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Abstract: This paper demonstrates the use of model predictive control (MPC) formulations for
uncertain time-varying biopharmaceutical and biomedical systems implemented using measured
data without prior knowledge of an accurate model. Furthermore, we demonstrate how prior
knowledge can be incorporated in the identification of the model either through constraints or
as regularization of the system identification procedure. We demonstrate the use of system
identification to develop a model of the fed-batch Chinese hamster ovary mammalian cell
bioreactor process and the implementation of model-based control to maximize therapeutic
product yields. We also use a time-varying nonlinear biomedical system to demonstrate
improvements due to incorporating prior information in the learning of the models and
reidentification of the models when prediction accuracy deteriorates. We propose a new
partial least squares algorithm that incorporates regularization from prior knowledge and
can handle missing data in the independent covariates. Simulation case studies involving a
biopharmaceutical production process and automated drug delivery demonstrate the capabilities
of the proposed techniques.
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1. INTRODUCTION

The digital revolution is fostering innovations in cross-
disciplinary fields at the edge of natural sciences and sys-
tems engineering, leading to novel approaches in biotech-
nology and biomedical system control. The biological sys-
tems considered are challenging processes to control due to
their complex nonlinear dynamics. Their behaviors can be
described accurately by fundamental mathematical models
that often contain large numbers of uncertain parameters
requiring estimation for accurate characterization of the
system. The complex nonlinear behavior of the biological
systems leads to high levels of uncertainties. This uncer-
tainty is further amplified by the lack of measurements
for the outputs of the mathematical models based on
first principles knowledge, which obscures the on-line state
information. On the other hand, data-driven modeling
techniques have gained momentum in recent decades due
to their ability to yield simpler, well-posed models from
experimental data. The data-driven models can be har-
nessed to design model predictive control (MPC) formula-
tions that effectively integrate both the identified dynamic
system model and the real-time measurements to achieve
the desired optimal closed-loop performance.

MPC, with its repeated online solution of an optimization
problem over predicted future system trajectories, is well-

suited to intrinsically handle complex system dynamics,
critical variable constraints, and explicitly take perfor-
mance criteria into account. A central component in the
implementation of MPC is the model of the system. In this
work, we demonstrate the advantages of forming dynamic
system models from measured data through system iden-
tification techniques. We utilize uncertain time-varying
biopharmaceutical and biomedical systems to show how
an MPC algorithm can be implemented using the mea-
sured data, without prior knowledge of an accurate model.
Furthermore, we demonstrate how prior knowledge can
be incorporated in the identification of the model either
through constraints or as regularization of the system iden-
tification procedure. Case studies involving a biopharma-
ceutical production process and automated drug delivery
demonstrate the capabilities of the proposed techniques.

We demonstrate the use of system identification to de-
velop a model of the fed-batch bioreactor processes and
the implementation of model-based control to maximize
therapeutic product yields. The proposed algorithms are
demonstrated using a test-bed Chinese hamster ovary
mammalian cell bioreactor simulator. The test-bed biore-
actor simulator is developed from the models proposed in
the literature (Craven et al., 2014; Gan et al., 2018). The
simulation environment enables the design and evaluation
of prototype modeling and control approaches before de-



ploying the algorithms in industrial settings. The system
identification approach develops state-space models able
to characterize the dynamic future evolution of the fed-
batch mammalian cell bioreactor (Rashid et al., 2017).
Besides predicting the entire dynamic evolution of the
bioreactor operation, the model facilitates design of predic-
tive control algorithms to achieve the desired closed-loop
performance relative to a specified objective. The capa-
bilities of the model are leveraged to design a controller
that may, depending on the objective, maintain desired
quality attributes and improve the cost effectiveness of the
process. The proposed approach is shown to improve the
operation of the fed-batch therapeutic protein production
process.

