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Abstract: Fault detection has witnessed a rapid development and many approaches have been proposed 
in recent decades. However, many of them are based on heuristic solutions that do not check the 
applicability and optimality of the resulting fault-detection systems. This paper starts from a hypothesis 
test that subsumes all fault-detection problems, based on which a unified optimisation problem is 
formulated. The resulting optimal solution defines the deemed-normal region of the system. It is proven 
that dynamic information shrinks the deemed-normal region and improves detection performance in 
Gaussian LTI systems. The theoretical results are verified on a simulated three-tank system. Compared 
with the static method, the fault-detection rate (FDR) of the dynamic method based on a Kalman filter 
increases from 96% and 56% to 99% and 100% for two faults, respectively, while the false-alarm rate 
(FAR) decreases from 7.38% and 0.88% to 0.75% and 0.63%. This paper provides a theoretical 
foundation for understanding fault detection for Gaussian LTI systems, and avoids using any heuristic 
proposals and solutions for the problem of fault detection. The rigorous justification of the well-known 
fact that incorporating dynamic information improves fault-detection performance implies a roadmap 
towards advanced methods for more complex cases. In addition, the analysis including the idea of a 
deemed-normal region has the potential to be extended to a physically meaningful framework for 
performance assessment of fault diagnosis and fault-tolerant control systems.  
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1. INTRODUCTION 

The problem of fault detection and isolation has been 
extensively studied in recent decades. Based on the idea of 
analytical redundancy, the task of fault detection involves the 
generation and evaluation of residuals (Ding, 2013). 
Generation of residuals seeks to generate diagnostic residual 
signals that possess desired properties, e.g., are sensitive to 
specific faults, are robust to disturbances, and exploit specific 
system characteristics as much as possible. Evaluation of the 
residuals refers to designing some evaluation functions for 
the resulting residual signals to make decisions regarding 
whether the system is normal or not. The pioneering work of 
Beard (1971) and Jones (1973) marked the beginning of 
observer-based residual generation, which led to great 
development in the area (Bernardi & Adam, 2020). The 
parity-space approach is another important type of residual-
generation method (Song, et al., 2020). In addition, data-
driven fault detection (Md Nor, Che Hassan, & Hussain, 
2020) using data analytics and machine learning has drawn 
attention, e.g., principal component analysis (Wise, et al., 
1990), independent component analysis (Lee, et al., 2006), 
slow-feature analysis (Gao & Shardt, 2021), and neural 
networks  (Gao, Yang, & Feng, 2020). Compared to the 
generation of residuals, the evaluation methods have received 
less attention. Common choices for evaluation functions 
include the l2-norm (Shang, et al., 2021), the Mahalanobis 
distance, and the Kullback-Leibler (KL) divergence 
(Harmouche, et al., 2014).   

Many fault detection approaches have the following 
disadvantages. First, the generation and evaluation of 
residuals are two separate steps when designing fault-
detection systems. This means that, despite each of the 
individual components being optimal, the overall system may 
not necessarily be optimal. Second, as mentioned in Ding 
(2021), many data-driven methods are a mechanical 
combination of machine learning and statistical decision 
methods, which may not work together. Third, some optimal 
fault-detection problems are formulated heuristically, without 
indicating in which sense it is optimal and how the 
performance is improved. For instance, some methods 
maximise the Frobenius norm or the pseudodeterminant of a 
parameter matrix (Shang, et al., 2021), while some minimise 
the alarm threshold (Esfahani & Lygeros, 2015). These 
methods do not indicate how the heuristic proposals are 
related to the optimal performance of fault detection. Finally, 
many fault-detection methods use an evaluation function 
without checking its applicability and optimality.  

Thus, this paper proposes a solution that avoids all heuristic 
proposals and solutions. Starting from hypothesis testing, the 
foundation for all fault-detection problems, fault detection is 
formulated as a unified optimisation problem that possesses 
clear physical meaning. With specific assumptions on the 
residual signals, the unified optimisation problem gives an 
optimal solution for fault detection, which is the generalised 
likelihood ratio test (GLRT) statistic. Finally, for Gaussian 
linear time-invariant (LTI) systems, it is proven that 
incorporation of system dynamics shrinks the deemed-normal 



 
 

     

 

region defined by the optimal solution, and improves fault-
detection performance. As well, the proposed theoretical 
results are tested on a three-tank system.   

2. A UNIFIED FORMULATION FOR OPTIMAL FAULT 
DETECTION 

Starting from a general hypothesis test that subsumes all 
fault-detection problems, this section introduces a unified 
optimisation problem for fault detection. 

