
W., Garg, A., and Macklin, M. (2022). Accelerated
policy learning with parallel differentiable simulation.
arXiv preprint arXiv:2204.07137.