We also use a time-varying nonlinear biomedical system
to demonstrate improvements due to incorporating prior
information in the learning of the models and reidentifica-
tion of the models when prediction accuracy deteriorates.
We propose a new partial least squares (PLS) algorithm
that incorporates regularization from prior knowledge and
can handle missing data in the independent covariates
(Pillonetto et al., 2014; Chen, 2018; Sun et al., 2021). The
latent variable (LV) based modeling technique first devel-
ops a LV-based model using historical time series data, and
then the score vectors of the new incomplete observation
are estimated using the known data regression method
to obtain predictions of the future system trajectory as
a linear combination of estimated scores and loadings Zhu
et al. (2020); Loehlin and Beaujean (2016); Zhou et al.
(2016). We show how different dynamic setpoint trajec-
tories to be specified that are congruent with the natural
system behavior. We use the example of automated insulin
delivery systems in people with type 1 diabetes to show
how better recognizing the current operating conditions
of the physiological and metabolic system, and handling
missing data in the identification process, can yield better
control of complex processes such as glucose control in
diabetes despite the presence of unmeasured disturbances
and system perturbations.

A case study illustrates the potential of machine learning
from historical data to capture the trends of daily behavior
of people with Type 1 Diabetes (T1D) and use this in-
formation for improving the performance of MPC Rashid
et al. (2019). In particular, the daily patterns of meal con-
sumption and physical activities of individuals with T1D
are are determined. Then, such personal information are
used as future potential disturbances in MPC to improve
the accuracy of personalized future glucose predictions
and compute more accurate insulin dosing strategies by
artificial pancreas systems for automated insulin delivery.

These three case studies illustrate benefits of systems
engineering to provide advanced control technologies for
complex biological systems by leveraging data-driven tech-
niques in system identification, multivariate statistical
analysis and machine learning. The remainder of the paper
is structured as follows. Section 2 is devoted to identifica-
tion and control of fed-batch mammalian cell bioreactor
system. Latent variables based modeling to accommodate
missing data in is automatic control of blood glucose
regulation in people with T1D is presented in Section 3.
Conclusions are provided in Section 4.

2. IDENTIFICATION AND CONTROL OF
FED-BATCH MAMMALIAN CELL BIOREACTOR

SYSTEM

In this section, we detail the mathematical formulations
of the trajectory-tracking predictive control (TTPC) and
the critical quality attribute predictive control (CQAPC)
algorithms. Then we analyze the results of the proposed
predictive controllers.

A predictive controller for tracking reference trajectories
of mammalian cell fed-batch bioreactor is presented. The
optimal control action at the ith sampling instance is
computed by solving the following finite-horizon optimal
control problem:

min
u∈U

J =

np∑
k=i

∥ŷk − ȳk∥2Qw
+∥∆uk∥2Rv

(1)

subject to

x̂k+1 = Ax̂k +Buk, k ∈ {i, . . . , np − 1} (2)

ŷk = Cx̂k +Duk, k ∈ {i, . . . , np} (3)

x̂k = x̄k (4)

where the objective function is a summation of tracking
error and rate of change of inputs from the current
sampling instance i to the batch termination np, u ∈ Rm

denotes the vector of constrained input variables, taking
values in a nonempty convex set U ⊆ Rm. A positive
semi-definite symmetric matrix Qw is used to penalize
the deviations of the outputs from their nominal values
and a strictly positive definite symmetric matrix Rv is
used to penalize changes in the manipulated variables.
The first term in the objective function (Eq. 1) penalizes
discrepancies between the predicted output trajectories ŷ
and the reference trajectories ȳ over the prediction horizon
np and the second term is a move suppression term that
penalizes the magnitude of input changes. The TTPC
formulation uses an identified state-space model to predict
the future evolution of the fed-batch bioreactor. Further,
x̄k in Eq. 4 provides the initialization of the state variables
at the current sampling instance. The TTPC formulation
detailed here can be used to predict the future dynamic
trajectory of the bioreactor and solve for the optimal
inputs that enable tracking a glucose set-point trajectory
profile.