2.1 Fault Detection and Performance Assessment 

Suppose that f Î fn  with a dimension of nf is the fault to be 
detected, and the system affected by f satisfies 

 0 : fault-free; 0 : faulty= ≠f f  (1) 

Fault detection is essentially a problem to find an evaluation 
function J(·): yn

 ® + and its threshold Jth such that 
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where y Î yn is the measurement with a dimension of ny. 

In a probabilistic setting, fault detection based on decision 
logic (2) is actually a hypothesis test with “fault-free” being 
the null hypothesis and “faulty” the alternative hypothesis. 
Due to mismatch between a model and the real system, as 
well as inevitable disturbances, the hypothesis testing could 
have false positives (i.e., Type Ⅰ error or α-error) and false 
negatives (i.e., Type Ⅱ error or β-error). In the fault-detection 
problem, false positives are the false-alarm rate (FAR) 

 ( ){ }FAR Pr 0thJ J α= > = =y f  (3) 

while false negatives are the misdetected rate (MDR) 

 ( ){ }MDR Pr 0thJ J β= ≤ ≠ =y f  (4) 

MDR is complementary with the fault-detection rate (FDR)  

 ( ){ }FDR Pr 0 1thJ J β= > ≠ = −y f  (5) 

It is clear from the logic (2) that designing fault-detection 
systems is a trade-off between FAR and FDR/MDR. It is 
impossible for any trivial method to improve both of them 
(Shardt, 2022), e.g., increasing the threshold will result in a 
lower FAR at the cost of decreasing FDR. Using FAR and 
FDR concurrently, fault detection is comprehensively 
formulated as an optimisation problem (Ding, 2021)    

 { }
, ,FAR

, arg max FDR
th

th J J
J J

α≤
=  (6) 

This general formulation gives a unified solution for optimal 
fault detection in the sense of maximising FDR while 
keeping FAR within a tolerance α.   

2.2 Generation of Residuals and Optimal Fault Detection  

If the tolerance for false positives is zero, that is, α = 0, the 
fault-detection logic (2) yields   

 ( )sup 0thJ J= y f =  (7) 

Supposing that the fault and noise are both additive, then 
measurement y can be decomposed into contributions yn, yd, 
and yf from the nominal value, disturbance, and fault, 
respectively, namely y = yn + yd + yf. Recalling that J is 
positive semidefinite by definition in (2), it follows that  

 ( ) ( ) ( ) ( ) ( )sup 0f n d fJ J J J J≥ − + ≥ −y y y y y y f =  (8) 

To ensure that a fault is sufficiently detected, it requires  

 ( ) ( ) ( )sup 0f thJ J J J≥ − >y y y f =  (9) 

which, recalling (7), gives (Frank & Ding, 1997)  

 ( ) ( ) ( )2sup 0 2supf n dJ J J> = +y y f = y y  (10) 

Equation (10) gives the sufficient detectability of a fault f. It 
is clear that the nominal contribution yn will weaken the 
sufficient detectability, since with it, J(y) will be larger. If the 
nominal contribution J(yn) is large, those faults with small 
contribution J(yf) might not be detectable.  

To eliminate this nominal effect, instead of measurements y, 
the residual between the measurement and its nominal 
estimate is used for fault detection, that is,  

 ( ) ( )ˆ n d d fp= − = − + = +dr y y y y y y y  (11) 

where the nominal estimate is ŷ = p(d) (yn + yd) = yn, as the 
distribution of disturbance is assumed to be symmetric. 
Equation (11) is the residual generator, which involves 
estimating the nominal conditions, computing the difference, 
and sometimes postprocessing, e.g., filtering (Ding, 2013).  

Ideally, the residual generated using (11) should be zero in 
the fault-free case and should equal the fault contribution in 
the faulty case, that is, 

 0; 0 if 0; 0 if 0d f f= = = ≠ ≠y y f y f  (12) 

Equation (12) is called perfect unknown-input decoupling 
(PUIDP) (Ding, 2013). If the PUIDP condition holds, every 
fault f ≠ 0 will be perfectly detected. However, in the case 
that PUIDP is impossible, designing fault-detection methods 
will inevitably lead to a trade-off between FDR and FAR. 
This demands a unified formulation for optimal fault 
detection. Rewriting Problem (6) using the residual generated 
by (11) gives the optimal solution for fault detection, that is, 

 { }
( ){ }

( ){ }
, ,Pr 0

, arg max Pr 0
th th

th thJ J J J
J J J J

α> ≤
= > ≠

r f =
r f  (13) 

3. IMPROVING FAULT DETECTION USING SYSTEM 
DYNAMICS  



 
 

     

 

Having introduced the optimal fault-detection problem based 
on residual generators, this section will show how 
incorporating system dynamics in the generation of residuals 
improves fault detection for Gaussian LTI systems. 