The typical TTPC approach is valid for operating contin-
uous processes around an equilibrium point. However, for
batch and fed-batch processes that transition through mul-
tiple operating modes with transient nonlinear dynamics,
the TTPC approach may be suboptimal for the objective
of maximizing the yield of the high-value product. In
contrast to TTPC, formulations specifically designed for
the unique criteria of batch and fed-batch processes are
required. One such predictive control formulation tailored
to the unique circumstances of the fed-batch processes
is the CQAPC formulation. In the CQAPC approach,
the objective of closely tracking a reference trajectory is
replaced with the objective of maximizing a desired critical
quality attribute, such as the product yield, at the comple-
tion of the fed-batch operation. A predictive controller for
achieving a maximum end-point critical quality attribute
in the mammalian cell fed-batch bioreactor processes is
obtained by replacing the cost function (Eq. 1) with the



new objective function J = ŷqnp
where ŷqnp

is the prediction
of the end-point critical quality attributes as a linear com-
bination of the state variables at the final sampling instant
np. This objective maximizes the predicted end-point crit-
ical quality attributes. Moreover, constraints can be im-
posed on the state and input variables throughout the fed-
batch operation for process safety or to maintain suitable
operating conditions. Such predictive control formulations
are generally better suited for the control of fed-batch
processes employed in the pharmaceutical industry. One
such pharmaceutical fed-batch process that is typically
operating in an open-loop manner and stands to benefit
from the implementation of novel MPC formulations is the
mammalian cell fed-batch bioreactor process for culturing
Chinese hamster ovary cells to produce monoclonal anti-
bodies.

The product yields across all 10 closed-loop test batches
are shown in Fig. 1. It is readily observed that the CQAPC
increases the product concentration, resulting in distur-
bance rejection performance, while the therapeutic protein
product yield is maximized. Although the improvement in
the therapeutic protein product concentrations is modest,
it can have substantial effects on downstream processing
(purification and recovery) of the final product. It is note-
worthy that the proposed model-based predictive control
algorithms are not dependent on a fixed duration of the
fed-batch run, and the model and control algorithms do
not need to be modified for fed-batch runs of varying
durations. Therefore, CQAPC algorithm can be readily
implemented for fed-batch runs of varying durations, and
the CQAPC will maximize the product concentration at
the end of the batch regardless of the run duration.

3. PERSONALIZED ADAPTIVE MPC ROBUST TO
MISSING DATA FROM SENSORS

In this section, we develop a MPC algorithm based on
regularized partial least squares (rPLS) method where
missing data is readily handled and prior knowledge of ex-
ponential stability is integrated to improve the prediction
accuracy. For a collection of inputs XT = [x1, . . . ,xn] and

outputs Y T = [y1, . . . ,yn], developing a data-driven pre-
diction model entails finding a reasonable representation of
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Fig. 1. Comparison of conventional open-loop operat-
ing policy, proportional-integral-derivative (PID) con-
trol, TTPC and CQAPC algorithms through prod-
uct yields at completion of mammalian cell fed-batch
bioreactor runs.

the relationships between X and Y . However, collinearity
in the data causes ill-conditioning issues and renders the
identification of simple linear regression models sensitive
to measurement noise. The redundant information makes
multivariate statistical modeling techniques the preferred
approach to model the relations between input X and
output Y through intermediate latent variables (LV). The
estimation of the LVs and incorporation of prior knowl-
edge, a rPLS approach is adopted Sun et al. (2021) as

max
t

JrPLS = uT t− δ

2
wTKt

s.t. t = Xw, ∥w∥ = 1
u = Y q, ∥q∥ = 1

(5)

where t and u are the LVs of the input data X and output
data Y , respectively,w and q are the weights (or the direc-
tions) for the raw data projection, δ is the hyperparameter
to balance the trade-off between the terms in the objective
function that can be estimated by cross-validation. The
regularization term is based on a kernel matrix K that
encompasses prior information of the model and improves
the numerical properties of the model. To model dynamical
systems, a minimum level prior knowledge is that the
process model is exponentially stable, which means that
the weights corresponding to the variates are expected to
decay exponentially. The kernel matrix K can be designed
as a first-order stable spline kernel Pillonetto et al. (2014);
Chen (2018). For multiple input variables, we assume
that the variates are independent of each other. The ijth
element of the kernel matrix can be computed as

K (i, j) = λ1λ2
max(i,j), η = [λ1, λ2] (6)

where λ1 is a positive value that tunes the magnitude of
kernel matrix K and λ2 ∈ (0, 1) account for the expo-
nentially decrease property of model weights w. When the
magnitude of elements of the kernel matrix are large, the
corresponding weights founded by the rPLS method trend
to be small. If the weights are sufficiently small, the related
input variable is redundant and not considered important
in modeling the system behavior as its contribution to the
LV is close to zero. Therefore, the problem of tuning model
complexity directly is readily translated to tuning the
hyperparameters of the kernel matrix, which is relatively
straightforward.

The solution of objective (5) can be achieved by the
Lagrange multipliers method, which leads to

XTY q = δKw + λww
Y TXw = λqq

(7)

where λw and λq are the Lagrange coefficients. Sequential
LVs can be extracted after deflating X and Y using the
LV t and corresponding weight:

p = XT t/tT t
X = X − tpT

Y = Y − tqT
(8)

where p is the loading vector of X.

The details of rPLS method are summarized in table 3.
After extracting the latent variables, the prediction model
can be expressed as

T = XW
(
P TW

)−1

Y = TQT
(9)



where T = [t1, . . . , tl] = [τ 1, . . . , τn]
T

is the matrix
that containing l latent variables t and τ i is the latent
variable (also called score) of the ith input sample xi.
P = [p1, . . . ,pl], W = [w1, . . . ,wl], and Q = [q1, . . . , ql]
are the weight matrices. For a new input x, the output of
the model can be estimated as

τT = xTW
(
P TW

)−1

yT = τTQT
(10)

To predict the future trajectory of the output variables,
define the unavailable variables in x as x# and observed
variables as x∗, then it is possible to estimate y if the
score τ can be calculated using x∗ . Thus, it is critical
to establish the relationship between τ and x∗ where the
training input matrix X is first partitioned into two parts

X =
[
X∗,X#

]
, where X∗ contains the same variables as

x∗ and X# is consisting of all variables in x# Nelson
et al. (1996); Folch-Fortuny et al. (2015); Arteaga and
Ferrer (2002). Then, the regression coefficient θ is found
by minimizing the residual between T and X∗θ, which
can be achieved by regularized least squares estimation
as collinearity may exist in X∗ that can result in ill-
conditioned issues:

θ̂ = argmin
θ

JrLS =
∥∥T −X∗θ

∥∥+ δ1I (11)

where δ1 is the regularization parameter that reduce the
influence of ill-conditioned issues by introducing some
estimation bias. With known regression coefficient θ, the
score vector τ and corresponding BGC measurements y
can be predicted as

τT = x∗Tθ
yT = τTQT (12)

Note that all variables are normalized to zero mean and
unit variance at the beginning of the modeling process
and after the model is obtained, it is possible to scale
the regression coefficient rather than scale the input x
for predicting future output values. Assuming that the
regression coefficient QθT is scaled to estimate the future

Table 1. Regularized partial least squares
method

1. Normalize X and Y to zeros-mean and unit variance. Determine
kernel hyperparameter η and generate kernel matrix K. And set
i = 1.
2. Set Xi = X and Y i = Y .
3. Initialize ui as the first column of Y i, and iterate the following
process until convergence

wi = (δK + I)−1Xi
Tui

ti = Xiwi; wi = wi/∥wi∥
qi = Y i

T ti

ui = Y iqi

4. Deflate X and Y as

pi = XT ti/ti
T ti

X = X − tipi
T

Y = Y − tiqi
T

5. Set i = i + 1, and return to Step 2 until enough latent variables
are extracted.

glucose values y from raw input x∗ and the scaled regres-
sion coefficient is defined as Θ. Then, the future predicted
values can be obtained as

ŷ = Θx∗ +C0 (13)

where C0 is a constant vector.

To facilitate the design of MPC strategy, the rPLS model
can be readily formulated as a state space model. At
each sampling instance, the training data X and Y
can be updated and the future trajectory of the output
measurements can be predicted after updating the model
parameters through the rPLS method using the latest
training data.

3.1 Adaptive Learning Model Predictive Control

We propose an Adaptive Learning Model Predictive Con-
trol (AL-MPC) for use in multivariable artificial pancreas
(AP) systems that automate insulin delivery in people
with T1D to control the blood glucose concentration levels.
The AL-MPC calculates the optimal insulin injection rate
by employing adaptive weights that modify the penalty
weighting matrices in the MPC objective function Askari
et al. (2020). It calculates the optimal insulin injection
rate over a finite horizon by using the recursively iden-
tified subspace-based dynamic models and three different
predictions obtained for the unknown process disturbances
by solving the following quadratic programming problem
at each sampling time k{

z∗i,j ,m
∗
i

}mf−s

i=0
:=

argmin
zj∈Z
m∈M

J k

mf−s
(Qj,k, Pk,Rk, {mi}

mf−s
i=0 , {zj,i}

mf−s
i=0 )

s.t.