3.1 Optimal Fault Detection for Gaussian Systems      

For Gaussian systems, the residual (11) can be represented as 

 ( ), 0,= + +E Σr ε f = ε f ε    (14) 

where the white noise ε equals the yd, f Ï null(E) is the 
deterministic fault, and E maps f to the fault contribution yf. 
Note that FDR and FAR can be regarded as the likelihood of 
triggering alarms in faulty and fault-free cases, respectively. 
With the explicit representation (14) of residuals, Problem 
(13) is rewritten as (Gao, Xie, & Shardt, 2023)  
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where L is the Gaussian likelihood function of the system 
being identified as faulty. Since Σ is non-negative definite, 
omitting the constant ½, the maximum of R in (15) gives the 
optimal solution for fault detection, that is 

 ( ) ( )1 2, 0*
thJ R J J m,χ α−= = = ≤ =Σr r r f  (16) 

where m is the degrees of freedom of the χ2-distribution. It 
should be noted that the threshold Jth is the α-quantile of a χ2-
distribution corresponding to the fault-free case, i.e., Pr{J ≥ 
Jth| f = 0} = α. During the design of fault-detection strategies, 
the boundary of the normal region is defined, and any point 
outside the boundary will be considered as faulty.  

Solution (16) is the well-known GLRT statistic (Gustafsson, 
2000). Geometrically, it defines an ellipsoid whose lengths of 
the semi-axes are proportional to singular values of Σ. This 
ellipsoid contains a region that is considered to be normal 
with a confidence 1 – α based on corresponding detection 
methods. Hence, we call the region inside the ellipsoid the 
deemed-normal region. We will see how incorporating 
system dynamics in residual generation shrinks the deemed-
normal region defined by (16), and improves fault detection.    

3.2 Generation of Residuals Based on the Kalman Filter 

Consider a discrete LTI system  
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where x ∈ xn , u ∈ un , and y ∈ yn  are the system state, 
input, and output vectors, respectively, and matrices A, B, C, 
and D are of proper dimensions. Process and measurement 
noise ω(t) and v(t) are independent of x and u, and   

 ( ) ( )( ) ( ) ( )( )0, , 0, vt t t tωΣ Σω v    

 
( )
( )

( )
( )

( )
( ) , ,

0 1,
,

0 0,i j i j
v

i j i i j
i j i i j

ω δ δ
       =  = =        ≠      

Σ
Σ

ω ω
v v




 

In the spirit of (11), the residual generator for the system (17) 
is implemented as  

 ( ) ( ) ( )ˆt t t= −r y y  (18) 

where the nominal estimate ŷ(t) can be obtained by the 
recursive algorithm of the Kalman filter (Khodarahmi & 
Maihami, 2023)   
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with the Kalman filter gain K at time t   

 ( ) ( ) ( )( ) 1
( ) 1 1 vt t t t t t

−
= − − +K P C CP C Σ   (20) 

and the covariance matrix P(t| t – 1) of the error of one-step-
ahead state prediction  
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and P(t – 1) is covariance matrix of the error of the state 
estimate at time t – 1, that is,   
 ( ) ( ) ( ) ( )Cov ( ) ( ( ) 1ˆ )t t t t t t= − = − −P Ι K C Px x  (22) 

Equations (18) to (22) describe Kalman-filter-based residual 
generation for dynamic system (17). Since residuals resulting 
from Kalman filters are white, residual (18) is equivalent to 
(14), thereby satisfying the optimal solution (16).  

3.3 Shrinking the Uncertainty of Residuals Using Dynamics  

Using a lemma and a theorem, this subsection will show how 
dynamic information shrinks the deemed-normal region.  