zj,i+1 = Akzj,i +Bkmi + dj,i
qj,i = Ckzj,i +Dkmi

zj,0 = x̂j,k

mmin
j,i ≤ mi ≤ mmax

j,i

zPIC,min
j,i ≤ zPIC

j,i ≤ zPIC,max
j,i

ePIC
j,i = zPIC

j,i − zPIC,des
j,i

zPIC,max
j,i = (βm,k + βf )× (amax

j,i × qj,i + bmax
j,i )

zPIC,min
j,i = (βm,k + βf )× (amin

j,i × qj,i + bmin
j,i )

zPIC,des
j,i = (βm,k + βf )× (adesj,i × qj,i + bdesj,i )

(14)
incorporated with the objective function

J k

mf−s
:=

mf−s∑
i=0

3∑
j=1

(
qj,i − rj,i

)
Qj,k

(
qj,i − rj,i

)
+ (mi −mbasal

i

)Rk(mi −mbasal
i

) + ePIC
j,i Pke

PIC
j,i

(15)

where zj,k ∈ Rnx and qj,k ∈ R represent the estimated
state variables and the output of the model, respec-
tively, Ak, Bk, Ck and Dk are the state-space system
matrices, and dj,i is the disturbance term. The distur-
bance term is predicted independently based on dynamic
regularized latent variable regression (DrLVR), which is
useful for disturbance forecasting, uncertainty quantifi-
cation, and improving the system output predictions by



incorporating historical data. For the prediction/control
horizon mf − s, mi ∈ R represents the constrained
input variable, which takes values in a nonempty con-

vex set M :=
{
mk ∈ R : mmin

j,k ≤ mk ≤ mmax
j,k

}
with

mmin
j,k ∈ R and mmax

j,k ∈ R denote the lower and upper
limits on the manipulated variable, respectively. rj,k is
the target set-point, and mbasal

k

is the patient-specified

rate of basal insulin. The nonempty convex set Z with

Z :=
{
zj,k ∈ Rnx : zmin

j,k ≤ zk ≤ zmax
j,k

}
, zmin

j,k ∈ Rnx and

zmax
j,k ∈ Rnx represent the lower and upper bounds on

state variables, respectively, with one of the state vari-
ables as the estimated plasma insulin concentration (PIC),
denoted zPIC

j,k that is constrained by the PIC limits

(zPIC,max
j,k , zPIC,min

j,k , and zPIC,des
j,k ) where the zPIC,des

j,k is
the desired PIC value. x̂j,k provides an initialization of
the vector of state variables, Qj,k ≥ 0 is a positive semi-
definite symmetric matrix utilized to penalize the devi-
ations of the outputs from their desired set-point, and
Rk and Pk are strictly positive definite symmetric matrix
to penalize manipulated variables and the PIC errors,
respectively. At each iteration, the quadratic programming
problem described by (14) is solved, and uk := m0 which
is the optimal solution implemented to inject insulin over
the current control horizon with the MPC computation
repeated at next sampling time using new glucose data,
updated state variables, and newly computed penalty
weights of the objective function.

3.2 Results

In this study, the robustness and efficiency of the proposed
personalized MPC (pMPC) and personalized adaptive
MPC (paMPC) are further assessed by introducing miss-
ing glucose data to the AP system randomly. Specifically,
the interval of missed glucose data lasts for 5 minutes to
30 minutes (1 sample to 6 samples).

The average percentage of time in different glycemic ranges
and statistical measures of the controlled glucose mea-
surements are summarized in Table 2. For the proposed
paMPC strategy, the average percentage of time in safe
range improves 8.36%, from 76.52% to 84.88%, in contrast
to pMPC strategy. There is a considerable decrease in time
in high glucose range of 8.37% obtained by incorporat-
ing the adaptive rules into pMPC approach. The average
maximum value of glucose measurement drops from 276.5
mg/dL to 250.7 mg/dL, which is slightly higher than the
threshold of severe high glucose values (250 mg/dL) and
the mean value of average glucose measurements during
the closed-loop study decreases 7.06 mg/dL. Even though
mild low glucose measurements occurs and lasts for 5
samples, all the 20 subjects are in the clinical sub-optimal
region and the minimum value of glucose measurements
is 67 mg/dL for the proposed paMPC. In contrast, the
minimum value of glucose measurement for pMPC strat-
egy is 70 mg/dL, which is not significantly higher than the
minimum value for paMPC approach.