Lemma 1: Given the dynamic system (17), the Kalman filter 
given by (19) to (22) decomposes the variance of the system 
outputs into contributions from the state-estimate error, the 
state estimate, and the measurement noise, that is,  

 ( ) ( ) ( ) ( )ˆy x vt t t t= + +Σ CP C CΣ C Σ   (23) 

Proof: The variance of the system outputs is  
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Without risking an abuse of notation, the time symbol t is 
omitted in the following covariance matrix for x(t), that is,    
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  





 
 (25) 

where ˆ− xx = x  is the state-estimate error. The second-to-
last equality comes from the fact that the Kalman filter is 
unbiased and the state estimate is orthogonal to the estimate 
error (Drécourt, et al., 2006), that is  

 ( ) ( ), 0ˆ ˆ= =x xx x    (26) 

Substituting (25) into (24) gives  

 ( ) ( ) ( ) ( )ˆy x vt t t t= + +Σ CP C CΣ C Σ   (27) 

This completes the proof of Lemma 1.                          Q.E.D. 

Theorem 1: Given the dynamic system (17), the variance of 
the Kalman-filter-based residual generated by (18) to (22) is 
no larger than that of the correlation-based residual that 
does not consider any system dynamics, that is,  

 , ,r dynamic r staticΣ Σ  (28) 

Proof: From Section 3.2, the variance of the Kalman-filter-
based residual is  
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If we consider the output samples as independently 
distributed and do not take the system dynamics into account, 
the nominal estimation of system outputs is its expectation. 
Then, the covariance matrix of the residual is  

 ( )( ) ( )( )( ),r static y= − − =Σ Σy y y y   
 (30) 

Recalling (23) in Lemma 1, it follows that  

 ( )ˆ, ,r static r dynamic x t= +Σ Σ CΣ C  (31) 

Since the covariance matrix ( )x̂ tΣ  is positive semidefinite, it 
is clear that (28) holds.                                                   Q.E.D. 

Theorem 1 implies that considering system dynamics when 
generating residuals will reduce uncertainty in the resulting 
residual signal, thereby shrinking the deemed-normal region. 
Furthermore, (31) shows that the reduction in residual 
uncertainty corresponds exactly to the variance of the state 
prediction, which reflects the model’s predictive ability.  

3.4 Improving Fault Detection by Shrinking the Uncertainty 

Although it has been shown that dynamic modelling shrinks 
the deemed-normal region, the question remains as to how it 
affects fault detection.  

Theorem 2: For optimal fault detection (16) based on the 
residual of the form (14), reducing residual uncertainty will 
improve fault detection, namely, increase the FDR without 
changing the FAR.  

Proof: As was noted in Section 3.1, Jth in the optimal 
solution (16) corresponds to the boundary of the normal 
region in the fault-free case. The value Jth = χ2(m, α) depends 
on the degrees of freedom m and the predefined tolerance α 
for FAR. Hence, the uncertainty (equivalent to variance for 
Gaussian distributions) in the residual does not affect Jth.  

In the fault-free case, i.e., f = 0, the residual (14) is reduced to 
ε, which comes from a centred Gaussian distribution. Then, 
the optimal statistics J given by (16) follows a χ2-distribution, 
whose only parameter is the degrees of freedom m, that is,  

 ( ) ( )1 20, J mχ−⇒ =Σ Σ r = ε ~ r r   (32) 

Hence, FAR, as defined in (3), will be not affected by the 
uncertainty in the residual.  

In the faulty case, i.e., f ≠ 0, the expectation of the residual 
(14) is Ef. Then, the distribution of the J-statistic becomes a 
noncentral χ2-distribution, that is,  

 ( ) ( )1 2, J m,χ λ−⇒ =E Σ Σ r ~ f r r   (33) 

where λ is the noncentrality parameter that is defined as  

 1λ −= E Σ Ef f   (34) 

From Theorem 1, it follows that   

 1 1
d r ,dynamic s r ,staticλ λ− −= ≥ =E Σ E E Σ Ef f f f     (35) 

where λd and λs are the noncentrality parameters of Jd ~ χ2(m, 
λd) and Js ~ χ2(m, λs), respectively, Jd is the detection statistic 
of the Kalman-filter-based method, and Js is that of static-
correlation-based method. Since the noncentral χ2-
distribution increases stochastically in the noncentrality 
parameter (Van der Vaart, 2000), it follows that     

 { } { }Pr Pr 0d th s th thJ J J J , J> ≥ > ∀ >  (36) 

This shows that the FDR of Kalman-filter-based method is no 
smaller than that of the static-correlation-based one.    Q.E.D. 

4. CASE STUDY  

In this section, two faults are deliberately introduced into a 
simulated three-tank system to verify the theoretic results.  