To demonstrate the variation of the controlled glucose
measurements under the pMPC and paMPC strategies,
the mean continuous glucose monitoring (CGM) mea-
surements, bolus insulin dosages, and basal insulin rates

are compared in Fig. 2 along with the areas formed by
mean±standard deviation. The glycemic trajectory for
both MPC strategies are both in the safe range for large
percentage of time, where glycemic trajectory for the pro-
posed paMPC is in the range for longer time as post-
prandial glucose concentration returns back to the safe
range faster. During the period of midnight to 8 AM,
tight glycemic regulation is achieved by using both MPC
strategies even though some of CGM data missed during
the night. The patterns of bolus insulin and basal insulin
infusion rate are different for the compared two MPC
strategies, where larger bolus dosages can be observed for
the proposed paMPC approach and smaller bolus dosages
that are delivered for more times are observed for the
pMPC strategy. In addition, the basal insulin infusion rate
for pMPC method is almost always higher than the basal
insulin infusion rate for the proposed paMPC approach.

To evaluate the influence of missing data on the AP sys-
tem, the detailed glycemic trajectory, insulin trajectory,
and hyper-parameter α of the proposed paMPC strategy
for subject 19 in the two case studies are compared in
Fig. 3 where the missing data interval ranges from 5
minutes to 30 minutes and the missed CGM data are
replaced by estimated values. Overall, the differences be-
tween two glycemic trajectories, bolus insulin dosages,
basal insulin infusion rates, and hyper-parameter α are
negligible. Specifically, when CGM data are missed during
the night, before meals, and postprandial periods where
fluctuation of CGM measurements is not severe, the effects
caused by missed CGM data are so small that almost can
not be observed. Even though the effects of missed CGM
data during the period of carbohydrate absorption where
glycemic fluctuation is severe on hyper-parameter α that
adaptive tunes the aggressiveness and conservativeness of
the proposed paMPC are comparable large, the different
of controlled trajectories are relatively small that demon-
strates robustness of the proposed paMPC strategy.

4. CONCLUSION

This paper demonstrates the use of MPC formulations for
uncertain time-varying biopharmaceutical and biomedical
systems implemented using measured data without prior
knowledge of an accurate model. Simulation case studies
involving a biopharmaceutical fed-batch Chinese hamster
overy mammalian cell bioreactor process and automated
insulin delivery in T1D for controling blood glucose levels
demonstrate the capabilities of the proposed techniques.
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Table 2. Controller performance across 20 virtual subjects for closed-loop glycemic control with
pMPC and paMPC strategies (Mean ± STD (standard deviation)).

CGM data missed or not No Yes

MPC strategy pMPC paMPC pMPC paMPC

Time in range (%)

[40, 55) 0±0 0±0 0±0 0±0
[55, 70) 0±0 0±0 0±0 0.01±0.06
[70, 180] 76.48±7.50 84.58±7.65 76.52±7.58 84.88±7.36
(180, 250] 21.83±5.89 14.84±6.82 21.66±5.82 14.63±6.69
(250, 400] 1.69±2.08 0.58±0.91 1.81±2.19 0.47±0.81

CGM measurement (mg/dL)
Minimum 74.9±1.48 74±2.58 74.81±1.48 73.42±2.67
Maximum 277.8±25.62 255.05±31.01 276.5±24.26 250.7±25.48

Mean 138.46±10.75 131.71±10.56 138.42±10.93 131.36±9.91

Fig. 2. Glycemic trajectory, bolus, and basal insulin in-
fusion rate across 20 virtual subjects of closed-loop
control for pMPC and paMPC strategies with missing
CGM measurement.

Fig. 3. Comparing glycemic trajectory, bolus insulin
dosage, basal insulin infusion rate, and α of subject
19 for closed-loop control with and without missing
CGM measurement.
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