4.1 A Simulated Three-Tank System  

As shown in Figure 1, the system consists of three tanks 
connected by pipes and two pumps to feed water into Tanks 1 
and 2. Considering potential faults, the linearised model is   
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where the system inputs u(t) = [Q1 Q2] = [sin(t/2) + 0.5 
cos(t)] are pump inlet flow rates, the system states x(t) and 
outputs y(t) are the vector [h1 h2 h3] consisting of the liquid 
levels in the three tanks, the noise is ω(t) ~ (0, 0.04I) and 
v(t) ~ (0, 0.5I), and the system matrices are 
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Two faulty scenarios are introduced: sensor bias in h1  

 ( ) [ ] [ ]0 0 0 5 0 0 600 800t ,t ,= ∈f   

and leakage in Tank 1  

 ( ) [ ] [ ]1 0 0 0 0 0 600 800t ,t ,= − ∈f   

The initial states are x(t) = [20 15 10].  

 
Figure 1. Diagram of a three-tank system 

4.2 Deemed-Normal Regions and Fault-Detection Results  

Figure 2 shows the deemed-normal ellipsoids of a confidence 
of 0.68 (one standard deviation) for the three-tank system, 
according to Kalman-filter-based and static-correlation-based 
methods. The equations of the ellipsoids are  

 1 11 and 1r ,dynamic r ,staticJ J− −= ≤ = ≤Σ Σr r r r   (38) 

where the semi-axes lengths are [0.63, 0.61, 0.60] and [3.19, 
2.56, 0.69] for Kalman-filter-based and static-correlation-
based ellipsoids, respectively. It is clear that including system 
dynamics causes a large decrease in the uncertainty ellipsoid.  

This subsection also presents the results of fault detection for 
the two faults at a confidence level of 1 – α = 0.99. For the 
sensor-bias fault, Figure 3 shows that the Kalman-filter-based 
method responds to the introduction and clearing of the fault 
much faster than the static-correlation-based one, as shown 
by the red arrows. Furthermore, the Kalman filter effectively 
tracks normal transient dynamics of the initial stage of the 

simulation, thus preventing false alarms. In contrast, the 
static-correlation-based method raises false alarms in this 
area as shown by the red circle. For the leakage fault shown 
in Figure 4, the Kalman-filter-based method gives a clearer 
detection with a much higher detection rate. Compared with 
the first fault, this fault disturbs the dynamic behaviour of the 
system. Since the static-correlation-based method cannot 
model the dynamics, it has even worse results than for the 
first fault. The FDR and FAR are shown in Table 1. Notably, 
the FAR of the static method can exceed the tolerance of 1%. 
This is because of a mismatch between the modelling 
assumption and the system reality, which causes a violation 
of the stated tolerance for the FAR. On the other hand, the 
dynamic method maintains a FAR below 1%, which is 
attributed to the conservatism nature of the robust 
formulation (6).  

 
Figure 2. Deemed-normal ellipsoids (α = 0.32) of the three-
tank system according to the (inside) Kalman-filter-based  

and (outside) static-correlation-based monitoring  

Table 1. Fault-detection performance  

 Leakage Sensor bias 
FDR FAR FDR FAR 

Static method 96% 7.38% 56% 0.88% 
Dynamic method 99% 0.75% 100% 0.63% 

5. CONCLUSIONS 

This paper formulates a unified optimisation problem for 
fault detection based on hypothesis testing. The resulting 
optimal solution defines the deemed-normal region of the 
system. It is proven that dynamic information shrinks the 
deemed-normal region and improves detection performance 
in Gaussian LTI systems. The theoretical results are verified 
on a simulated three-tank system.  

With these results, the paper provides a foundation for 
understanding fault detection in a simple case, i.e., for 
Gaussian LTI systems and how dynamic information 
improves fault detection. This rigorous justification provides 
a roadmap towards advanced methods for more complex 
cases. For instance, having shown in this paper that 
eliminating model mismatch in Gaussian LTI systems shrinks 
the deemed-normal region and improves fault detection, what 
if a system is nonlinear, time-varying, non-Gaussian, or with 



 
 

     

 

an ambiguous disturbance? How does removing model 
mismatch in these situations shrink the deemed-normal 
region and improve the detection performance? In addition, 
analysis including the idea of a deemed-normal region 
presented in this paper has the potential to be extended to a 
meaningful framework for performance assessment of fault 
diagnosis and fault-tolerant control systems.  

 
Figure 3. Monitoring results of a sensor bias in h1  

 
Figure 4. Monitoring results of a leakage in Tank 1  
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